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Many neurologic diseases are related to autoimmune dysfunction and a variety of mol-
ecules or reaction pathways are involved in the regulation of immune function of the 
nervous system. Soluble CD83 (sCD83) is the soluble form of CD83, a specific marker 
of mature dendritic cell, which has recently been shown to have an immunomodula-
tory effect. Indoleamine 2,3-dioxygenase (IDO; corresponding enzyme intrahepatic, 
tryptophan 2,3-dioxygenase, TDO), a rate-limiting enzyme of extrahepatic tryptophan 
kynurenine pathway (KP) participates in the immunoregulation through a variety of mech-
anisms solely or with the synergy of sCD83, and the imbalances of metabolites of KP 
were associated with immune dysfunction. With the complement of sCD83 to IDO-KP, 
a previously known immunomodulatory axis, this review focused on an expanded 
neuroimmunomodulation axis: sCD83-IDO-KP and its involvement in nervous system 
diseases.

Keywords: soluble CD83, indoleamine 2 3-dioxygenase, kynurenine pathway, neuroimmunomodulation, neurologic 
disease

iNTRODUCTiON

sCD83 and immunomodulation
CD83 is a type I transmembrane glycoprotein belonging to the immunoglobulin superfamily 
members (1), which is mainly expressed on membrane of mature dendritic cells (DCs) of human or 
mice (2), and considered as a specific marker of DCs. In addition to DCs, CD83 can be expressed 
on activated T cells (3), B cells, macrophages, and certain brain cells. There are two forms of CD83: 
membrane-bound CD83 (mCD83) is presented on the surface of the mature DCs membrane, soluble 
CD83 (sCD83) is released from the DCs membrane and dissolved into the body fluids.

Abbreviations: sCD83, soluble CD83; IDO, indoleamine 2, 3-dioxygenase; KP, kynurenine pathway; DCs, dendritic cells; Tregs, 
CD4+CD25+Foxp3+ regulatory T cells; 1-MT, 1-methyl-l-tryptophan; 3, 4-DAA, N-(3, 4-dimethoxycinnamonyl) anthranilic 
acid; KYN, kynurenine; KYNA, kynurenic acid; 3-OH-KYN, neurotoxic 3-hydroxy-L-kynurenine; 3HAA, 3-hydroxyan-
thranilic acid; NMDA, N-methyl-d-aspartate; LPS, lipopolysacchatide; EAE, experimental autoimmune encephalomyelitis; 
QUIN, quinolinic acid; PIC, picolinic acid; BBB, blood–brain barrier.
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sCD83 was found in healthy human serum and confirmed 
to possess immunosuppressive properties (4). Staab et al. estab-
lished effective sCD83 expression and purification regimens with 
eukaryotic human embryonic kidney 293T  cells (5). Guo et  al. 
isolated and purified sCD83 molecules from Pichia pastoris (1). 
sCD83 inhibited the differentiation process of monocytes into 
DCs in vitro and during which there was a feedback regulatory 
mechanism (6). sCD83 also inhibited the maturation of T cells 
and immature DCs stimulated by mature DCs (7) and the 
expression and release of CD83 from mature DC membranes 
induced by lipopolysaccharide. Moreover, the production 
of autoreactive antibodies was confirmed to be regulated by 
sCD83 (8). The expression of indoleamine 2,3-dioxygenase 
(IDO), the rate-limiting enzyme in kynurenine pathway (KP) of 
tryptophan metabolism, was identified as the major molecular 
mechanism associated with the protective effects of sCD83 (9). 
Mediated by IDO and transforming growth factor-β (TGF-β), 
the immunomodulatory effects of sCD83 were associated with 
CD4+CD25+Foxp3+ regulatory T cells (Tregs). Studies in vitro had 
shown that sCD83 induced long-term expression of IDO in DCs 
through autocrine or paracrine of TGF-β, whereas the latter was 
an essential cytokine for IDO-dependent immune tolerance (10).

sCD83 was involved in the pathogenesis of immune-related 
diseases, such as multiple sclerosis and its animal models of 
experimental autoimmune encephalomyelitis (EAE) (11), sys-
temic lupus erythematosus (SLE) (8), transplant rejection (12, 
13) and would probably provide promising approaches for the 
treatment of autoimmune diseases.

