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Abstract: Shoot apical meristems (SAM) are tissues that function as a site of continuous organogenesis,
which indicates that a small pool of pluripotent stem cells replenishes into lateral organs. The
coordination of intercellular and intracellular networks is essential for maintaining SAM structure
and size and also leads to patterning and formation of lateral organs. Leaves initiate from the
flanks of SAM and then develop into a flattened structure with variable sizes and forms. This
process is mainly regulated by the transcriptional regulators and mechanical properties that modulate
leaf development. Leaf initiation along with proper orientation is necessary for photosynthesis
and thus vital for plant survival. Leaf development is controlled by different components such as
hormones, transcription factors, miRNAs, small peptides, and epigenetic marks. Moreover, the
adaxial/abaxial cell fate, lamina growth, and shape of margins are determined by certain regulatory
mechanisms. The over-expression and repression of various factors responsible for leaf initiation,
development, and shape have been previously studied in several mutants. However, in this review,
we collectively discuss how these factors modulate leaf development in the context of leaf initiation,
polarity establishment, leaf flattening and shape.
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1. Introduction

Leaves are the primary organs responsible for photosynthesis and photoperception, and play
a key role in plant growth. Their development starts from the shoot apical meristem (SAM), which
have a central zone (CZ) that houses pluripotent cells, and a peripheral zone (PZ), responsible for the
leaf initiation and their development into a flattened structure [1]. In most plants, the leaf functions
as a solar panel, where photosynthesis converts carbon dioxide and water into carbohydrates and
oxygen [2]. Leaves are an excellent example of learning how complex organs arise from a simple
structure. All leaves are initiated by the recruitment of cells flanking the SAM as simple rod-like
primordia, later on, to get their final shape. There are three principal axes in a leaf, along which
intrinsic genetic programs control leaf cell division, differentiation, and expansion. However, leaf
morphogenesis is strictly controlled not only by intrinsic genetic factors but also by hormonal factors.
Numerous series of events demonstrate that plant hormones, mostly small and simple molecules,
play crucial roles in plant growth and development [3]. It was hypothesized how hormonal and
genetic networks regulate leaf morphogenesis to enable the transformation of simple primordium into
a complex organ with consistent shape and size, and to elaborate how these genetic networks generate
plasticity in response to both endogenous and environmental signals. Since a deeper understanding
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of leaf development contributes to our overall comprehension of plant biology, this understanding
can also be used to improve crop production. Therefore, it is important to unveil the molecular and
hormonal regulation of leaf morphogenesis, including the initiation of leaf primordia, the determination
of leaf axes, and the regulation of cell division in model plant Arabidopsis thaliana. The main focus of
this review is to summarize the current knowledge and discuss the several fundamental aspects of leaf
development, including a genetic regulatory framework that contributes to leaf initiation, leaf polarity
determination, and leaf outgrowth and flattening. Furthermore, we also emphasize recent results that
have strengthened our understanding of leaf development. The information obtained from the studies
of Arabidopsis thaliana simple leaves will continue to provide basic knowledge about the formation and
genetic mechanisms involved in compound leaves [4,5].

1.1. Maintenance of Shoot Apical Meristems (SAM) and the Leaf Initiation Gene Network

The stem cells of plant meristems generate new organs and tissues throughout the life of the plant.
The above-ground organs in plants are formed through SAM, whereas below-ground organs are created
by root apical meristems (RAM). Beside these two apical meristems, various other types of meristems
exist in plants, such as lateral meristems (e.g., axillary in the node of the leaves and flowers), intercalary
meristems (at the base of the monocots leaf blade), and transient stem-like meristemoids (the precursor
for guard cells) [6,7]. The SAM is a dome-shaped structure that comprises a reservoir of stem cells,
provides cells that form the branches, leaves, and flowers of the plant, and also retains its own identity.
The SAM is organized into several distinct cell layers and various zones [8] (Figure 1). The development
and maintenance of SAM are crucial for determining the spatiotemporal arrangement (e.g., clockwise,
anticlockwise, spiral and whorled) of aerial organs around the stem. The process of arranging different
organs spatially is known as phyllotaxis, which is species and stage-dependent [9–11].

In Arabidopsis thaliana, the SAM possesses three cell layers (L1–L3). An external two-cell layer
forms tunica, where the L1 overlies L2. This layer divides by anticlinal cell division and grows in a
two-dimensional fashion [12]. An inner layer (L3) divides both periclinal and anticlinal cell divisions
in a mostly random fashion, which is commonly called corpus. These three histogenic layers are
responsible for producing different parts; the L1 layer divides and forms the entire shoot epidermis
while the L2 layer produces the photosynthesizing cells of the sub-epidermis. The L3 layer forms the
internal tissue, pericycle, and other corpus cells [13].

The SAM layers are further subdivided into three functional domains or zones according to
the function and division rate (Figure 1). The three zones include the central zone (CZ), peripheral
zone (PZ), and rib zone (RZ), which is present below the CZ. The CZ is mainly responsible for the
maintenance of SAM. The CZ contains both tunica and corpus cells in which the stem cells are present,
and below the CZ is the organizing center (OC) [14]. The tunica and corpus cells of the CZ are
symplasmically interconnected through the plasmodesmata [15,16]. Any alteration in the intercellular
signals through the plasmodesmata affects normal growth and development [17].

The cells in the PZ divide at a faster rate to form leaves, branches, and floral parts than those in the
CZ [15,18]. These functional and cytohistological zones are juxtaposed onto cell layers and govern the
patterns of development [19,20]. The PZ cells are differentiated and have distinct identities that help
to establish future organs such as leaf primordia [3,21]. Cells in the RZ develop into differentiating
stems that support the SAM. The maintenance of SAM and the initiation of an organ through a specific
phyllotaxis pattern requires strong signal coordination between the different factors such as hormones
and genes [22,23].
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Figure 1. Schematic representation of Shoot Apical Meristems (SAM) maintenance by the various
interacting genes. (A) The pluripotent stage and a specific number of cells in the SAM are controlled by
the (WUS/CLV3) negative-feedback loop. CLAVATA3 (CLV3) is a ligand attached to CLV1 and CLV2
for the restriction of WUS. However, WUS activates CLV3 and works as a stem cell-promoting protein.
STM activated the biosynthesis of CK through LONELY GUY (LOG). The STM and KNOX related
genes also keep the stem cells undifferentiated by suppressing the expression of AS1 and gibberellic
acid (GA) biosynthesis. STM also restricts the expression of the CUC gene due to negative regulators
in a specific area. (B) The HAM and WUS-CLV3 loop. The regulatory loop requires CLV3, WUS,
and HAM; the CLV3 negatively regulates the WUS expression, and the WUS protein moves from the
organizing center to the active central zone (stem cells) to activate CLV3 expression. HAM1/2 is an
interacting partner of WUS, and together with WUS protein suppresses the expression of CLV3 in
the rib meristems. The expression zone of the CLV3 gene (blue), WUS gene (pink), HAM proteins
(green) and the dot marks the WUS protein. (C) Regulatory networks that control leaf initiation. The
cells in the SAM are arranged into layers L1, L2, and L3 and further into a distinct group of either
tunica or corpus. According to the expression of genes, the SAM architecture is organized with the
central zone (CZ), peripheral zone (PZ), organizing zone (OZ), and rib zone (RZ). During leaf initiation,
auxin maxima repress the expression of the KNOX1 domains (gene) indeterminate meristem domains.
KNOX1 maintains a high level of CK and low levels of GA in the meristem. In the ARP domain that
has leaf identity, the leaf primordium separates from SAM by expression of boundary specific genes
CUC and BOP regulates the petiole specification and polarity (positive and negative regulations are
indicated by pointed and T-shaped arrows).

