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ABSTRACT

Previously, we found a novel gene, nuclear receptor
interaction protein (NRIP), a transcription cofactor
that can enhance an AR-driven PSA promoter
activity in a ligand-dependent manner in prostate
cancer cells. Here, we investigated NRIP regulation.
We cloned a 413-bp fragment from the transcription
initiation site of the NRIP gene that had strong
promoter activity, was TATA-less and GC-rich, and,
based on DNA sequences, contained one androgen
response element (ARE) and three Sp1-binding sites
(Sp1-1, Sp1-2, Sp1-3). Transient promoter luciferase
assays, chromatin immunoprecipitation and small
RNA interference analyses mapped ARE and Sp1-2-
binding sites involved in NRIP promoter activation,
implying that NRIP is a target gene for AR or Sp1. AR
associates with the NRIP promoter through ARE and
indirectly through Sp1-binding site via AR–Sp1
complex formation. Thus both ARE and Sp1-binding
site within the NRIP promoter can respond to
androgen induction. More intriguingly, NRIP plays
a feed-forward role enhancing AR-driven NRIP
promoter activity via NRIP forming a complex
with AR to protect AR protein from proteasome
degradation. This is the first demonstration that
NRIP is a novel AR-target gene and that NRIP
expression feeds forward and activates its own
expression through AR protein stability.

INTRODUCTION

Classical type I steroid nuclear receptors include
androgen receptors (AR), estrogen receptors, progester-
one receptors (PR), glucocorticoid receptors (GR) and

mineralocorticoid receptors (MR) (1–4). These nuclear
receptors function as ligand-inducible transcription
factors and typically form ligand-induced homodimers,
binding to inverted repeat DNA response elements and
then recruit coregulators to promote the expression of
target genes (1–4). Coregulators are broadly defined as
proteins that play essential roles in the regulation of
nuclear receptors. They either enhance transactivation
(coactivators) or reduce transactivation (corepressors) of
target genes via general transcription factors and chroma-
tin remodeling (5). Over the past decade, several coactiva-
tors have been cloned and characterized, ones that
associate with steroid receptors and enhance their ability
to transactivate target genes (6). Most of these factors
enhance assembly of basal transcription factors into a
stable pre-initiation complex, resulting in increased tran-
scription initiation rates of RNA polymerase II (7).
Previously, we found a novel gene and named it nuclear
receptor interaction protein (NRIP) (GenBankTM acces-
sion numbers AY766164 and AAX09330). NRIP contains
860 amino acids and seven copies of WD40 domains, and
its expression is restricted to the cell nucleus (8). NRIP
enhances transcriptional activity of either AR or GR via
ligand-dependent interactions (8). We also found that
NRIP expression can be induced in prostate cancer cells
(LNCaP) treated with androgen. Therefore, whether gene
expression of NRIP is induced by hormone is an interesting
research question that was investigated in this study.
Regarding prostate cancer, AR plays an important role

in male sexual differentiation and prostate cell prolifera-
tion (2,9). Prostate-specific antigen (PSA) is a 33 kDa
glycoprotein which is elevated in sera from prostate cancer
patients (10). We previously characterized that NRIP can
enhance an AR-driven PSA promoter activity in LNCaP
in a ligand-dependent manner (8). In this study, we exten-
sively investigated the mechanism of regulation of the
NRIP gene. Through this investigation, we demonstrate
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that NRIP represents a novel AR-targeted gene and
plays a feed-forward role in enhancing the AR-driven
NRIP promoter activity via stabilization of the AR
protein. Furthermore, we illustrate that NRIP enhances
AR-induced NRIP and PSA gene expression in prostate
cancer cells.

MATERIALS AND METHODS

Cell culture and drug treatments

We maintained 293T cells in DMEM supplemented
with 10% fetal bovine serum (FBS), 2mM L-glutamine,
100U/ml of streptomycin and 100 U/ml of penicillin
(Invitrogen). LNCaP cells were grown in RPMI 1640
(Invitrogen) containing 10% FBS, L-glutamine and
antibiotics. SL2 cells were cultured in Schneider’s
Drosophila Medium (Invitrogen) containing 10% FBS
and antibiotics. For dihydroxytesterone (DHT)
(Sigma-Aldrich) treatment, cells were maintained in
the medium containing 5% charcoal–dextran-stripped
(CDS) FBS (HyClone) for at least 2 days. For protein
stability analysis, cells were treated with 10 mg/ml of
cycloheximide (Calbiochem, Darmstadt, Germany) and
10 mM of MG132 (Calbiochem) at the indicated times.
Mithramycin A (Sigma-Aldrich) was treated on LNCaP
and 293T cells for 24 h at the indicated concentration
to inhibit Sp1 binding on DNA (11,12).

Plasmid constructions and site-directed mutagenesis

In reporter constructs, genomic DNA was extracted from
HeLa cells using Genomic DNA mini kits (Geneaid,
Taoyuan, Taiwan). The region from –2583 to +94 relative
to the NRIP transcription start site was amplified by
polymerase chain reaction (PCR) with polymerase
PfuUltra (Stratagene) and primers NheI-F: 50-GAGCTA
GCAAGGTCAGGGTTGACTT-30 and HindIII-R:
50-AAAAGCTTAGGCTCTGCCTGAGC C-30.
The PCR product was digested with NheI and HindIII

and cloned into pGL3-Basic (Promega), and was named
NRIP-P2583 (–2583�+94). NRIP-P413 (–413�+94)
and NRIP-P99 (–99�+94) were constructed by digestion
of XhoI+HindIII and SacI+HindIII from NRIP-
P2583, respectively, followed by cloning into pGL3-
Basic. A series of 50 deletion construct fragments of
NRIP-P293, NRIP-P258 and NRIP-P234 was amplified
by PCR with HindIII-R and forward primers:
293-F, 50-GAGCTAGCCACACACCAGCCTCA-30;
258-F, 50-GAGCTAGCCTCGCGAGAAAGGGT-30;
234-F, 50-GAGCTAGCGGGTATCCAGGACGA-30,
respectively.
The amplified fragments were digested by restriction

enzymes and constructed on pGL3-Basic. NRIP promoter
mutants, NRIP-P413/mARE, NRIP-P413/mGRE and
NRIP-P413/mARE/mGRE, were generated using muta-
tion primers,
50-GACTGTTGCTGATCTTTGGATTTTTTGGTTAG
TCTAAGAAGGAGAG-30 and
50-GGCTCGGGTGTTGAAACGGGTTTTTTCTCCCC
C TCCTCCCCTCCCC-30.