iDO and immunomodulation
Indoleamine-2,3-dioxygenase, an enzyme containing heme in 
the cytoplasm, is widely expressed in a variety of mammalian 
tissue cells, such as endothelial cells, macrophages, microglia, 
monocytes, DCs, fibroblasts, and certain cancer cells (14, 15). 
As the only extrahepatic rate-limiting enzyme that catalyzed the 
oxidative cleavage of indole ring structure in tryptophan (Trp) 
molecules along the KP (16), IDO was first identified in the 
intestinal tissue of rabbits (17). IDO expression is mainly distrib-
uted in the thymic medulla and the T cell regions of secondary 
lymphoid organs and dispersedly seen in immune tolerance or 
immunologically privileged sites such as the placenta, gastroin-
testinal mucosa, epididymis, anterior chamber, and brain tissue. 
By catabolizing Trp, cells expressing IDO induced the production 
of kynurenine metabolites, which orchestrated local and systemic 
responses to control inflammation, thus maintaining immune 
privilege (18).

Compared with normal condition, IDO expression in a variety 
of pathological processes increased significantly. IDO played an 
important metabolic immunoregulatory role through diverse 
mechanisms in tumor immune escape (19), maternal–fetal 
tolerance (20), chronic inflammatory diseases (21), autoimmune 
diseases (22), and transplantation tolerance (23). Trp is essential 
for T cell activation and hyperplasia. The induction of IDO by 
interferon-γ (IFN-γ) leaded to depletion of Trp in co-culture of 
monocytes and serum (24), which resulted in T cell proliferation 
arresting at Gl phase and reactivation disorder, thus bringing 
about the lack of effector T cells (25). With significant cytotoxic 

effect, l-kynurenine, picolinic acid (PIC), and other Trp cata-
bolic products directly inhibited the proliferation of T cells and 
induced T  cell apoptosis. IDO played immunoregulatory roles 
with the synergy of Tregs. IDO inhibited the activation of T cells 
by inducing proliferation of Tregs, resulting in the formation 
of local immune tolerance. Tregs promoted the production of 
IFN-γ, which increased the expression of IDO, and the latter 
strengthened the immune regulation of Tregs through feedback 
effects (26). Through the positive effects of DCs, Tregs directly 
promoted self-formation from helper T cells (27). With increased 
IDO expression upon IFN-γ stimulation in  vitro and in  vivo, 
microglial cells were able to block T cell responses by both Trp 
depletion and induction of Tregs (28). IDO was the mediator 
of communication between immunomodulation and oxidative 
stress (29). Activation of IDO-mediated tryptophan metabolism 
was strongly redox-sensitive and was involved in a variety of 
immunological diseases (30, 31). In pathological conditions, IDO 
mediates apoptosis through various mechanisms. By expressing 
abundant IDO, human umbilical cord-derived mesenchymal 
stem cells induced T  lymphocyte apoptosis with significantly 
increased expression of caspase 3 (32). 1-Methyl-tryptophan 
(1-MT), an IDO inhibitor, promoted the apoptosis of hepatic 
stellate cells by increasing the expression of IFN-γRβ, IRF-1, and 
FAS (33). Blocking the IDO/aryl hydrocarbon receptor (AhR) 
metabolic circuitry resulted in enhanced repression of tumor 
growth by apoptosis of tumor-repopulating cells (34).

Agonists and inhibitors of iDO
The immunoregulatory role of IDO in KP of tryptophan metabo-
lism is under the tight control of a variety of factors (35) [Figure 1, 
Lee et  al. (36)]. At the same time that IDO was separated and 
determined in 1967, researchers found that its native substrate, 
l-tryptophan, could inhibit the activity of IDO at high concen-
trations (37). Administration of a large dose of Trp could not 
significantly enhance IDO activity in rat intestine, which might 
be explained in part by a possible substrate inhibition mechanism 
(38). The inhibition of IDO activity with l-tryptophan loading 
exerted protective effects by suppressing the formation of neu-
rotoxic substances and nitric oxide synthase in many central 
nervous system (CNS) disorders (39).