The initiation and establishment of the shoot meristem in the embryonic stage of Arabidopsis
relies on the expression of many different genes and certain signaling proteins. In plants, the NAC
family, i.e., CUP-SHAPED COTYLEDON1 (CUC1), CUC2, and CUC3, are the major transcription
factors required to initiate SAM and boundary formation (Table 1) [24–27]. The double mutant of
cuc1 and cuc2 genes generates a fused cup-shaped cotyledon structure devoid of SAM. In Arabidopsis,
for the development of SAM during embryogenesis and to sustain its function, the activity of class-1
KNOTTED1-LIKE HOMEOBOX (KNOX) gene SHOOT MERISTEMLESS (STM) is required, which is
expressed throughout the SAM but downregulated in leaf developing cells [28,29]. In the organ (leaf)
founder cells, the activation of organ-specific transcription factors and auxin accumulation inhibits
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the expression of the KNOX gene (Figure 1) [27]. Other members of the class-1 KNOX gene family,
which are expressed in SAM, include KNAT1/BREVIPEDICELLUS (BP), KNAT2, and KNAT6. STM
is a central regulator of SAM organization and development, and stronger alleles, such as the stm-1
mutant, totally failed to establish SAM during embryogenesis [30]. In contrast and under normal
conditions, other related genes, such as KNAT1/BP, KNAT2, and KNAT6, have no discernible effect
on SAM. In the leaf primordium, the MYB domain transcription factors, ASYMMETRIC LEAVES1
(AS1) from Arabidopsis, ROUGH SHEATH2 (RS2) from maize and PHANTASTICA (PHAN) from
Antirrhinum (these are collectively named ARP genes), repress the expression of the KNOX1 gene
(Table 1) [31,32]. Furthermore, to maintain the meristematic state of the stem cells, the STM inhibits the
expression of AS1 in the shoot apex [28,32]. KNOX1 gene BREVIPEDICELLUS (BP) and KNAT2 gene
expression are directly repressed by a repressor complex containing AS1, AS2 [33,34]. STM induces the
cytokinin (CK) biosynthesis gene, isopentenyl transferase (AtIPT7) which encodes for the enzyme that
contributes to the production of active CK in the SAM layer L1; CK interacts with other systematic
signals and controls the meristem size and functions [35].

Table 1. A list of the key genes involved in leaf growth and differentiation.

Gene Description Biological Function Species References

ASYMMETRIC
LEAVES1/ ROUGH

SHEATH 2/PHA
NTASTICA (ARP)

MYB domain protein Stem cell differentiation Arabidopsis, Zea mays,
Antirrhinum majus [31,32,36–38]

AUXIN
RESPONSE

FACTORS (ARF)

Protein with
N-terminal DNA
binding domain,

activator/repressor

Leaf polarity Arabidopsis [39]

ANGUSTIFO
LIA(AN3)/

GRF-INTER
ACTING FACTOR

1(GIF1)

Transcription
coactivators Cell proliferation Arabidopsis [40,41]

CLAVATA (CLV)

CLV1 (receptor kinase);
CLV2 (transmembrane

protein); CLV3
(extracellular protein)

Maintain stem cell size Arabidopsis [42,43]

Class-1
KNOTTED-like

homeobox (KNOX1)
Homeodomain protein Maintain stem cell identity Arabidopsis, Zea mays [28,44]

CUP-SHAPED
COTYLEDON2

(CUC2)

Protein containing the
NAC DNA binding

domain

Shoot meristem formation;
organ boundary

specification; and leaf
margin development

Arabidopsis [45]

DEVELOP MENT-
RELATE PcG

TARGET IN THE
APEX 4 (DPA4)

RAV transcription
repressor

Organ initiation and
development; leaf margin

development
Arabidopsis [46]

GROWTH- REGUL
ATING FACTOR5

(GRF5)

Transcription
activators containing
N-terminal QLQ or

WRC domain

Cell proliferation Arabidopsis [47]

Narrow sheath
(ns)/PRESSED

FLOWER (PRS)
Homeodomain protein

Recruitment of leaf
founder cells and leaf

expansion/Marginal cell
proliferation

Zea mays Arabidopsis [44,48,49]

PIN-FORMED1
(PIN1)

Transmembrane
protein Auxin efflux Arabidopsis [34]

PHANTASTICA
(PHAN) MYB domain protein Stem cell differentiation Antirrhinum majus [50]

WUSCHEL (WUS) Homeodomain protein Maintain shoot and floral
meristem identity Arabidopsis [51]

YABBY (YAB)

Protein with
zinc-finger and
helix-loop-helix

domains

Specification of Leaf
polarity and lamina

expansion
Arabidopsis [52,53]
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The WUSCHEL-related homeobox (WOX) gene family transcription factors are broadly distributed
in plant species and belong to the homeobox (HB) superfamily. Its members all possess a conserved
DNA-binding homeodomain (HD) with 60 to 66 amino acid residues [54]. It has been reported
that the number of WOX genes plays a significant role in a wide range of functions, including
the maintenance of stem cells, embryonic development and polarization, and the development of
lateral organs. In Arabidopsis, 15 WOX genes, WUS, and WOX1-WOX14 have been identified and
well-studied for their function. AtWOX1 plays a significant role in meristem development by regulating
S-adenosylmethionine decarboxylase (SAMDC) activity or CLV3 expression [55].

Moreover, the WUSCHEL gene (WUS) is required for the specificity and identity of stem-cells at
the SAM [51,54]. WUS expression is crucial for meristem maintenance and shoot development [39],
but the exact mechanism in which stem-cells are regulated is not fully understood. In the SAM, WUS,
as bifunctional proteins, mainly act as a repressor but also becomes an activator when involved in
the regulation of the AGAMOUS (AG) gene [56,57]. WUS directly represses the transcription of the
Arabidopsis Response Regulator (ARR-A) genes, which encode for the intracellular inhibitor of cytokinin
activity [58]. After the recognition of ARR as targets of WUS, a linkage between phytohormone
(cytokinin) and the CLV/WUS stem cell network was established [59–62]. In Arabidopsis, Type-A
ARRs are mostly transcriptional repressors, whereas type-B ARRs promote the cytokinin response
and act as transcriptional activators [63]. Type-B ARRs, such as ARR1, ARR10, and ARR12, bind
to the cis-element located in the promoter region of WUS and activate its expression. Type-A ARR
negatively influences the meristem size, and WUS represses the expression of ARR5, ARR6, ARR7, and
ARR15 genes for proper meristem function [58,64]. WUS also protects apical stem cell meristems from
differentiation by restricting the auxin signaling pathway via regulation of histone deacetylation [65].
To maintain the integrity of SAM, a high concentration of WUS protein repressed the expression of
basic helix-loop-helix (bHLH) transcription factor HECATE1 (HEC1), which is expressed throughout
the SAM, except for the OC [66,67]. HEC1 forms protein complexes with other bHLH transcription
factors such as HEC2 and HEC3. HEC1 activates type-A AAR7 and ARR15 expressions and represses
CLV3 expression. Multiple feedback regulatory mechanisms mediated by transcription factors and
hormonal components control WUS expression and meristematic fate in SAM [68–70].

It is also reported that WUS expression occurs in the OC, but in addition, it can also control the
expression of CLV3 in the CZ. The WUS protein migrates and binds to the CLV3 promoter and thus
regulates the expression of CLV3 [29,71]. Besides, computational modeling (Figure 1) shows that the
WUS gradient is vital for the maintenance and regulation of the stem cell number [72,73]. Various
reports have demonstrated that WUS moves to L2 and L1 via plasmodesmata under a highly regulated
fashion, and this movement is required for WUS function and stem cell activity [74]. In Arabidopsis,
WUS has been shown to interact with members of the HAIRY MERISTEM (HAM) family protein,
GRAS-domain transcription factors [75], and HAM1 and HAM2 expressed in the RZ and lateral edges
of PZ where CLV3 expression is reduced. In contrast, HAM1 and HAM2 expressions are not detected
in the CZ where CLV3 is highly expressed. WUS activates CLV3 only in the absence of HAMs; the
apical-basal gradient of HAMs defines the pattern of CLV3 expression domains [75,76]. The regulation
of CLV3 by WUS for the maintenance of stem cells is associated with the WUS gradient into the PZ,
where the stem cell progeny is differentiated [18,77,78]. The CLV3-related signaling pathway in the
stem cell domain is demonstrated by the diffusion of CLV3 peptide towards the inner layer of the
meristem, where at least three receptor complexes recognize it. These receptor complexes include
CLV1, CLV2, CORYNE (CRN), RECEPTOR-LIKE PROTEIN KINASE2 (RPK2), and BARELY ANY
MERISTEM1 (BAM1/2) and represses the expression of WUS [42,43], which is crucial for the stem cell
population [79].