Mutant constructs NRIP-P413/mSp1-1, NRIP-P413/
mSp1-2, NRIP-P413/mSp1-3 were generated by site-
directed mutagenesis using mutant primers:
50-AATGCATTCTTCCAGGGTGAGGAAAGCCGCA
GCACACA CCAGCCTC-30,
50-TCATCTCGCGAGAAAGGGTTGGAAAGGAGG
GTATCCAGGACGAGGA-30,
50-CCTCCCCCACGCGGTGGTCTCCAAACCCACC
CGGCT CAGGCAGAGCC-30, respectively. pSG5-HA-
Sp1 was a kind gift from Dr Shih-Ming Huang (National
Defense Medical Center, Taipei, Taiwan). pPac-hSp1,
control vector pPac0 and SL2 cells were kindly provided
by Dr Shao-Chun Lu (National Taiwan University,
Taipei, Taiwan). pcDNA3.0-AR, pFLAG-AR, pGFP-
NRIP, pFLAG-NRIP plasmids were described previously
(8). pEBG vector and pEBG DN-Sp1, which is a
Sp1-dominant-negative expression plasmid were kind
gifts from Dr Thiel (13,14).

RNA interference

pSIN-shNRIP, which encodes short hairpin RNA
(shRNA) sequences that knock down the NRIP gene,
was generated from EcoRI and KpnI digestion of
pSUPER-RNAi-3 as described previously (8) followed
by cloning into pSIN-MCS lentiviral vectors. Other RNA
interference vectors used in this study were obtained
from National RNAi Core Facility (Institute of Molecular
Biology, Academia Sinica, Taipei, Taiwan) as follows:
pLKO.1-shAR (target sequence: 50-CACCAATGTCAA
CTCCAGGAT-30),
pLKO.1-shSp1 (target sequence: 50-CCAGGTGCAAAC
CAACAGATT-30),
pLKO.1-shGFP (target sequence: 50-CAACAGCCACAA
CGTCTATA T-30),
pLKO.1-shLuc (target sequence: 50-CTTCGAAATGTCC
GTTCGGTT-30).

Lentivirus production and infection

Lentiviruses of pSIN and pLKO.1-based vectors were
produced by cotransfection with p8.2 and pMD.G into
293FT cells (Invitrogen). Virus titer was usually at
5� 106 IU/ml. Cells were infected at MOI=5–10 with
8 mg/ml of polybrene (Sigma-Aldrich).

Transient-transfection and luciferase assays

Transient transfections were performed using calcium
phosphate methods for 293T and using Lipofectamine
2000 reagents (Invitrogen) for LNCaP and SL2.
For luciferase assays, cells were seeded at a density of
1� 105 cells/well in 24-well plates. The next day, cells were
transfected with reporter constructs and internal controls,
pRL-CMV or plasmids, as indicated. Twenty-four hours
after transfection, the medium was changed and treated
with EtOH or 10 nM DHT. After another 24 h, cells
were harvested and luciferase activity was assayed using
a Dual-GloTM Luciferase Assay System (Promega).
The results of the promoter firefly luciferase activities
were normalized by internal control Renilla luciferase
activities (pRL-CMV or pRL-TK).
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RT-PCR analysis

Total RNA was isolated using TRIzol reagent
(Invitrogen). Five micrograms of RNA was reverse-
transcribed by SuperScriptTM III (Invitrogen) and 1 ml of
cDNA was amplified by PCR. NRIP, PSA, AR and
b-actin primers were as described previously (8).
The primers for the Sp1 gene were as follows:
Sp1 forward: 50-CTGGTGGGCAGTATGTTGTG-30,
Sp1 reverse: 50-AAGCTGGCAGAACTGATGGT-30,
and the amplified fragment was 502 bp.
The primers for the endogenous NRIP gene were as
follows:
endoNRIP

forward: 50-GGTGTTGAAACGGGTGT CC-30

endoNRIP
reverse: 50-ATTGGTGGGCAAATAGC AAC-30,

and the amplified fragment was 688 bp.
The primers for exogenous NRIP-Flag gene expression
were as follows:
NRIP-Flag

forward: 50-GGTGCTAACTTTGTAATGA G -30

NRIP-Flag
reverse: 50-CTTATCGTCGTCATCCTTG T -30,

and the amplified fragment was 293 bp.

Preparation of cytoplasmic and nuclear extracts

Cells were trypsinized and washed twice with phosphate-
buffered saline (PBS). Cell pellets were lyzed in 500 ml
of buffer A [10mM HEPES (pH 7.9), 1.5mM MgCl2 and
10mM KCl] with PMSF and DTT, and incubated on
ice for 15min. Insoluble nuclei were separated by
centrifugation at 7500g for 5min at 48C; the supernatant
contained cytoplasmic extracts. The nuclear fraction was
washed with buffer A three times and centrifuged at 7500 g
for 5min at 48C. Pellets (nuclear extracts) were then
resuspended in 100 ml of buffer B [20mM HEPES
(pH 7.9), 1.5mM MgCl2, 420mM NaCl, 25% (v/v)
glycerol and 0.2mM EDTA] with PMSF, DTT, phospa-
tase inhibitor and protease inhibitors (Sigma-Aldrich),
and placed on ice for 20min.

Co-immunoprecipitation and western blot analysis

Cells were cotransfected with plasmids as indicated.
Forty-eight hours after transfection, cell lysates were
harvested in NP-40 lysis buffer [150mMNaCl, 1% NP-40,
50mM Tris (pH 8.0), 1mM PMSF and protease
inhibitors] and immunoprecipitated with the indicated
antibodies as described previously (8). For western blot
analysis, proteins were separated on 6% SDS–PAGE,
transferred to nitrocellulose membranes, blotted with
specific antibodies, and detected using an ECL Western
blotting detection system (Amersham Biosciences).

Chromatin immunoprecipitation

Cells were fixed with 1.5% formaldehyde for 15min at
room temperature and then 0.125M glycine was added
to quench cross-linking. Cells were washed 3 times with
ice-cold PBS and harvested in 1ml of cell lysis buffer
[5mM HEPES (pH 8.0), 85mM KC1, 0.5% NP-40].