IDO is an enzyme that causes immunosuppression in tumors. 
In humans, elevated IDO expression in colon and ovarian cancer 
is associated with a poorer prognosis. Pharmacological, genetic, 
and immunological methods targeting IDO showed therapeutic 
benefits (40), and several pharmacological IDO inhibitors were 
undergoing clinical evaluation (41). Studies confirmed that 
1-methyl tryptophan (1-MT) and other tryptophan structural 
analogs had certain IDO inhibitory activity (42). 1-MT was 
regarded as a specific inhibitor of IDO (43). NLG919, a newly 
developed IDO inhibitor, was effective in inhibiting IDO-induced 
T cell suppression (44). Studies in vitro confirmed that NLG919 
promoted tumor tissue atrophy, which was further strength-
ened by d-1-methyl-tryptophan (D-1-MT) (45). With the 
significant pharmacological effects, NLG919 had entered phase I 
clinical trial but with a result of failure. Indoximod (d-1-methyl-
tryptophan), a competitive inhibitor of IDO, can induce tumor 
responses in individuals with metastatic solid tumors (46). 
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FigURe 1 | Agonists and inhibitors of indoleamine 2,3-dioxygenase (IDO) in kynurenine pathway (KP) of tryptophan metabolism. Tryptophan is finally converted  
to nicotinamide adenine dinucleotide (NAD+) through a series of biochemical steps along the KP with IDO as the rate-limiting enzyme and many neuroactive 
intermediates. The neuroprotectants include kynurenic acid and picolinic, and the neurotoxin, mainly QUIN. The role of IDO in KP is under tight control of a variety  
of factors, with tranilast, IFN-γ and sCD83 as agonists, and 1-methyl tryptophan (1-MT), NLG919, Epacadostat as inhibitors.
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Indoximod functions as a tryptophan mimetic that suppresses 
the downstream effects of IDO activation on amino acid-sensing 
pathways and mammalian target of rapamycin (mTOR) signal-
ing. Preclinical data support the ability of indoximod to reverse 
IDO-mediated immune suppression. D-1-MT treatment can 
reactivate mTOR suppressed by IDO1-mediated Trp depletion 
in vitro. Epacadostat (INCB024360), a potent and selective IDO 
enzymatic inhibitor, acted through affecting the downstream 
metabolites of KP, and a phase 1 dose-escalation study had been 
initiated in patients with advanced solid tumors (47).

There was an IFN-γ-IDO axis for IDO expression regulation 
and related immunoregulatory effects in different cell species. As a 
principal effector, IFN-γ most potently stimulated the expression 
of IDO (48). IFN-γ induced the gene expression and enhanced 
the enzyme activity of IDO (49).

N-(3,4-dimethoxycinnamonyl) anthranilic acid (3,4-DAA), 
known as tranilast in pharmacopeia, was a synthetic anthranilic 
acid derivative. With anthranilic acid as the core structure, 
Tranilast shared similar chemical structure with a variety of 
intermediate metabolites of tryptophan in KP mediated by IDO 
(50). Researches in vivo confirmed that tranilast upregulated the 
expression of IDO as an IDO-specific agonist (51). Tranilast had 
been approved in Japan and South Korea for the treatment of 
bronchial asthma, atopic dermatitis, allergic conjunctivitis, and 
scar hyperplasia (52, 53). Subsequent studies indicated that tra-
nilast reversed paralysis in mice with EAE, offering a new strategy 
for treating TH1-mediated autoimmune disease such as multiple 
sclerosis (51).