The WUS activated gene is present in the central part of the SAM, and the repressed
gene is located in the PZ. Additionally, in Arabidopsis, WUS represses those TFs-coding genes
that are involved in differentiation, for example, KANADI (KAN1), (KAN2), AS2, YABBY3
(YAB3), KNAT1/BREVIPEDICELLUS (BP), and BELL1-LIKE HOMEODOMAIN5 (BLH5) [80,81]. The
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identification of these direct interactions can contribute to the understanding of the molecular network
but with limitations to explain the mechanisms by which WUS controls stem cell homeostasis. If the
stem cell progenitor is relocated beyond the stem cell niche, they then determine whether to be the
part of the main axis or divide into lateral organs such as leaf primordia. The fate of distinction is
primarily determined by the auxin influx carrier AUXIN RESISTANT1/like-AUX1 (AUX1/LAX) and
the auxin efflux transporter PIN-FORMED (PIN1) (Figure 1). The PIN1 efflux carriers control the
orientation of auxin transport into the neighboring cell and the concentration of auxin in the group of
cells [82–85]. The auxin concentration may also vary even in the same group of cells. Several models
have postulated phyllotactic patterning, which is mainly based on the interaction between auxin
accumulation and distribution of the auxin efflux carrier (PIN1) [5,86]. Moreover, AUX1 is responsible
for auxin accumulations, which are mainly in the L1 layers of cells. On the contrary, PIN1 drains auxin
toward the base of the leaf primordium by inducing vascular tissue differentiation in the L2 and L3
layers [83,87].

1.2. Gene Functioning in Leaf Initiation

Leaf formation starts with the recruiting of founder cells in the peripheral of SAM by changing the
pluripotent cell to a differentiated cell. The first step towards the emergence of leaf primordia is PIN1
mediated formation of auxin maxima in the PZ, and to repress the expression of KNOX genes [88].
This activity is necessary because the KNOX genes actively maintain the undifferentiated state of the
cells [88]. A mutation in the KNOX genes changes the indeterminate cell to determinate. Auxin maxima
enhance the growth and accelerate differentiation, while STM proteins have the opposite effect on both
cell growth and differentiation [89]. The critical role of auxin in SAM is to control organogenesis and
self-organization of SAM; auxin also specifies the organ primordium fate in the PZ of SAM [90,91].
Mutation in the auxin biosynthesis, transport, and signaling components affect plant growth and
morphology. In Arabidopsis, 23 AUXIN RESPONSE FACTORs (ARFs) have been identified, and ARF
works as a transcription factor that binds to the auxin-responsive elements (AuxREs) in the promoter
region of the target gene [92]. Among other ARF transcription factors, ARF5 (which is also known as
MONOPTEROS (MP)) is present in threshold form from PZ to CZ and plays an important role in gene
expression to specify the meristematic and primordium fate [93,94]. The MP activates ARABIDOPSIS
HISTIDINE PHOSPHOTRANSFER PROTEIN6 (AHP6) expression and inhibits ARR7/ARR15 to control
meristematic fate through the regulation of CK homeostasis [95]. Previously, it was suggested that MP
was involved in stem cell regulation by inhibiting the expression of DORNRÖSCHEN/ENHANCER OF
SHOOT REGENERATION1 (DRN/ESR1) that activated CLV3 expression in the CZ [96,97].

The auxin-efflux protein PIN1 is expressed in the epidermal cell for auxin accumulation [81],
which promotes the formation of pro-vascular tissue. PIN1 is the first marker for mid-vein formation
before the leaf primordia bulge out [98,99]. A mutation in PIN1 can cause the irregular distribution
of auxin and thus disturb the proper initiation of the leaf primordia [85,100]. In Arabidopsis, the pin1
mutant blocked the floral primordium formation, and in tomato shoot apices treated with polar auxin
transport inhibitor, such as N-1-naphthylphthalamic acid (NPA), abolished leaf formation [101,102].
The external application of auxin restored primordium formation in the NPA-inhibitor and pin1 mutant,
which indicates the importance of auxin in organ initiation [103]. In the peripheral of the meristems,
organ primordia are separated and form a groove at the base that contains small slow-dividing and
slow-expanding cells called the boundary domain [19,104]. The boundary domain is defined by several
factors, including the NAM/CUC transcription factor family [25,105]. Mutants of CUC genes exhibited
a lack of SAM and fused lateral organs, which indicated that this boundary domain contributes to
meristem formation and enables the organ separation, as well as providing a particular status of
hormones such as low brassinosteroid (BR) and auxin levels [105,106]. The cuc3 loss of function mutant
restrains leaf serration, which suggests the role of CUC3 in leaf serration. Moreover, the overexpression
of KNOX1 genes in lobed leaf phenotypes was suppressed in the cuc2-3 mutant, which indicates that
CUCs act downstream of KNOX-induced alteration in leaf morphology [46,107].
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Cytokinin (CK) and gibberellic acid (GA) affect cell division, and KNOX1 can increase the
biogenesis of CK by up-regulating the IPT7 genes that further block the GA20-oxidase gene required
for GA biosynthesis (Figure 1) [108]. A high GA to CK ratio promotes determinacy; in contrast,
a low GA to CK ratio facilitates the indeterminacy of the cells. Additionally, the KNOX-independent
genetic pathway involves WUS and CLV3 that control the stem cells’ fates directly by regulating
cytokinin-inducible response factors (discussed in the maintenance of SAM). A different pathway
attains a low CK and a high GA, while determining how auxin promotes organ growth and is integrated
with cell fate allocation by KNOX/AS1 protein is unclear. Furthermore, in the as2 mutant background
increases in the transcript level of IPT3 and KIP-RELATED PROTEIN2 (KRP2) and KRP5, and this
upregulation is a decline in introducing the double mutant of ett, arf4 in the as2 mutant background.
Therefore, it is suggested that the expression of IPT3, KRP2, and KRP5 is negatively regulated by
AS1-AS2 through repression of ETT/ARF3 and the ARF4 function in the wild type [109]. In Arabidopsis,
KRP2 and KRP5 encode for cyclin-dependent kinase inhibitors (CKIs), which is a key regulator of cell
progression. During leaf formation, required cell proliferation is achieved by proper repressive control
of KRP2 and KRP5 expression by AS1-AS2 [110].

In Arabidopsis, another pathway involves the MYB transcription factor encoding for ARP genes,
which is expressed in the founder cells of the lateral organs, and represses the expression of the KNOX1
gene that tends to promote leaf development (Figure 1) [31]. In Arabidopsis, the epigenetic repression
of KNOX genes involves the binding of the AS1-AS2 complex to a specific sequence in the promoter
region of the BP gene and inhibits its expression. It was confirmed that AS1-AS2 binds to specific
sequences in the BP gene that works as a PRE (polycomb response element); the AS1-AS2 complex
recruits the polycomb repressive complex 2 (PRC2), which is a stable silencer of STM regulators [111].