Cells were then centrifuged at 5000 r.p.m. at 48C for
20min. Nuclear pellets were resuspended in RIPA buffer
[10mM Tris–HC1 (pH 7.8), 140mM NaCl, 1% Triton
X-100, 0.1% SDS, 1% sodium deoxycholate, 1mM
PMSF and protease inhibitor] (Sigma-Aldrich). Chroma-
tin was sheared with 10 sets of 10-s pulses on wet ice using
a Misonix Sonicator S3000, in which output power was
set at level 6. The size of sonicated DNA fragments
was between 200 and 500 bp. The soluble chromatin
was pre-cleared by Protein G agarose/Salmon Sperm
DNA (Upstate) for 1 h at 48C and then immunoprecipi-
tated overnight at 48C by an anti-AR antibody
(BD PharMingen), anti-Sp1 antibody (Santa Cruz Biotech-
nology) or anti-NRIP antibody, which was prepared by
our lab. Pre-immune normal mouse IgG or rabbit IgG
(Santa Cruz Biotechnology) was used as a control.
The immunocomplexes were precipitated by Protein G
agarose beads for 1 h at 48C, followed by sequential
washing with low salt wash buffer, high salt wash buffer,
LiCl wash buffer and TE buffer. For re-ChIP assays,
DNA–protein complexes were washed with low salt
wash buffer and high salt wash buffer and extracted by
adding 10mM DTT. The supernatants were then diluted
20 times with RIPA buffer for a second-round of immuno-
precipitation. After extensive washing, the immuno-
complex beads were eluted by elution buffer (1% SDS,
50mM NaHCO3) for 15min at room temperature. After
reverse cross-linking, proteinase K and RNase A treat-
ments, immunoprecipitated DNAwas purified and applied
to PCR using primers as follows:
NRIP promoter ARE F: 50-GACGAGGAGAGGGA
GGAGTC-30,
NRIP promoter ARE R: 50-GGGACACCCGTTTCAA
CAC-30,
NRIP promoter Sp1-binding site F: 50-CCGCACAATT
CTCTTGCTTC-30,
NRIP promoter Sp1-binding site R: 50-GACTCCTCCC
TCTCCTCGTC-30,
PSA promoter ARE as described by Yongfeng Shang
et al. (15)
(F: 50-AGGGATCAGGGAGTCTCACA-30, R: 50-GCT
AGCACTTGCTG TTCTGC-30).
The primers for ectopically NRIP promoters to distin-
guish from endogenous promoter region were as follows:
Luc reporter F: 50-AGGGTTGGCGGGGAGG GTAT-30

(containing pGL3-basic vector sequence)
Luc reporter R: 50-GGAAGACGCCAAAAACATAA
AG-3 (containing pGL3-basic vector sequence).

RESULTS

Identification of the human NRIP gene promoter

Previously, we isolated a novel gene, NRIP (accession
no. AY766164). Expression of this gene can be induced
by androgen treatment (8). Human NRIP gene is located
at chromosome 1q24 (Figure 1A). The full-length cDNA
of NRIP is 3085 bp and contains 93 bp of 50-untranslated
region by 50-rapid amplification of cDNA ends (RACE)-
PCR to determine the transcription start site that is
designated as +1 (8). To further investigate the regulation

Nucleic Acids Research, 2008, Vol. 36, No. 1 53



of the NRIP gene, the 50-flanking region between –2583
and +94bp upstream from the first exon of the NRIP
gene was amplified by PCR from human HeLa cell
genomic DNA. The two fragments were generated using
restriction enzyme digestion at unique XhoI and SacI
sites. These three different region fragments (–2538�+94,
–413�+94 and –99�+94) were inserted upstream of the
luciferase reporter gene in the pGL3-Basic vector.
Transiently transfected into 293T cells, NRIP-P2583
caused about 2-fold increase in luciferase activity relative
to pGL3-Basic, but activity was less than that of the
NRIP-P413 promoter; and, NRIP-P99 almost lost
activity relative to pGL3-Basic activity (Figure 1B).

These data suggest that the NRIP core promoter is
located at –413 to +94 upstream the initiation site of the
NRIP gene.

We therefore analyzed the NRIP-P413 promoter in the
following experiments. DNA sequence analysis utilizing
the Transcription Element Search System (TESS) involved
cis-elements in the region spanning –413 and +94 bp,
which are critical in the control of NRIP gene expression.
The NRIP promoter lacked a TATA box and was
enriched in GC (Figure 1C). Additionally, the region
contained three putative Sp1-binding sites at –305/–300
(Sp1-1), –242/–237 (Sp1-2) and +67/+73 (Sp1-3) and
two hormone response elements. An ARE was located
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Figure 1. Identification of the promoter region in the NRIP gene. (A) Genomic organization of the human NRIP gene on chromosome 1q24.2. The
numbers in box refer to exon regions. (B) Identification of the promoter activity in the 50-flanking region of the NRIP gene. The nucleotides between
–2583 and +94 relative to the transcription start site of the NRIP gene were amplified by PCR and cloned into pGL3-Basic and then named NRIP-
P2583. Series deletions of ��413 to +94 and ��99 to +94 regions were constructed by XhoI and SacI digestion and cloned into pGL3-Basic and
named NRIP-P413 and NRIP-P99, respectively. 293T cells were transiently co-transfected into the indicated reporter promoter with pRL-CMV
(as an internal control). The relative luciferase activity is expressed as the measured firefly luciferase activities (promoter activity), which were
normalized by renila luciferase activity (pRL-CMV). The results are shown as mean� SD from three independent experiments. (C) The putative
transcription factor binding elements in the NRIP gene. The NRIP promoter sequences (–413 to +94) were analyzed by Transcription Element
Search System (TESS, http://www.cbil.upenn.edu/cgi-bin/tess/tess). Three Sp1 and two hormone response elements, ARE and GRE, were underlined.
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at –133/–128 and a glucocorticoid response element
(GRE) was present at +28/+33.

NRIP is a novel AR-target gene

The NRIP promoter contains a potential AR response
element based on the sequence analysis; therefore
we investigated whether androgen could induce