Kynurenine Pathway
Trp is an essential amino acid that cannot be synthesized by the 
human body and must be obtained from the diet. Only Trp in free 
form could be transported across the blood–brain barrier (BBB) 
by non-specific L-type amino acid transporter (54). In the CNS, 
Trp acted as a precursor in several metabolic pathways, such as 
for the production of kynurenine (Kyn), serotonin, and melatonin 
(55), in addition to its role in protein synthesis. In human body, the 
vast majority of Trp, accounting for 95% of all, was metabolized 
directing to production of kynurenines (56), which was called 
KP (57) [Figure  1, Lee et  al. (36)]. IDO was the rate-limiting 
enzyme of KP founded in various cells, including macrophages, 
microglia, neurons, and astrocytes. The KP presented in most 
cell types of the CNS, including astrocytes (58), neurons (59), 
infiltrating macrophages and microglia, oligodendrocytes (60), 
and endothelial cells (61). The extrahepatic KP became more 
significant under conditions of immune activation (62). The first 
and rate-limiting step of the KP was the oxidative cleavage of the 
2,3-double bond of the indole ring of L-tryptophan, catalyzed by 
the iron dependent dioxygenases (63).

The biologically active metabolites of KP mainly included 
Kyn and its decomposition products such as neuroprotective 

kynurenic acid (KYNA) (64), neurotoxic 3-hydroxy-L-kynure-
nine (3-OH-KYN) and its downstream enzyme metabolites, 
3-hydroxyanthranilic acid (3HAA) (65), the excitotoxin, and 
N-methyl-d-aspartate (NMDA) receptor agonist, quinolinic 
acid (QUIN) (66), PIC (67), and the final product nicotinamide 
adenine dinucleotide (phosphate) [NAD+ (P+)] or NAD(P)H 
(68, 69). KYNA was a NMDA receptor antagonist as well as a 
non-competitive antagonist of the nicotinic receptor α-A7 sub-
type (70). QUIN, 3-OH-L-KYN, and 3-OH-AA were responsible 
for the production of the extremely reactive free radical species. 
The central intermediate of the KP was L-kynurenine (L-KYN), 
where the metabolic pathway divided into two different branches. 
L-KYN was transformed to either KYNA or 3-OH-KYN, which 
was further metabolized in a sequence of enzymatic steps to 
yield finally NAD that played essential roles in several biological 
processes such as redox reactions essential for mitochondrial 
function (71).

QUIN was possibly the most important metabolite of KP 
in terms of neurobiological activity with a significant increase 
following inflammation and immune activation (72). QUIN 
disrupted the integrity of the BBB (73). Neurons within the neo-
cortex, striatum, and hippocampus were sensitive to QUIN, but 
cerebellar and spinal cord neurons were insensitive (74). QUIN 
leaded to chronic dysfunction or death of human neuron in a 
concentration dependent manner through different mechanisms, 
including protein dysfunction (75), oxidative stress (76), gluta-
mate excitotoxicity (77), mitochondrial dysfunction and energy 
depletion (78), neuroinflammation (79), autophagy (80), and 
apoptosis (81) [Figure 2, Lee et al. (36)].

Under pathological conditions, the concentrations of 
l-tryptophan, vasoactive l-kynurenine, neuroactive KYNA, 
QUIN, 3-OH-L-KYN, and enzymes responsible for their forma-
tion were significantly changed in blood, urine as well as in the 
brain (82). These Trp metabolites and related enzymes played 
short-term antimicrobial and long-term immunosuppressive 
roles (83). Certain Kyn productions from astrocytes played a 
protective role against neuronal excitotoxic-induced cell death 
(84). The KP contributed to immunosuppression mainly through 
the following four mechanisms: Trp depletion and the suppres-
sion of mammalian target of rapamycin 1 pathway, a process 
inhibiting effector T  cell (T-eff) function and growth (85); the 
direct effect of Kyn on the AhR, inducing a predominant immune 
suppression through Tregs, especially in chronic inflammation 
(86); promoting the differentiation of CD4 T  cells into Tregs 
expressing cytotoxic T lymphocyte antigen-4 (CTLA-4) and via 
phosphatase and tensin homolog encoded by a tumor suppressor 
gene (87); the Kyn-mediated inhibition of IL-2 signaling, which 
impaired memory CD4 T cell survival (88). Additionally, some 
of the kynurenines selectively targeted immune cells undergoing 
activation, resulting in the suppression of T  cell proliferation 
(36). In conjunction with the adenosine/purinergic pathway 
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FigURe 2 | The mechanisms of QUIN neurotoxicity. Increased QUIN expression levels could increase blood–brain barrier permeability, initiate and/or exacerbate a 
myriad of neurotoxic processes, such as mitochondrial dysfunction, excitotoxicity, oxidative stress, protein phosphorylation, and autophagic processes.
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and immune checkpoints such as CTLA-4 and programmed cell 
death-1 (89), KP contributed to immune privilege within organs.