Furthermore, many reports indicate the precise regulatory mechanisms of KNOX1 genes. In this
regard, various genes (AS1, AS2, SERRATE (SE), BLADE ON PETIOLE1 (BOP1) and PICKEL (PKL))
were found to be involved in the down-regulation of the KNOX (KNAT1, KNAT2) gene [32,112]. The
mutants as1 and as2 have some similar phenotypic characteristics due to the ectopic expression of
KNOX1 genes and this expression results in the segmentation of the leaf primordium [32]. Moreover,
SE was found to enhance the phenotypic expression of the as1 and as2 mutant. KNOX genes are
normally regulated in both pkl and se mutant leaves; however, KNOX target gene GA20ox1 is repressed,
suggesting that PKL, SE and KNOX activities cover at least one specific target gene. SE represses a small
family of micro-RNA targeted Class III HD-ZIP genes that promote meristem activity, the se mutant
showed enhanced response to KNOX activity, indicating elevated level of HD-ZIP III expression,
HD-ZIP III gain of function mutant reduced the expression of GA20ox1, mimicking effects of KNOX
overexpression [113]. Class 1 KNOX gene overexpression prolongs the proliferation of the leaf cell
within the lamina [114]. BOP1 and BOP2 are expressed at the proximal domain of the leaf primordium
and activate the expression of the boundary specific LATERAL ORGAN BOUNDARIES (LOB) gene and
adaxial expressed AS2 gene [115,116]. The bop1-1 mutant shows a similar effect with as1-1 or as2-2 and
stm-1 mutants, which suggests that BOP1 promotes or maintains a developmentally determinate state
in leaf cells by regulating class 1 KNOX genes [101]. During leaf development, the expression domain
of the KNOX1 gene is also regulated by ARP genes and distinguishes the leaf founder cell from the
meristem cell in SAM [33,117].

Besides, transcription factors, hormones, and mechanical forces are important for leaf development
and morphogenesis. Turgor pressure and cell wall mechanics modulate the direction and rate of cell
expansion and affect the pattern of plants. It has been confirmed that the cells in the CZ of SAM
have stiffer cell walls compared to the PZ. Organ outgrowth is accompanied by an increase in cell
wall elasticity [118]. It has also been shown that auxin regulates cell wall properties, and during leaf
initiation, auxin not only reduces stiffness but also affects wall anisotropy through the modulation of
the cortical microtubule dynamics [118].
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2. Leaf Outgrowth and Expansion

Plants have the ability to grow indeterminately throughout their life and produce many repeated
units during their lives. In addition, plants produce certain organs with determinate growth such as
leaves, sepals, and petals. In this review, we focused on the size and growth of the Arabidopsis thaliana
model plant in which the determined organ (leaf) is regulated by several genetic and environmental
factors. The organs of the plants are formed from the reservoir of pluripotent cells, i.e., the meristem.
Under the control of cell division and expansion, the leaf primordia achieves its natural size. As the
leaf grows, the cell division at the distal end ceases and the expansion process occurs in which the cells
at the base are strongly vacuolated rather than proliferated. The base displaces the older cells towards
the distal end and eventually, they finally fall out of the proliferation zone. The cells (in a narrow
region) are present between the blade and petiole junction, which bidirectionally divides the cells into
two parts of the leaf. Furthermore, the dynamic of the cell proliferation regions rapidly appears at
the “arrest front” boundary between the proliferation and expansion regions at a constant distance
from the base of the leaf for several days before rapidly disappearing [119,120]. Thus, the two main
processes of cell proliferation and cell expansion control the final leaf size, whereas any alterations
in these processes may affect leaf formation. The timing of the transition from division to expansion
within the growth of the leaf lamina is important to determine the final size, shape, flatness, and
complexity. The class II TCPs (CINCINNATA-like TCPs) are the key regulators of timing from division
to expansion [121,122]. The TCP family consists of plant-specific transcription factors; the CIN-TCPs
is the subclass of the TCP family, which has a prominent role in controlling the transition from cell
proliferation to expansion during leaf development. During leaf growth, the proliferation phase
involves mitotic division interspersed with cytoplasmic growth to increase the primordium size due to
the cell number. However, in the expansion phase, the organ increases the size by increasing the cell
size [40,123]. There are many genes that positively regulate and control the transition from proliferation
to expansion, for example, AINTEGUMENTA (ANT) [124], KLUH/CYP78A5 [125] and GROWTH
REGULATING FACTORS (GRFs) [126,127], whereas the negative regulators include CIN-TCPs and
DAI [128]. In addition, the PEAPOD1, 2 (PPD1, 2) gene also acts as a negative regulator and changes
the dispersed meristematic cells in leaf lamina to stomatal and vascular precursor cells [129]. The
promotion of cell proliferation of class I TCPs depends on spatial and temporal expression domains,
whereas the CIN-TCP represses cell proliferation (and so the loss of CIN-TCP gene functions increases
the proliferation). In Arabidopsis thaliana, there are nine GROWTH REGULATING FACTORS coding
genes (GRF1-9), and GRFs delay transition from proliferation to differentiation (Table 1).

TCP4 promotes the expression of miRNA396, which targets seven genes of the GRFs family
(Figure 2) [127,130,131]. During the early stage of leaf development, miR396 is expressed in the
distal part of the leaf and the expression of GRFs is confined to the proximal regions and promotes
cell proliferation. After cell proliferation, miR396 is expressed throughout the organ to decrease
GRF expression in the maturing organ [47]. How GRFs stimulate cell proliferation is not fully
understood, but GRFs physically interact with GRF-INTERACTING FACTOR1/ANGUSTIFOLIA3
(GIF1/AN3), GIF2, and GIF3 to create a transcriptional module that regulates the leaf size by cell
proliferation (Table 1) [41,127,132,133]. Contrary to normal plants, the gif mutant results in smaller
and narrower leaves.
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arrows). Red, genes; blue, hormones; purple, small RNAs. (B) Shortly after its initiation, the young 
leaf primordium has three regions: adaxial, abaxial, and leaf marginal regions. These regions are 
determined by the region’s specific transcription factors, such as HD-ZIP III, KANADI, and PRS 
WOX1, involving multiple negative feedback loop mechanisms. For the sake of clarity, all the 
interactions are not shown here. Adaxial-abaxial polarity is determined by highly interconnected gene 
networks. In this network, tasi-ARF limits abaxial determinants and AUXIN RESPONSE FACTORS 
ARF3/ARF4 to the bottom side. In addition, miR165/166 restricts the expression of adaxial 
determinants HD-ZIPIII to the top of the leaf (the positive and negative regulations are indicated by 
pointed and T-shaped arrows, respectively). 
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machinery. GIF1/AN3 promotes several proliferation-stimulating factors, such as ribosomes, to 
sustain the high demand of protein that is required in actively proliferating cells and represses the 
gene that promotes cellular differentiation [41,134]. AN3 lacks a DNA-binding domain, so GRFs help 
in the recruitment of the AN3-containing chromatin remodeling complex at the promoter region of 
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Figure 2. Regulation of Arabidopsis leaf proliferation and cell expansion transition. (A) the cell cycle
arrests the front migration basipetal growth gradient from the apex to the base of the blade petioles,
which is a process that is promoted by miR319-TCP modules and repressed by miR393-GRF modules.
The gradients of miR319 and miR396 are complementary to TCP and GRF expression. TCP and NGA
repressed the blastozone activity. During intercalary growth, the GAs and BRs promote both cell
proliferation and expansion (positive and negative regulations are indicated by pointed and T-shaped
arrows). Red, genes; blue, hormones; purple, small RNAs. (B) Shortly after its initiation, the young
leaf primordium has three regions: adaxial, abaxial, and leaf marginal regions. These regions are
determined by the region’s specific transcription factors, such as HD-ZIP III, KANADI, and PRS WOX1,
involving multiple negative feedback loop mechanisms. For the sake of clarity, all the interactions
are not shown here. Adaxial-abaxial polarity is determined by highly interconnected gene networks.
In this network, tasi-ARF limits abaxial determinants and AUXIN RESPONSE FACTORS ARF3/ARF4
to the bottom side. In addition, miR165/166 restricts the expression of adaxial determinants HD-ZIPIII
to the top of the leaf (the positive and negative regulations are indicated by pointed and T-shaped
arrows, respectively).