NRIP gene transcription. To examine this hypothesis,
prostate cancer cells (LNCaP) were maintained in
hormone-depleted medium using CDS serum and then
treated with increasing amounts of DHT for 12 h. Total
cellular RNAs were subjected to semi-quantitative RT-
PCR with NRIP, PSA, AR and b-actin (as an internal
control) primers. Since PSA is an AR-targeted gene and a
sensitive marker of prostate cancer (4), it is included here
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Figure 2. NRIP is a novel AR-targeted gene. (A) Androgen can induce NRIP and PSA gene expression as measured by RT-PCR in prostate cancer
cells (LNCaP). LNCaP cells were grown in RPMI 1640 medium supplemented with 10% FBS or with charcoal/dextran-stripped serum (CDS) and
treated with 1 and 10 nM DHT for 24 h. Total RNA was extracted and 5 mg of RNA was amplified by semi-quantitative RT-PCR using NRIP, PSA,
AR and b-actin primers. One representative data set from three independent experiments is shown. The expression levels of NRIP, PSA and AR
RNA quantified by UVP imaging system were normalized to b-actin, and then set at 1.00 for CDS treatment. (B) AR with androgen can stimulate
NRIP gene expression in 293T cells. AR-negative 293T cells were transiently transfected with pcDNA3.0-AR and cultured in CDS medium. After
24 h of 10 nM DHT treatment, total RNA was extracted and RT-PCR was performed using NRIP, AR and b-actin primers. One representative data
set from two independent experiments is shown. (C) The promoter activity of NRIP induced by DHT-activated AR. 293T cells were co-transfected
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region of the NRIP promoter. Three site-directed mutants were made by nucleotide substitutions at either ARE or GRE or both sites in NRIP-P413.
Wild-type and mutant promoters were transfected with pcDNA3.0-AR and pRL-CMV into 293T cells with or without ligand treatment. The
luciferase activities were measured as described above. Panel D(a) depicts the change of relative luciferase activity, which was measured by the
luciferase activity of the NRIP-P413 promoter in the absence of AR and DHT treatments. Panel D(b) refers to luciferase activities with DHT relative
to that of EtOH for each construct.
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as a positive control. As shown in Figure 2A, the
expressions of NRIP mRNA in 1 nM DHT and 10 nM
DHT are 2.01- and 3.12-fold increases compared to CDS-
treated cells, respectively, and the expressions of PSA are
2.19- and 3.87-fold increases. It indicates the expression of
NRIP and PSA increased in proportion to the amount of
DHT (lanes 2 and 3). NRIP and PSA mRNA were also
significantly increased in LNCaP cells cultured in medium
with fetal bovine serum (FBS, lane 4) due to a small
amount of steroid hormone in the serum compared
to CDS. These results indicate that NRIP, like PSA, is
an androgen-induced gene. Furthermore, compared with
the amount of NRIP mRNA in DHT-treated
AR-deficient 293T cells, the NRIP mRNA expression
level was elevated when the AR expression plasmid was
introduced into cells using DHT treatment (Figure 2B,
lane 2). A consistent finding was that the NRIP
promoter luciferase activity was increased 3- to 4-fold
when 293T cells were transiently cotransfected with
NRIP-P413 reporter constructs and AR expression
plasmid in the presence of DHT (compared to without
AR and DHT; Figure 2C). There was no promoter
activity following treatment with DHT alone in 293T cells
(Figure 2C). In contrast, the data in Figure 2A showed
that DHT alone increased endogenous NRIP gene
expression in LNCaP cells. This is due to the fact
that the AR gene is rarely expressed in 293T cells but is
highly expressed in LNCaP cells (8). These data suggest
that the NRIP promoter is activated by androgen-
dependent AR activity.
To further confirm the importance of an ARE site

in NRIP-P-413, we constructed individual site-directed
mutant at ARE and GRE or double mutant (16); and
named NRIP-P413/mARE, NRIP-P413/mGRE and
NRIP-P413/mARE/mGRE, respectively. Figure 2D
showed the reduced promoter activity in NRIP-P413/
mARE, but the basal level of promoter activity (without
ligand treatment) was also lower than that of the wild-type
NRIP-P413 promoter. However, the promoter of NRIP-
P413/mARE seemed to be affected by DHT treatment
[it was increased by 2.8-fold; Figure 2D(b)]. This implies
that promoter activity in the mutated ARE within
the NRIP promoter can still be affected by androgen.
It suggests that there could be additional AR- or
androgen-responsive cis-elements. When the promoter
NRIP-P413/mGRE in which the GRE site was mutated
is stimulated up to 3.1-fold by DHT, implying that
the predicted GRE site is not androgen response site.
It was further confirmed by the promoter NRIP-P413/
mARE/mGRE simultaneously mutated at ARE and GRE
sites, and the promoter activity of this double mutant
is similar as that of NRIP-P413/mARE. To further
support AR involvement in NRIP gene regulation,
we used lentiviral vectors (LV), which encode shRNA
that target AR. As shown in Figure 3E, lane 2, semi-
quantitative RT-PCR results show that shAR can
eliminate AR gene expression when we infected
LV-shAR into LNCaP cells. The RNA gene expression
of NRIP and PSA also significantly decreased in
shAR-treated cells compared to the shGFP control

(lentivirus encoding shRNA to GFP). In sum, NRIP is a
novel AR-target gene.

Sp1 activates NRIP gene expression

There are three Sp1-binding sites in the NRIP-P413
promoter (Sp1-1, Sp1-2 and Sp1-3). To analyze the
role of Sp1 transcription factors in the regulation of the
human NRIP gene, we introduced various doses of an
Sp1-expression plasmid (pPac-hSp1) with an NRIP-P413
promoter into Sp1-deficient Drosophila Schneider SL2
cells (17). Figure 3A showed Sp1 regulating NRIP gene
expression in a dose-dependent manner in SL2 cells.
To further identify which Sp1-binding site plays the major
role in NRIP gene regulation, we generated a 50 series
deletion of NRIP promoter chimeric mutant constructs
linked to the luciferase gene. These were named NRIP-
P293, NRIP-P258 and NRIP-P234. They lacked Sp1-1,
Sp1-1 and Sp1-1/Sp1-2 sites, respectively. Luciferase
assays were performed in 293T cells transiently transfected
with the indicated promoter. The luciferase activity
of NRIP-P234 significantly decreased (Figure 3B), imply-
ing that Sp1-2 between –258 and –234 bp is a critical
element in the ability of Sp1 to activate NRIP gene
expression. To further examine which Sp1-binding sites
are functional, we inactivated each Sp1-binding site
using site-directed mutagenesis (18). The sites were
named NRIP-P413/mSp1-1, NRIP-P413/mSp1-2 and
NRIP-P413/mSp1-3, respectively (Figure 3C, left panel).
As a result of co-transfection of these mutant constructs
with the Sp1 expression plasmid (pPac-hSp1) into SL2
cells, the luciferase activity of NRIP-P-413/mSp1-2 was
markedly reduced (Figure 3C). This was consistent
with data that the activity of NRIP-P234 was lost in
293T cells (Figure 3B). Taken together, our results
demonstrate that Sp1 activates the NRIP promoter
through a Sp1-2-binding site.