GIFs act as a transcriptional coactivator, which is associated with chromatin remodeling machinery.
GIF1/AN3 promotes several proliferation-stimulating factors, such as ribosomes, to sustain the high
demand of protein that is required in actively proliferating cells and represses the gene that promotes
cellular differentiation [41,134]. AN3 lacks a DNA-binding domain, so GRFs help in the recruitment of
the AN3-containing chromatin remodeling complex at the promoter region of target genes. During leaf
development, the timing of declining GRF-AN3 abundance along the proximo-distal axes link with
CIN-TCPs to create the mitotic cycle [40,134]. TCP4 accumulation starts at the tip of the primordium
and then covers the whole actively dividing lamina such that TCP activity stops at the tip cells
first and is slowly restricted to the base. The miR319 is expressed proximal to the petiole so that
miR319-sensitive CIN-TCPs form dynamic spatial gradients and the intensity tapers toward the tips
due to inactivation in the distal cell and toward the base [135,136]. In Arabidopsis, the jagged and
wavy Dominant (jaw-D) mutant exhibits highly crinkly shaped leaves because of the overexpression of
miR319A. The miR319A down-regulates CIN-like TCP genes and their transcript level is dramatically
reduced in jaw-D because of the ectopic expression of miR319A (Figure 2) [137,138]. The coordination
between the miRNA319-TCP and miR396-GRF modules controls the marginal and overall growth of



Int. J. Mol. Sci. 2020, 21, 5132 10 of 31

the leaf through the regulation of cell proliferation [139,140]. The second pathway that controls the leaf
lamina outgrowth is the ANT and AINTEGUMENTA LIKE (AIL) gene, which encodes for an AP2/ERF
transcription factor. CIN-TCP and ANT have antagonistic effects on the G1/S transition of the cell cycle,
and the transcription of CYCLIN-DEPENDENT KINASE INHIBITOR 1 (ICK1) is activated by CIN-TCP
that interacts and blocks the activity of G1 cyclins whose transcription is enhanced by ANT [111]. ANT
likely functions downstream on auxin, and the auxin-inducible gene ARGOS (an auxin-regulated gene
involved in organ size) encodes the ER-localized protein, which is a protein of unknown function. The
overexpression or suppression of ARGOS alters the aerial part, such as leaves, flowers, and siliques.
The difference in size is mainly due to alterations in cell numbers and the duration of cell proliferation
periods. In Arabidopsis, ARGOS-like (ARL) genes, which have some sequence homology to the ARGOS
gene, are responsible for the promotion of organ growth via cell expansion. Similarly, the kinase
encoded by the TARGET of RAPAMYCIN (TOR) gene is required for cell expansion in the leaves and its
overexpression causes an increase in leaf size due to cell expansion [141,142].

ARGOS enhances the expression of AINTEGUMENTA (ANT), another size of the regulator
gene, and the change in ANT function has similar effects as ARGOS expression. ANT maintains the
expression of D-type cyclin CYCD3;1. The losses in D-type cyclin may cause premature termination
of the proliferation phase and change the overall size of the leaf [143]. The ANT also interacts with
another family of transcriptional regulators, i.e., ARFs. The ARFs mediate the auxin response and limit
the cell size (proliferation) by repressing the ANT and CYCD3;1 activity [144,145].

In addition, when the functions of four NGATHA (NGA) transcription factors are lost, enhanced
leaf marginal growth and serration are observed. However, the overexpression of NGAs reduces
marginal growth and indicates the redundant roles of NGAs in controlling the switch between leaf
marginal expansion and differentiation [140,146]. In Arabidopsis, the transcription factors of NGAs and
TCPs terminate the blastozone meristems by inhibiting the expression of the WOX gene [140,147,148].
According to these observations, the leaf blastozone appears by PRESSED FLOWER (PRS) expression
and is restricted to the overall marginal regions of young leaves and further restricted to the proximal
regions of older leaves [140]. Besides, the genes that encode homeobox transcription factors, WOX
genes, PRS/WOX3, and WOX1, redundantly promote leaf blade outgrowth [140,149]. WOX1 and PRS
also promote the expression of KLUH, which encodes a cytochrome P450 CYP78A5 monooxygenase
that promotes cell proliferation in a non-autonomous manner (Figure 2) [48]. The loss of function
mutant kluh produces smaller organs due to the premature arrest of cell proliferation, while the
overexpression of KLUH produces larger organs with more cells; and therefore, KLUH promotes organ
growth. KLUH is involved in generating mobile factors, and the computational analysis showed
that the tissue polarity system specifies the growth patterns in developing leaves [150]. In the early
developmental stage, the basic pattern of the growth rate was established across the leaf. Previous
studies indicated that leaf meristem activities are controlled by both local regulations and by mobile
growth factors that function at the organ level [151].

Besides, in the regulation provided by miRNA-transcription factors, the hormonal control also
involved regulating the leaf size and intercalary growth. The most prominent hormones regulating
the leaf size are gibberellins (GAs) and brassinosteroids (BRs), which promote leaf growth by cell
proliferation and expansion. The GAs increase cell proliferation by repressing cell cycle inhibitors such
as KIP-RELATED PROTIEN2 (KRP2) and SIAMESE [152,153]. Overexpression of the BR biosynthesis
gene DWARF4 or BR receptor-encoding gene BRASSINOSTEROID INSENSITIVE1 results in larger
leaves [128,154]. The BR also represses PPD1 and PPD2, which encodes the transcription factor that
limits meristemoid cell proliferation [155]. BRs promote cell expansion via an antagonistic trio of bHLH
transcription factors, which are also regulated by GAs, light, and temperature (Figure 2) [156,157].

In the distal region of the leaves, the epidermal and mesophyll cells still have some precursor
cells to generate the stomata as well as vascular tissue after cell proliferation ends [158]. These cells
can divide the distal region, which is known as dispersed meristematic cells (DMSCs). The DMSCs
proliferation is under the control of putative transcription factorPPD1, PPD2. A double mutant of
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ppd1 and ppd2 produces bell-shaped leaves due to the proliferation of the cell, especially the marginal
cells [155].

3. Adaxial/Abaxial Patterning

SAM provides a site for lateral organ formation into the primordium and develops into a flat
structure. The lateral organs (leaf) establish polarities along the adaxial/abaxial, mediolateral, and
proximodistal axes. The development of adaxial/abaxial patterns requires precise coordination between
hundreds of cells throughout primordium development. After the establishment of adaxial/abaxial
patterns, they provide a cue for further asymmetric growth. The acquisition and maintenance of
adaxial/abaxial polarity are driven by regulatory networks of genes and highly conserved transcription
factors [159].

The two sets of transcription factors are expressed at the sides of the leaf, i.e., the upper and bottom
that work antagonistically to control the adaxial/abaxial polarities of the leaf. In Arabidopsis thaliana,
the members of the HD-ZIP III family (including PHABULOSA (PHB), PHAVOLUTA (PHV), and
REVOLUTA (REV)) specify the adaxial cell fate of the leaf (Table 1) [160]. Many transcription factors,
i.e., Myb transcription factors PHANTASTICA (PHAN)/AS1 form complexes with the transcription
factor AS2 of the LOB to specify the adaxial fate [36,161,162]. The abaxial specification includes
three members of the KANADI gene family (KAN1, KAN2, and KAN3) [39,163], four members of
the YABBY (YAB) gene family (FILAMENTOUS FLOWER (FIL) [52], YAB3, YAB5, and YAB2)), and
two AUXIN RESPONSE FACTORS (ETTIN ETT/ARF3 and ARF4) [53,164]. These regulators, except
AS1/PHAN, are specifically expressed in the abaxial or adaxial side and their mutual regulation is
very important for proper establishment and maintenance of adaxial-abaxial patterns. In Arabidopsis
thaliana, the dominant mutants, phv and phb, form rod-shaped leaves that result in adaxialization of
the leaf in the circumference. In fact, the adaxial fate controlling genes, HD-ZIP III, are repressed by
miRNA165/166 [165]. Ectopic/constitutive overexpression of miRNA165 and miRNA166 can reduce the
transcript level of HD-ZIP III genes [166]. The KANADI gene family requires the abaxial identity of
leaves that encode nuclear-localized GARP domain transcription factors [167]. The function of KAN1
disturbs the adaxial/abaxial polarity of the leaf. Ectopic/constitutive expressions of the kan1 mutant with
the 35 s promoter produces a narrow cotyledon but no subsequent leaf production [168–170]. In fact,
PHB is expressed when KAN genes antagonistically regulate HD-ZIP III genes [171]. KAN1 directly
represses the expression of AS2, and AS2 indirectly represses the expression of KAN1. Furthermore,
AS2 also negatively regulates ETT, KAN2, and YAB5. Likewise, the opposing effect of KAN and
HD-ZIP III on the auxin biosynthesis gene has been confirmed by many researchers. A recent study
corroborated the finding that the KAN1 allele is responsible for suppressing the expression of PIN1. The
ectopic expression of KAN1 reduces the gene expression of pro-cambium cells and PIN1 in pro-vascular
cells. APUM23 is a new regulator of leaf polarity, which encodes approximately 20 PUF RNA-binding
proteins in Arabidopsis thaliana and interacts with leaf polarity that is required for the maintenance of
genes [172,173]. Another gene family, which specifies the abaxial cell fate, is the ARFs, which binds
to the promoter element of the auxin response gene and transducer auxin signaling, and their role
in adaxial/abaxial polarity is confirmed through mutation and up-regulation patterns of ETT (ARF3)
and ARF4 [174,175]. The polarity defects were visualized in ett-1, arf4-1, and ett-1, and art4-2 double
mutants. In these mutants, the produced abaxialized leaves were similar to kan1 and kan2 mutants.
The direct interaction between KAN and ARF indicates that overlapping patterns control the polarity of
the leaf. Both the ETT and ARF4, as a target of TAS3, are derived from trans-acting siRNAs (ta-siRNAs)
that up-regulate small interfering RNA (siRNA) [98,176]. According to this experiment, ta-siRNA
insensitive ETT or ETT overexpression in the rdr6-15 mutant background showed a defect in leaf
morphology. These observations specify TAS3 ta-siRNAs as a negative regulator of abaxial cell fate
through targeting of ETT and ARF4 gene expression in small RNAs [98,177].

The adaxial and abaxial pattern is important for lamina outgrowth and started from the boundary
of adaxial/abaxial to the medial/lateral axis. The leaf primordia represent another meristematic zone



Int. J. Mol. Sci. 2020, 21, 5132 12 of 31

called the plate meristem or blastzone. Many genes are involved in the medial/lateral specification,
but the most important is the YABBY gene family, which encodes for proteins with a zinc finger and
a helix-loop-helix domain, and also plays a key role in lamina outgrowth. The Arabidopsis genome
contains six YABBY genes (FIL, YABBY2 (YAB2), YAB3, YAB5, CRAB CLAW (CRC) and INNER NO
OUTER (INO)) [178,179], and four of these are expressed in the vegetative primordium and (FIL, YAB2,
YAB3, and YAB5) and the other two are expressed in floral organs. Consistently, the YABBY expression
is localized between the adaxial and abaxial side at the leaf margin and promotes lamina outgrowth.
Interestingly, the YABBY gene expression is regulated by the members of the polarity pathway such
as the HD-ZIP III, AS, and KANADI pathways [180–183]. In the kan1 and kan2 double mutants, the
YABBY gene is required for ectopic outgrowth. Therefore, for lamina outgrowth, YABBY gene function
is integrated with polarity signals [184]. The YABBY gene is important for repression of the genes of
SAM in developing leaves and promoting maturation of the leaves. In the double mutants of fil and
yab3, class 1 KNOX genes are ectopically expressed [185–187]. Four YABBY gene mutants expressed in
the leaf primordium show narrow leaves but only limited defects on leaf polarity.

For the WOX genes, at least two subfamily members are essential for lamina outgrowths such
as WOX1 and PRS/WOX3. In Arabidopsis, PRS is expressed in the margins of the developing leaf
primordium; the prs mutant causes the deletion of stipules at the base of leaf margins without a
reduction in leaf width and due to the genetic redundancy with WOX1 [188,189]. The WOX1 gene is
expressed along with the adaxial-abaxial juxtaposition and overlaps with PRS at the marginal region
of the leaf. The double mutant of wox1/prs showed prominent defects in the lamina outgrowth and
redundantly acted to enhance the leaf width. It has been identified that WOX1 expression occurs
around the meristem at the boundary between the HD-ZIP III and KAN expression domains. In the
kan1 and kan2 double mutants, the expression of WOX1/PRS is enhanced in the abaxial domains of
the leaf, which suggest that the KAN gene may function to negatively regulate the expression of
WOX1/PRS [190]. Therefore, misexpression of WOX1/PRS may explain the ectopic formation of abaxial
margin-like outgrowth that occurs in the kan mutants. The expression of WOX1/PRS is negatively
regulated by AS2 in the adaxial domain of the leaf. AS2 expression is also repressed by WOX1/PRS
to restrict its expression on the adaxial side of the leaf (Figure 2). Meanwhile, abaxial-specific gene
expression is also influenced by WOX1/PRS and these interactions help to restrict WOX1/PRS expression
toward the margin domain of the leaf [190,191].

In the marginal regions of the leaf, WOX1/PRS is expressed and enables flattening of the leaf. MP
and auxin act together as a positional cue for patterning the WOX1/PRS marginal regions [179]. Abaxial
factors, such as KAN, restrict the marginal domain expansion [48], which binds to the same elements
as an MP in the WOX1 gene promoter and inhibits their expression [167]. During leaf development,
the auxin maxima are first formed at the tips of young primordia and promote distal growth. Previous
evidence suggests that auxin works downstream of the leaf polarity genes and enhances lamina
outgrowth. In the triple mutant of kan1, kan2 and kan3, there was enhanced lamina outgrowth on the
hypocotyl due to ectopic localization of PIN1 proteins [142]. The distribution of auxin and PIN1 is
greatly influenced by yabby mutants. The as1 and as2 mutant showed asymmetrical lamina outgrowth
due to the asymmetric distribution of auxin. Recent studies revealed that the YUCCA (YUC) gene,
which encodes catalyzation, is involved in auxin biosynthesis and plays an important role in lamina
outgrowth and leaf margin formation. In Arabidopsis, there are 11 YUC genes that have been identified;
the mutant of at least four genes led to loss of marginal characters. Interestingly, YUC gene expression
is enhanced in ectopic lamina outgrowth, which is due to ectopic adaxial and abaxial juxtaposition in
the as2 rev and kan1 kan2 double mutants [192,193].

4. Leaf Margins Serrations

The leaf is developed from the peripheral zone of the SAM under the control of many intrinsic
and extrinsic factors. The leaves are different in size and form, which is a complicated process. The
various forms of leaf margins include entire, serrate, and lobe margins. The molecular mechanism of
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the Arabidopsis leaf indicates that the leaf serrations get more pronounced during plant development.
Additionally, miRNA164A, CUC2, PIN1, and DPA4 regulate the leaf serration [45,46,194]. In Arabidopsis
thaliana, leaf serration is less prominent in rosette leaves compared to leaves that develop later. Leaf
serration is also different in different accessions of Arabidopsis thaliana. The optimal expression of the
genes is necessary for continuous growth and development. The miRNAs mainly contribute to the
regulation of gene expression [45,195]. In leaf serration, the boundary controlling gene CUC1, CUC2,
and CUC3 is required for the maintenance of the shoot apical meristem [45,195]. Furthermore, reports
indicate that CUC2 has a very important role in leaf serration. The members of the NAC transcription
factors can be expressed in the boundary region and suppress growth. A mutation in this gene at
an early stage produces a cup-shaped fused cotyledon. The CUC1 and CUC2 gene expression are
controlled by miRNA164A [45,46,196]. The ectopic expression of miRNA164A represses CUC2 gene
expression; therefore, the leaf is less serrated (unlike a wild type). The mutations in the mir164a produce
deep serration and contrast with the overexpression of miR164A, which causes smooth leaf margins [45].
In overexpression, the CUC2 expression is high and plant leaves are highly serrated (Figure 3). CUC2
promotes PIN1 efflux auxin carriers [4]. The mutant of the pin1 genotypes causes inhibition of the auxin
efflux carrier and the leaf has smooth margins [65,197]. The other plant hormones, such as cytokinin
(CK), gibberellins (GA), and many others, also have an important role in organogenesis depending
on its concentration [198]. JAGGED LATERAL ORGANS (JLO) is a member of LATERAL ORGAN
BOUNDARY DOMAIN gene family and is transiently expressed at the site of organ initiation [199,200],
promotes the PIN expression for auxin maxima, and resolves in the leaf-meristem boundary during
outgrowth [103,200,201].
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Figure 3. Schematic depiction of the factors involved in the modification of leaf margins, the genetic
interaction between different genes and hormones cause the formation of leaf serration. The CUC2
gene promotes the auxin maxima via PIN1 efflux protein in the epidermal cell. The high concentrations
of auxin at the tips block, the expression of CUC2 and thus, the expression of CUC2 gene is restricted
to the sinus region of the leaf; miR164A also suppresses the CUC2 expression. The other regulatory
factors shown in the figure is discussed in detail in the text (the positive and negative regulations are
indicated by pointed and T-shaped arrows, respectively).