To further confirm that Sp1 can activate NRIP gene
expression, we measured NRIP promoter luciferase
activity in the 293T cells cotransfected with the various
doses of dominant-negative Sp1 expression plasmid as
indicated (13,14). Figure 3D(a) presented that DN-Sp1
inhibited the promoter activity of NRIP in a
dose-dependent manner. In addition, mithramycin A is
an inhibitor of Sp1 family transcription factors binding to
GC-rich promoter regions (11,12), Figure 3D(b) showed
that mithramycin A decreased the NRIP promoter
activity both in LNCaP and 293T cells in a dose-
dependent manner. Moreover, we used LV-shSp1 to
knock down endogenous Sp1 expression in LNCaP
cells. Semi-quantitative RT-PCR was conducted and
RNAs of NRIP, PSA, AR and Sp1 were quantified by
a UVP imaging system and normalized by b-actin.
The results showed that shSp1 could abolish Sp1 gene
expression when infecting LV-shSp1 into LNCaP cells;
the expressions of AR, NRIP and PSA mRNAs also
decreased in shSp1-treated cells compared to the shGFP
control (Figure 3E, lane 3). Since AR and PSA genes
are also regulated by Sp1 through Sp1-binding sites in
each promoter (2,11), our results are consistent, showing
decreases of NRIP and PSA mRNAs by knockdown
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Figure 3. Sp1 regulation on NRIP promoter. (A) Sp1 activation of the NRIP promoter in Drosophila SL2 cells, which lacks endogenous Sp1. Sp1-
negative SL2 cells were transfected with NRIP-P413 and increasing amounts of Sp1-expression plasmid (pPac-hSp1). The promoter activity of Sp1
was measured as described above. The fold change was measured by the luciferase activity of each experimental condition compared to that of the
absence of the expression of Sp1. (B) NRIP promoter activity measured by a series of Sp1-binding site deletion mutants in 293T cells. A series of
50-end NRIP-promoter deletion mutants were constructed and named NRIP-P283, NRIP-P256 and NRIP-P234. These lacked Sp1-1, Sp1-1/Sp1-2
and Sp1-1/Sp1-2-binding sites, respectively. Luciferase activities were measured in 293T cells as described in Figure 1B. (C) Sp1 influences the Sp1-2
site of the NRIP promoter. Site-directed mutagenesis at three Sp1-binding sites was generated from the NRIP-P413 promoter and named NRIP-
P413/mSp1-1, NRIP-P413/mSp1-2 and NRIP-P413/mSp1-3, respectively. The point mutant sequences were underlined shown in left panel. These
three Sp1 site-mutant promoters and pPac-hSp1 were transfected into Sp1-negative SL2 cells. (D) Dominant-negative Sp1 mutant inhibits NRIP
promoter activity. Panel a: 293T cells were cotransfected with 0.5 mg of NRIP-P413 and the various doses of the dominant-negative Sp1 expression
vector (pEBG DN-Sp1), and the total amount of plasmids was adjusted with empty pEBG vector. The reporter luciferase activity was measured as
described above and normalized to the activity of pRL-TK. Panel b: Mithramycin A inhibits NRIP promoter activity. NRIP-P413 was transfected
into either LNCaP or 293T cells, 24 h later, cells were incubated with the various concentrations of mithramycine A for another 24 h. Relative NRIP
promoter activities (%) were counted as 100% in the cells without treatment of mithramycin A. Data are mean� SD from three independent
experiments. (E) AR and Sp1 cooperative regulation of NRIP transcription. LNCaP cells were infected with lentivirus encoding shRNA to AR and
Sp1 individually or in combination; lentivirus-carrying shGFP was a control. Three days post-infection, total RNA was extracted and 5 mg of RNA
was amplified by semi-quantitative RT-PCR using NRIP, PSA, AR, Sp1 and b-actin primers. One representative data set from three independent
experiments is shown. The expression level of NRIP RNA quantified by UVP imaging was normalized to b-actin.
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of Sp1. The amounts of NRIP and PSA RNAs
were significantly less after combined shAR and shSp1
treatment compared to single treatment by either shAR or
shSp1 (Figure 3E, lane 4). This suggests that either AR
or Sp1 can individually regulate NRIP gene expression;
and the combination of AR and Sp1 has a synergistic
effect in regulating NRIP gene expression.

AR and Sp1 associate on the NRIP promoter and
cooperatively regulate NRIP promoter activity

Next, it is important to understand whether AR and Sp1
associate on the NRIP promoter in vivo in the context
of chromatin. Chromatin immunoprecipitation (ChIP)
was performed using DHT-treated or untreated LNCaP
cells. Chromatin extracts were immunoprecipitated with
anti-AR or anti-Sp1 antibody and specifically bound
DNA was detected by PCR with primer pairs for ARE or
Sp1-2-binding sites in the NRIP promoter. As shown in

Figure 4A (left panel), the recruitment of Sp1 to Sp1-2
within the NIRP promoter was observed both in the
presence and absence of DHT. However, the recruitment
of AR to the ARE within the NRIP promoter was
identified only in DHT-treated LNCaP cells, indicating
Sp1 recruitment to the Sp1-binding site of the NRIP
promoter, regardless of androgen. But, AR recruitment to
the ARE of the NRIP promoter only occurred after
androgen treatment.

Sp1 is a very important transcription factor, which
physically interacts with many cofactors and nuclear
receptors to cooperatively activate gene expression (19).
The data in Figure 2D show that mutations at the ARE do
not completely abolish NRIP promoter activity response
to androgen, suggesting that an additional cis-element
within the NRIP promoter may be involved in the
androgen response. Previous reports have shown that
androgen induces p21 promoter activity in which an
ARE sequence is absent because an AR can form a
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complex with an Sp1 protein and AR indirectly binds to
Sp1-binding sequences through Sp1 protein (20). Since
the NRIP promoter is regulated both by Sp1 and AR,
we hypothesized that an interaction between Sp1 and AR
is also involved in regulation of the NRIP promoter.
Chromatin from DHT-treated LNCaP cells were sub-
jected to re-chromatin immunoprecipitation (re-ChIP)
assay. Anti-AR immunoprecipitates were re-immunopre-
cipitated with anti-Sp1 antibody or control IgG antibody
and vice versa. Figure 4A (right panel) shows that Sp1-2
and ARE-containing DNA sequences are both recovered
in the anti-AR immunoprecipitates and in the anti-Sp1
immunoprecipitates, respectively, suggesting that AR may
bind not only directly to ARE, but also, indirectly to
the Sp1-2 element in vivo. Since the distance between ARE
and Sp1-2-binding sites is less than 200 bp (Figure 1C),
the size of sonicated fragments from chromatin was
between 200 and 500 bp under our conditions (data not
shown) which hardly distinguishes which transcription
factors can bind to each specific DNA-binding site.
To verify it, we conducted ChIP assays for AR and Sp1
where the NRIP promoter was ectopically expressed in