In addition, the cin-tcp mutant displays prolonged marginal growth leading to the formation
of the lobe and crinkly leaves due to ectopic expression of boundary specific CUC2 genes and
meristem-specific KNOX genes [196,202]. CIN-TCPs repress CUC activity through miR164 that
targets CUC2. Additionally, TCP4 interacts with CUC2 and CUC3 to prevent their dimerization and
transactivation potential in the juvenile stage to inhibit leaf serration [196]. However, in the later stage,



Int. J. Mol. Sci. 2020, 21, 5132 14 of 31

the SPL transcription factor destabilized the interaction of TCP-CUC from relieving CUC protein from
inhibition. Therefore, the spl mutant loss of function and CIN-TCP gain of function both have the same
reduced organ size, which suggests that SPL interferes with CIN-TCP in growth repression [203,204].

The DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4) negatively regulates the
expression of CUC2 independent of MIR164A and modulates leaf serration [151]. The TCP interactor
containing EAR motif protein1 (TIE1) is a transcriptional regulator located in the nucleus. TIE1 recruits
co-repressor TOPLESS (TPL)/TOPLESS-RELATED (TPR) in leaf margin morphology development
and inhibits the activity of TCP at the protein level. Therefore, over-expression of TIE1 can cause an
increase in leaf serration [151,205]. TIE1 and TEAR1 (TIE1-ASSOCIATED RING-TYPE E3 LIGASE1)
have a mutual role; a mutation in TEAR1 and its homologous genes increases leaf serration [206].
TIE1 recruits TPL/TPRs to inhibit TCP activity, and TEAR1 restricts the inhibition of TCP through the
degradation of TIE1. TIE1 and TEAR1 indirectly affect the leaf margin by regulating TCP (Figure 3).

A peptide in the plant called EPFL2 (Epidermal Patterning Factor-Like) and members of the
ERECTA (ER) family are also involved in the morphogenesis of leaf marginal serrations [207]. When the
EPFL2 or ER is mutated in Arabidopsis, the leaves become smooth and the auxin is detected throughout
the leaf margins. EPFL2 forms a ligand-receptor pair with ERECTA and thereby inhibits the response
of auxin at the leaf tooth area, which in turn inhibits the expression of EPFL2 and forms a negative
feedback loop [207]. This feedback system maintains the auxin response pattern during leaf margin
growth. In addition, current studies have shown that JAGGED (JAG), JLO, and Trifoliate can also
regulate leaf margin morphogenesis through the auxin pathway and also affect the KNOX regulatory
pathway (Figure 3) [199].

BLADE ON PETIOLE1 (BOP1) and BOP2 belong to BTB family proteins, which form dimmers
that function as transcriptional activators. BOP1 and BOP2 are expressed at the base of lateral organs,
and BOP expression at the base of the leaves can directly regulate AS2 and inhibit the expression
of the KNOX gene [116]. The leaves of bop1 and bop2 double protrusions become larger, and leaf
teeth and leaf fins grow at the petioles [208,209]. Therefore, BOP ensures normal leaf morphogenesis
by inhibiting KNOX expression at the leaf base and petiole [153,210,211]. High auxin accumulation
causes more cell division and growth, and consequently, the teeth regions of the leaf have high
auxin maxima [102,212,213]. Auxin represses the expression of the CUC2 gene, and therefore, CUC2
expression is restricted to the sinus region of the leaf [45,46]. CUC2 also suppresses the growth of cells
in the sinus region and thereby promotes tip outgrowth. The exact mechanism of the CUC2 and auxin
interaction is still not fully understood.

5. Developmental Functions of Micrornas

MicroRNAs are a group of non-coding RNAs that play an important role in diverse cellular
pathways and regulate most of the plant and animal biological processes [214]. The transcription and
maturation of microRNAs involve a series of complex processes. In the first phase, endogenous genes
are transcribed by Pol II or III into long primary miRNAs that consist of several hundred nucleotides.
Afterward, single strand pri-miRNAs are folded to form a hairpin-like secondary structure [215].
Pri-miRNAs are processed by endonuclease RNAase III and the mechanism is different in plants and
animals [216,217]. Plants lack Drosha homologs and after the pri-miRNAs formation, the RNase III
enzyme DICER-LIKE1 (DCL1) regulates the first and second steps (Figure 4). In contrast, in animals,
the first step involves Drosha, which cuts miRNAs strands, and in the second step, the pre-miRNAs
are processed through Dicer with the aid of HYL1 and SE to form a duplex in the nucleus. The
mature microRNAs duplex consists of active and complementary strands. The active strands are
called guide strands while the complementary strands are called passenger strands. The guide
strands with lower thermodynamic stability and high abundance are loaded into ARGONAUTE
(AGO)-associated RNA-induced silencing complexes (RISCs) and target the mRNA transcript [218,219].
The passenger strands of miRNAs become degraded, and the accumulation of passenger strands is
lowered by guide strands [220,221]. Many studies have confirmed that miRNAs act as regulatory
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factors in a large number of biological processes and consist of different numbers of miRNAs in a
single species [222,223]. The miRNA biogenesis mutants (dcl1, hyll, se, and hen1) and ago1 mutants
produce developmental defects [224]. In this review, we described some of the miRNAs and their
function in different stages of plant development, including phase transitions, hormone biosynthesis
and signaling, pattern formation, and morphogenesis. During leaf development, different types of
miRNAs have a prominent and important role that modulates leaf development in different phases
such as establishments, transitions, modifications, and senescence. Transcriptome profiling data
showed that several miRNAs are involved in early embryonic development such as miR156, miR166,
miR167, miR390, and miR394 [225]. The interaction between two miRNAs affects the maintenance of
the meristem and leaf initiation, such as the interplay of LEAF CURLING RESPONSIVENESS (LCR)
and the miR394 mediated non-cell-autonomous network, and the module of miR160 and miR165/66
mediated cell-autonomous pathways [165,226]. The protoderm-specific miR394 confers stem cell
maintenance by repressing the gene expression of LEAF CURLING RESPONSIVENESS (LCR), which
also regulates a local feedback loop mediated by WUS and CLV genes [226].
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Figure 4. A schematic pathway for miRNA biosynthesis and the degradation of target mRNA.
(A) Primary miRNAs are formed by polymerase II that folds back to form a hairpin structure.
Splicing and further processing in the nucleus include the interactive role of different proteins
and the CAP-binding proteins CBP20 and CBP80. Further processing occurs by DCL1 and forms
miRNA-miRNA* duplexes, which are methylated by HEN1 and transported to the cytoplasm. The
mature miRNA is unwound to yield a 22-nt single-strand and incorporated into AGO1-containing RISC
(RNA-induced silencing complex) and other regulatory proteins that directly inhibit the translation
or cleavage of the target mRNA transcript. (B) Leaf development is a complex biological process
with multiple regulatory networks regulated by miRNA and their target genes. The leaf development
consists of different stages such as establishment, transition, modification, and senescence. The miRNAs
play important roles in each stage. The miR160 and miR165/166 control leaf initiation; leaf polarity is
determining by miR165/166 and miR390; leaf morphology is regulating by miR164 and miR319; phase
initiation is determined by miR156 and miR172; leaf senescence is determined by miR164 and miR319
(the arrows indicate positive and T-shaped indicate negative regulation).
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Small RNAs, such as miR169, miR167, and tasiR-ARFs, target the ARF genes, which play an
important role in auxin signaling. During shoot and root development, miR160 regulates the expression
of ARF10, ARF16, and ARF17 [227]. However, overexpression of miR160 or miR160-resistance ARFs
leads to pleiotropic and developmental defects in all aerial organs [228–230]. Besides, miR167 targets
ARF6 and ARF8, which redundantly regulates ovule and anther development [231]. During the
establishment of leaf boundaries, both miR165/166 and miR390 move between cells and interact
with each other. In both Arabidopsis and maize, miR165/166 targets homeodomain-leucine zipper
transcription factor genes to establish the abaxial identity of lateral organs. The abundantly produced
miR165/166 in the abaxial side of the leaf targets the mRNAs in the adaxial side where these genes
specify the adaxial characteristics (Figure 2) [232]. In Arabidopsis, miRNA resistant varieties of PHB and
REV genes lead to adaxializtion of the leaves. The tasi-RNAs from the TAS3 locus target ARF3 and ARF4,
which results in the abaxial differentiation of lateral organs, vegetative traits, and leaves [39,233,234].
The tasiR-ARFs repress the expression of ARF3 and ARF4, which contributes to adaxial specification
in different species (Table 2). However, mutations in ta-siRNA biosynthesis do not exhibit any
prominent change in leaf polarity, which is most likely due to the existence of a parallel mechanism
to control adaxial polarity [182,235]. To develop a leaf bladeless (lbl) mutant in maize, a homolog of
Arabidopsis SGS3 requires ta-siRNA biogenesis that promotes the abaxialization of leaves. The two
small RNAs, miR165/166, and tasiR-ARF are expressed in the opposite side of the leaf and establish the
abaxial-adaxial axis in leaf development [236,237]. In addition, during further modification, divergent
leaf growth polarity is strongly correlated with the miR396-GRF expression gradient. The miR164
regulates the expression of CUC1 and CUC2 transcription factors, which are very important for the
proper establishment of organ boundaries, floral patterning, and leaf morphogenesis throughout plant
development [45,238].