293T cells. We constructed several mutant NRIP promo-
ters including NRIP-P413/mARE with a mutated ARE,
NRIP-P413/mSp1-2 with mutant at the Sp1-2 site, and
NRIP-P413/mSp1-2/mARE containing both the mutated
ARE and the mutated Sp1-2. After introducing
the indicated promoter with AR- (pcDNA3.0-AR) and
Sp1- (pSG5-HA-hSp1) expressing plasmids into 293T cells
in the presence of DHT respectively, ChIP analysis
was performed and the chromatin extracts from the
DHT-treated cells were incubated with anti-AR antibody
or anti-Sp1 antibody or without antibodies as a control.
As shown in Figure 4B, AR antibody was able to
immunoprecipitate chromatin containing ectopic DNAs
of NRIP-P413, and NRIP-P413/mARE, and NRIP-P413/
mSp1-2 promoters from individually transfected cells
(Figure 4B, lane 4). Likewise, Sp1 antibody could
immunoprecipitate the DNA of either NRIP-P413 or
NRIP-P413/mARE promoter, but not the DNA of the
NRIP-P413/mSp1-2 promoter (Figure 4B, lane 3). Neither
anti-AR nor anti-Sp1 antibody was able to immunopre-
cipitate the DNA of NRIP-P413/mSp1-2/mARE
promoter with double mutations of ARE and Sp1-2.
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indicated.
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Taken together, our findings indicate that AR can directly
bind to the ARE or indirectly bind to the Sp1-2 element of
the androgen-responsive NRIP promoter, but Sp1 only
directly binds to the Sp1-2 element and cannot indirectly
associate to the ARE through the AR–Sp1 complex.
To further verify AR–Sp1 complex formation,

co-immunoprecipitation analysis was performed using
transient co-transfection with AR, Sp1 or NRIP expres-
sion plasmids (pSIN-Flag-AR, pSG5-HA-hSp1 and
pEGFP-NRIP) into 293T cells with DHT treatment.
Cell lysates were then collected and immunoprecipitated
with anti-GFP, anti-Flag and anti-HA antibodies for
NRIP, AR and Sp1, respectively. Figure 4C, lane 2, shows
the interactions between AR and Sp1, confirming that AR
indirectly binds to the Sp1-2 element of the NRIP
promoter via AR–Sp1 complex formation in response to
androgen activation. Taken together, like the p21
promoter (20), AR activates the NRIP promoter not
only through ARE but also through AR–Sp1 protein
complex binding to the Sp1-binding site to induce the
androgen response.

NRIP positively autoregulates its own gene expression

We found that NRIP is a novel AR-target gene. Along
with our previous study, this shows that NRIP functions
as a transcriptional cofactor to enhance AR-mediated
gene expression (8). It raises the interesting question
whether NRIP regulates itself via AR. To test the effect
of NRIP on its own promoter, we transfected either

the NRIP promoter or the PSA promoter (PSA is an
AR-target gene and was used as a positive control) with
AR- and NRIP-expression plasmids into 293T cells in
the presence of DHT. As shown in Figure 5A and B, the
enhanced luciferase activities of the NRIP and PSA
reporter promoters were correlated with increasing
amounts of NRIP gene expression in the presence of
DHT, respectively. To further confirm NRIP as an AR
transcription cofactor, we introduced the NRIP promoter
and the PSA promoter with the indicated amount of
NRIP expression plasmid into LNCaP cells which contain
endogenous AR. The results confirmed that NRIP
activated NRIP and PSA promoter activity in a manner
dependent on the NRIP dose (Figure 5C and D).
Additionally, we also did ChIP and re-ChIP assays
using DHT-treated LNCaP cells to further confirm
NRIP-regulating NRIP and PSA promoter activity.
Figure 5E shows that NRIP can be complexed with
NRIP and PSA promoters. When ChIP was done
by either anti-AR or anti-Sp1 antibody; and re-ChIP by
anti-NRIP in LNCaP cells in the presence of DHT, the
results showed that NRIP could bind to either NRIP or
PSA promoter via AR (Figure 5F, left panel) or Sp1
protein (Figure 5F, right panel). It further confirmed
ternary complex formation among AR, NRIP and Sp1 as
shown in Figure 4C.

In a previous study, we showed an interaction between
AR and NRIP proteins (8). To further verify the data
of Figure 5C and D, we measured the endogenous mRNA
of NRIP and PSA in LNCaP cells by ectopically
introduced NRIP-Flag plasmid. Since endogenous NRIP
RNA transcripts include a 50-untranslated region (UTR)
covering exon 1 of human NRIP, we amplified this
50-UTR sequence of endogenous NRIP from total cellular
RNA by RT-PCR to distinguish it from the ectopic
NRIP-Flag which does not contain the 50-UTR sequence
but has a Flag tag sequence. As shown in Figure 5G, the
expression of endogenous NRIP and PSA RNA was
correlated with the exogenous amount of NRIP-Flag.
Taken together, these findings indicate that NRIP is
positively autoregulated by itself.

Complex formation between AR, Sp1 and NRIP were
investigated. Co-immunoprecipitation analysis of
Figure 4C, lane 1 shows no interaction between Sp1 and
NRIP, but complex formation among AR, Sp1 and NRIP
did occur (Figure 4C, lane 3). These findings indicate that
NRIP through AR indirectly binds to NRIP and PSA
promoters and that NRIP plays a role as a mediator in
auto-regulation of its own AR-driven expression. Hence,
NRIP can cause feed-forward activation of its own
promoter activity.

NRIP stabilizes AR protein but has no effect on AR
mRNA and AR nuclear translocation

To investigate the positive autoregulatory mechanisms
of NRIP, we examined changes in gene expression levels
of AR as a result of NRIP effects. We examined the
effect of NRIP on AR mRNA, protein levels and
subcellular localization. First, we generated recombinant
lentiviruses encoding shRNA to NRIP and luciferase
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Figure 5. NRIP feed-forward activity enhances its own gene activity in a dose-dependent manner. 293T cells were co-transfected with NRIP-P413-
Luc (A) or PSA-Luc (B) with increasing amounts of NRIP expression plasmid, pcDNA3.0-AR, and pRL-CMV (as an internal control). Likewise,
LNCaP cells were co-transfected with increasing amounts of NRIP expression plasmid, pRL-CMV, and NRIP-P413-Luc promoter (C) or PSA-Luc
promoter (D). Twenty-four hours after transfection, cells were treated with DHT for 12 h and luciferase activities were measured and normalized.
The data are mean� SD from three independent experiments. (E) NRIP can associate with NRIP and PSA promoter by ChIP assay. ChIP assays
were performed using DHT-treated LNCaP cells and chromatin extracts were immunoprecipitated by antibodies against NRIP. (F) NRIP associates
with either AR or Sp1 to bind to NRIP and PSA promoters, respectively. Chromatin extracts from DHT-treated LNCaP cells were
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by PCR using primers for the ARE region in the NRIP or PSA promoters, separately. (G) LNCaP cells were transiently transfected with increasing
amounts of NRIP expression plasmid (NRIP-Flag) and cultured in CDS medium containing 10 nM DHT. After 48 h, cellular RNAs were extracted
and subjected to semi-quantitative RT-PCR using primers for NRIP-Flag, endogenous NRIP (endoNRIP), PSA, AR, actin.
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(as a control); these were named, respectively, LV-shNRIP
and LV-shLuc. LNCaP cells were infected with
LV-shNRIP or LV-shLuc. Twenty-four hours post-
infection, cells were maintained in CDS medium and
treated with EtOH or DHT for 24 h. Total cellular RNA
was subjected to semi-quantitative RT-PCR. As shown
in Figure 6A, LNCaP cells infected with LV-shNRIP
showed decreased NRIP RNA amounts regardless
of the presence or absence of DHT, but levels of AR
mRNA were maintained at levels seen in cells infected
with control virus (LV-shLuc). This implies that knock-
down of endogenous NRIP has no effect on the level
of AR mRNA.
Ubiquitin-dependent proteolysis represents an impor-