Table 2. MicroRNAs and their predicted targets in Arabidopsis.

miRNAs Family Target
Families/Gene

Biological
Function Species References

miR156 SPL
Promote vegetative
phase change and

floral transition

Arabidopsis, Zea
mays [239–241]

miR159 MYB TFS:GAMYB,
MYB33

Control floral
identity and flower

development
Arabidopsis [242]

miR160 ARF

Leaf and root
development,

auxin response,
floral organ

identity

Arabidopsis [229,243]

miR162 DCL1 Arabidopsis [244]

miR164 NAC-TF:
CUC1,CUC2

Shoot and root
development

Arabidopsis,
Solanum, and Oryza [45,192,238,245]

miR164a NAC-TF: CUC1,
CUC2

Leaf development,
patterning, and

polarity
[26,246]

miR164c NAC-TF:
CUC1,CUC2

Floral identity and
flower

development
[247]

miR165/166 HD-ZIP, PHB

Meristem
maintenance,

vascular
development and

organ polarity

Arabidopsis [160,248–250]
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Table 2. Cont.

miRNAs Family Target
Families/Gene

Biological
Function Species References

miR167 ARF6 and 8 Auxin response Arabidopsis [251]
miR168 AGO1 Arabidopsis [252]

miR172 AP2
Developmental

timing and floral
organ identity

Arabidopsis, Z. mays,
S. tuberosum [253–256]

miR319 TCP Leaf development
Arabidopsis and

Solanum
lycopersicum

[257]

miR390 TAS3

Auxin response,
developmental
timing, lateral
organ polarity

Arabidopsis [233,258]

miR393 F-box protein: TIR1
Hormone signaling

for plant
development

Arabidopsis, Oryza [259]

miR396 GRF faimly Control cell
proliferation

Arabidopsis,
Medicago and Oryza [127,260,261]

miR408 Plantacyanin,
Laccases Stress response Arabidopsis [262]

TAS3 ARF3 and (only
mosses) AP2 like Leaf polarity All land plants [177,233]

The most conserved miR156 found in all land plants in Arabidopsis, miR156/157 targets 10 of the SPL
TFs, which promote vegetative phase changes and floral transition [263]. SPL3/4/5 determines trichome
formation and distribution, SPL9/15 modulates adult leaf morphology, and SPL2/10/11 regulates the
lamina shape and acts independently of miR172 (Figure 4) [264]. Overexpression of miR156 prolongs
the juvenile stage and extremely delays the flowering stages. In Arabidopsis, miR159 targets MYB33,
MYB65, and MYB101 genes that activate gibberellin-responsive genes in the aleurone layer during
germination. The overexpression of miR159 is responsible for the delays in flowering [165]. In
Arabidopsis, miR172 regulates six of the AP2-domain transcription factors, including [240], TARGET OF
EAT1, TOE2, TOE3, SCHLAFMÜTZE (SMZ), SCHNARCHZAPFEN (SNZ), and promotes flowering by
repressing TOE1 and TOE2 [264,265]. The miR156 and miR172 act in a linear pathway and coordinate
vegetative and floral transition (Table 2) [264]. In a petunia hybrid and Antirrhinum majus, miR169
controls the spatial restriction of the homeotic class C genes that are required for the identities of
reproductive organs in the flower [251,266]. In an ectopic expression, miR169 transforms petals into
stamens and targets the NF-YA genes that are activators of class C gene expression. In Arabidopsis,
miR169 restricts the class C gene expression to delegate the transcription factor gene of APETALA2
(AP2) [253]. In Arabidopsis, miR172 targets the AP2 mRNA, which is uniformly present in all four floral
whorls, unlike other floral homeotic genes that are confined to two whorls [253,254]. However, miR172
mediates regulation of AP2 at the translational level and that is why AP2 protein is more concentrated
in the outer two floral whorls [215,267]. In Arabidopsis, miR319 targets five TCP genes that mostly
control cell division during leaf development [125,268].

Senescence is the last stage of leaf morphogenesis that involves many distinctive actions [103,269].
In Arabidopsis, miR164 and miR319 modulate aging-induced cell death and leaf senescence. The miR164
target ORESAR1 (ORE1) functions as a positive regulator of senescence. The central components
of ethylene signaling ETHYLENE INSENSITIVE2 and 3 (EIN2/3) induce ORE1 in an age-dependent
manner [270]. During the early stage of leaf development, miR164 down-regulates ORE1 expression
but also up-regulates at a later stage by EIN2/3. In addition to ethylene, other plant hormones,
such as auxin and JA, also play important roles in controlling plant senescence. ARF2, a negative
regulator of auxin responses, is believed to regulate leaf longevity [269,271]. The miR393 targets TIR1,
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which are the auxin receptor and F-box genes that play an important role in auxin biosynthesis [259].
Furthermore, miR319 targets the TCP4 genes [136,272], and TCP4 has been shown to activate jasmonic
acid (JA) biosynthesis gene LIPOXYGENASE2, which increases the level of JA and accelerates leaf
senescence [273,274].

6. Conclusions and Future Perspectives

The developmental transition during shoot development in plants is regulated by factors that
originate outside and within the shoot apical meristem (SAM). Lateral organ initiation at the shoot apical
meristem involves a complex mechanism of hormones and downstream transcriptional regulation
that leads to the formation of different organs such as the leaf, shoot, and flower. From vegetative to
reproductive transition, the leaf-derived external signal and internal factors that cause the vegetative
phase change and that are spatially coordinated remain unclear. This review elucidates the interaction
of different factors (genes, miRNAs, and hormones) that maintain the STM cells’ identity. For example,
the homeobox gene WUS is expressed at the organizing center (OC) and regulates the boundaries of
the STM cell niches. These factors not only maintain the stem cell identity but also help in the initiation,
growth, and adaxial/abaxial patterning of leaf development. It has also been suggested that many
small RNAs help in early leaf development because of their ability to clear out the transcript when
the cell passes from one stage to another. Subtle and complex mechanisms such as leaf development
require many levels of control, for instance, buffering and plasticity of the small RNAs is one example
of how plants achieve this control. Elaborate signaling and effector networks are also involved in leaf
development and further study of these aspects is warranted.
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