tant mechanism for controlling protein turnover. AR
recently was shown to be a target for Mdm2-mediated
ubiquitination and destruction by the 26S proteasome
(21). To examine whether NRIP can protect AR from
proteasome-mediated degradation, LNCaP cells were
treated with the proteasome inhibitor MG132 along with
infection of LV-shNRIP or LV-shLuc separately.
Figure 6B showed AR protein level decreased in
compliance with the elimination of NRIP protein in
cells treated with shNRIP, but MG132 treatment recov-
ered the AR protein level (Figure 6B, lane 4); indicating
that NRIP may modulate AR protein stability via
inhibition of proteasome degradation. To further assess
whether NRIP regulates the turnover of AR protein,
LNCaP cells were infected with LV-shNRIP or LV-shLuc
in the presence or absence of DHT. Three days after virus
infection, cells were treated with the protein synthesis
inhibitor cycloheximide (CHX, 10 mg/ml) at the indicated
time. Cell lysates were then extracted to determine AR
protein expression levels. We set the AR protein level in
each control treatment as 100%, the densitometer
measured changes as a percentage of each control
treatment. As shown in Figure 6C, the AR protein in
shNRIP-treated LNCaP cells were less than those infected
with the control shLuc viruses (lane C) both in cells
treated with DHT (lower panel) and without DHT
(upper panel); indicating that the half-life of the AR
protein after shNRIP treatment was significantly shorter
than that of the control shLuc regardless of DHT
treatment, but AR protein is slightly more stable in cells
treated with DHT (lower panel) than without DHT
treatment (upper panel). As expected, it previously
reported that androgens increase the steady-state expres-
sion of AR protein in LNCaP cells (22). This finding
of NRIP-stabilizing AR protein is consistent with the
result shown in Figure 6B by comparing lane 1 with lane 3.
This suggests that AR is subject to proteasome-dependent
degradation under normal physiological conditions and
that NRIP can stabilize the AR protein. To further
confirm a role for NRIP in the stabilization of the AR
protein, 293T cells were transiently transfected with
the AR expression plasmid and increasing amounts of
NRIP expression plasmids. Western blotting analysis
showed increasing amounts of AR protein were propor-
tional to NRIP protein levels (Figure 6D), Similarly,
as shown in the Input panel of Figure 4C, the amount of
AR protein was higher in the presence of GFP-NRIP than

the absence (lanes 3 and 2). Taken together, it concludes
that NRIP can stabilize the AR protein in a dose-
dependent manner.

Because androgen stimulation can induce AR nuclear
translocation (1), we were interested in investigating
whether knockdown of NRIP would affect the nuclear
translocation of AR in the presence of DHT. The
fractionation of cytoplasmic and nuclear lysates from
LNCaP cells infected with LV-shNRIP or LV-shLuc was
done. Figure 6E showed that AR protein amount was
decreased in the shNRIP-treated cells both in the fraction
of cytosol and nucleus, but no significant difference
in the ratio of nuclear to cytosolic proteins between
shLuc- and shNRIP-treated LNCaP cells. This indicates
that NRIP has no effect on AR nuclear translocation.
Taken together, our findings suggest that NRIP stabilizes
AR protein but has no effect on AR mRNA and AR
nuclear translocation.

DISCUSSION

In this study, we successfully isolated the NRIP promoter,
and defined its location and sequence. The core promoter
(NRIP-P413) ranged from –413 to 94 bp, from its first
exon, which contributes greatly to promoter activity
(Figure 1B). Through this investigation, AR and Sp1
were primarily found to influence NRIP gene transcrip-
tion and the functional AR site at the ARE as well as
Sp1 at the Sp1-2 sites within the NRIP core promoter.
Our results indicate that NRIP, like PSA, is one of the
downstream targets of the AR. Androgen, the natural
ligand that activates AR, is essential for the physiological
maintenance of the integrity of prostatic epithelial cells
(23). Androgen-regulated genes such as PSA (24), p21
(WAF1) (25), KLK-2 (26) have been well characterized,
and androgen response elements (AREs) in these genes
were identified. AR-target genes are topics that are
currently of great interest due to the fact that AR appears
to mediate the survival of prostate cancer patients and
even of patients with other cancers. Recently, several
AR-response genes were found and their functions
characterized. For example, fibroblast growth factor 8
(FGF8) is known to induce cell proliferation in human
prostate cancer and its presence correlates with tumor
stage and pathological grade. FGF8 is induced by AR
through ARE in the region of the FGF8 promoter (27).
Paternally expressed gene 10 (PEG10) is another gene
that is AR-induced through ARE region of the PEG10
gene promoter and upregulated in hepatocellular carci-
noma (28). Here we found a novel androgen-regulated
gene-NRIP. The correlation of NRIP in prostate cancer
development will be interesting for future investigation.

The DNA sequence of the NRIP promoter is TATA-
less and GC-rich (Figure 1C). Sp1 is a ubiquitous
transcription factor and reportedly binds to GC-rich
DNA sequences (GGGCGG) in the proximal promoter
regions of a wide variety of genes, especially TATA-less
promoters, genes which are involved in a wide range
of cellular processes including (a) cell cycle regulation,
(b) maintenance of gene activation during embryonic
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development (by preventing de novo methylation of the
CpG islands at house-keeping gene promoters) (19,29)
and (c) preservation of chromatin structures at gene loci
(30,31). Here we demonstrated that Sp1 stimulates NRIP
gene expression at the Sp1-2-binding sequence of the
NRIP core promoter. Mutation at the Sp1-2 site caused a
reduction in NRIP promoter activity and chromatin
immunoprecipitation. Therefore, Sp1 may function as a
tethering moiety to recruit the general transcription
machinery to a TATA-less NRIP promoter. Previously,
Sp1 was reported directly binding to the proximal
promoter region of PSA and stimulate the PSA gene
expression, implying that Sp1 plays a role in prostate
cancer through the regulation of the PSA gene (11).
Similarly, here we show that Sp1 also regulates NRIP gene
expression (Figure 3) and NRIP was a transcriptional
cofactor to enhance AR-mediated PSA gene expression in
our previous report (8), indicating that like PSA, NRIP
can be a clinical marker of prostate cancer.
Ligand-bound steroid hormone receptors are classically

thought to regulate gene expression by binding to the
consensus hormone response elements in target genes (32).
Intriguingly, when mutation of the ARE did not
completely abolish NRIP promoter responsiveness to
androgen [Figure 2D(b)], the induction of NRIP gene
expression by androgen was mediated not only by an ARE
within the NRIP proximal promoter, but also by one
Sp1-binding site upon loss of the ARE site (Figure 4B).
Similarly, previous studies have shown that androgen
activates expression of p21 (WAF1), mouse vas deferens
protein (MVDP) and thyroid hormone receptor genes,
which contain hormone response elements and Sp1
elements in their promoters (20,33,34). Other than the
hormone response element, Sp1 sites in these promoters
can respond to hormone action (20). Recently, several
studies have also shown that some steroid hormone target
genes do not contain the complete hormone response
elements within their promoters and can be induced
via Sp1 sites by steroid hormone receptor and transcrip-
tion factor Sp1 interaction. For instance, cathepsin D and
heat shock protein 27 (Hsp27) are two estrogen receptor
(ER)-target genes and their promoters do not contain
consensus estrogen response elements, but have ERE
half-sites and GC-rich sequences in their promoters. The
ER–Sp1 complex was reported to be necessary for
regulation of such promoter activity (35,36). Moreover,
cross-talk between nuclear hormone receptors and many
other transcription factors has been demonstrated in
various studies such as AP1, nuclear factor-kB/Rel,
Stat and C/EBP (37,38). Our results further support the
notion that hormones induce some of their target genes
via the Sp1 site when hormone response elements
are absent in these target gene promoters. In sum,
we demonstrate that ARE as only half-sites of actual
AR-binding sequences and Sp1-2 among three predicted
Sp1-binding sites in NRIP core promoter can respond
androgen induction. We think that no more additional
sequences in NRIP core promoter can be induced by
androgen, since the double mutant promoter NRIP-P413/
mSp1-2/mARE containing these two mutated sites

completely abolishes both AR association (Figure 4B)
and luciferase activity (data not shown).

Our study also demonstrates that AR and Sp1 not only
bind to their respective consensus sites within the NRIP
promoter, but also, the AR–Sp1 complex activates NRIP
transcription. This is similar to several reports of
promoter regulation by AR and Sp1 such as regulation
of p21, TRa and SRY genes (19,20,33). Using protein–
protein immunoprecipitation assays, we showed
complex formation between AR and NRIP (8) as well as
between AR and Sp1 (Figure 4C), but not between Sp1
and NRIP. Therefore, positive regulation of NRIP on
AR-target genes at Sp1-binding sequences involves
indirect interaction NRIP with Sp1 via AR. On the basis
of our results, we propose a functional model of NRIP
in which NRIP feeds forward to activate its own
promoter activity. This can occur through three possible
mechanisms: (i) NRIP protein complexes AR which
directly binds to an ARE site; (ii) NRIP forms a complex
with the AR-Sp1 protein through the Sp1 protein which
binds to the Sp1 site of the NRIP promoter; (iii) The
ternary complex bridged through AR and Sp1 tethers to
the ARE and Sp1-binding site, resulting in a loop
formation on the NRIP promoter (Figure 7A).
Formation of this complex in response to androgen may
facilitate binding of other coactivators and general
transcription factors to form a preinitiation complex
for gene transcription. The consequence of this effect
would be to enhance expression of the androgen target
genes NRIP and PSA (Figure 7B).

We showed autoregulatory mechanisms of the NRIP
gene, because NRIP can cause AR protein stabilization
by avoiding proteasome degradation (Figure 6). Along
with our previous study (8), this study shows that NRIP
functions as a transcription cofactor to enhance
AR-mediated gene expression, which results in the
stimulation of NRIP and PSA promoter activity driven
by AR (Figure 5). The AR plays a central role in
regulating the expression of genes involved in androgen-
dependent and androgen-independent tumor formation.
Regulation of AR-mediated transcription is achieved by
AR protein stabilization and the acetylation status of
androgen-responsive genes and/or the AR itself (21).
Factors that control AR stability have been confirmed
by the finding that the AR is a direct target for
Mdm2-mediated ubiquitylation and proteolysis. The E3
ligase activity of Mdm2 and phosphorylation of Mdm2 by
PI3K/Akt are essential for Mdm2 to cause AR ubiquityla-
tion and degradation (39). As to how PI3K/AKT
affects the AR protein, there are several possibilities.
For instance, it was reported that the PI3K/Akt pathway
can suppress AR activity in androgen-dependent LNCaP
cells with low passage numbers, but enhances AR
activity in LNCaP cells with high passage numbers (40).
In addition, recent report also demonstrated that PI3K/
AKT activation via growth factor (HB-EGF) decreases
AR protein levels by regulation of AR mRNA translation
rates via mTOR (41). Our study found that NRIP is a
cofactor of AR that increases AR transcription activity
by stabilizing the AR protein. Further investigations
should show what kind of signals is transduced by
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NRIP effects on the ubiquitin-proteasome pathway of
AR, which may aid in the development of drug targets for
the treatment of prostate cancer.

NRIP is a transcription cofactor of AR. Most
co-activators and co-repressors share a capacity to influ-
ence the transcriptional potential of AR by regulating the
acetylation–deacetylation status of androgen responsive
genes (such as NRIP, PSA) and/or the AR itself, via
histone acetyltransferase (HAT) or histone deacetylase
(HDAC) activities (chromatin modifying enzymes) that in
turn alter the access of AR and general transcription
factors to target gene promoters. The co-activators Tip60
(42), p300 and P/CAF (43) enhance the inherent
transcriptional activity of the AR by direct receptor
acetylation and upregulate transcriptional rates by histone
acetylation of AR target genes. Conversely, reversal of
HAT activity is important in the deacetylase-dependent
abrogation of AR function by histone deacetylase 1
(HDAC1) (15,21,33,42). The further investigation of
NRIP complex involving in acetlylation status of AR,
may aid in understanding the mechanisms of NRIP role in
prostate cancer development.

In sum, NRIP represents a novel AR-targeted
gene, prompting an exploration of the correlation between
PSA and NRIP, since both are AR-controlled genes.
More intriguingly, we demonstrate that NRIP plays a
feed-forward role in enhancing the AR-driven NRIP
promoter activity via stabilization of the AR protein.
Furthermore, we demonstrate that NRIP enhances
AR-induced NRIP and PSA gene expression in prostate
cancer cells.
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