With important neurological activity, the KP metabolites 
exerted neuroprotective or neurotoxic effects by affecting the 
brain glutamate, cholinergic and dopaminergic neurotransmit-
ter delivery systems (90). Alterations in the KP had clinical and 
therapeutic implications, and targeting various KP enzymes was 
a possible strategy for addressing a variety of immune, cognitive, 
and neurodegenerative diseases (91, 92).

Previous studies have confirmed that both sCD83 and IDO can 
independently play immunoregulatory roles. Metabolites in KP 
of tryptophan metabolism also contribute to immunoregulation 
through cellular or molecular mechanisms in many neuroim-
munological diseases. With the confirmation of IDO expression 
as the main molecular mechanism of the protective effects of 
CD83, and given the role of IDO as the rate-limiting enzyme 
in KP, an expanded immunomodulatory axis, sCD83-IDO-KP 
and its downstream metabolites, is formed, which may provide 
a more broader perspective for pathogenesis study and more 
target choices for drug intervention researches of immunological 
diseases.

KP iN NeUROLOgiC DiSeASeS

KP in ischemic Stroke
Ischemic stroke is one of the major disabling and lethal diseases 
in adults. The pathogenesis of ischemic stroke is the decrease 
or complete disruption of local cerebral blood flow leading to 
ischemia and hypoxia, abnormal energy metabolism, cell dys-
function, and tissue necrosis.

Being enhanced both in animal models and patients with 
acute cerebral infarction, KP activity was significantly associ-
ated with severity and prognosis of cerebral infarction (93). 
Inflammation in cerebral infarction activated KP and induced 
the expression of IDO (94). Changes in kynurenine metabolites 
of KP had been confirmed to correlate with the infarct volume 
and the mortality of stroke patients (95). Earlier studies showed 
that elevated levels of QUIN after cerebral infarction were 
associated with reduced nerve cells in different regions of the 
brain. KYN expression in patients with blood stasis cerebral 
infarction was significantly higher (96). Studies about L-KYN 
in rodent stroke models showed conflicting results, the rea-
son for which at present is unclear. l-kynurenine sulfate was 
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protective when issued prior to induction of cerebral ischemia 
(97). In post-ischemic treatment, l-kynurenine sulfate wors-
ened the histopathological outcome of a mouse stroke model. 
Deteriorated histopathological changes were observed in a 
focal ischemia/reperfusion model with distal middle cerebral 
artery occlusion treated with L-KYN, indicating that post-
ischemic treatment with L-KYN might be harmful (98). As an 
endogenous ligand that mediated AhR activation in the brain 
after occlusion of the middle cerebral artery, L-KYN inhibited 
the combination of cyclic adenosine monophosphate response 
element with protein-dependent signaling that leading to acute 
brain injury after stroke (99). The inhibition of kynurenine 
3-monooxygenase (KMO) activity reduced brain injury in 
experimental models of ischemic stroke. 3-hydroxyhydroan-
thranilic acid (3-HAA) and anthranilic acid (AA), downstream 
metabolites of KYN, were directly related to the volume of 
cerebral infarction. An synthetic KYNA analog, N-(2-N,N-
dimethylaminoethyl)-4-oxo-1H-quinoline-2-carboxamide  
hydrochloride exerted neuroprotective effects in animal cerebral 
ischemia models because of the NMDA antagonism effects.

KP in epilepsy
Epilepsy is a clinical syndrome that characterized by paroxysmal 
CNS dysfunction, caused by recurrently and suddenly abnormal 
discharge of brain neurons and manifested as paroxysmal motor 
sensory abnormalities, autonomic dysfunction, consciousness, 
and mental state changes.

Neuroactive metabolites of KP with amino acid structures 
played an important role in epileptic pathophysiology. The inci-
dence of epilepsy was associated with decreased levels of KYN 
and KYNA in brains of the patients and increased production 
of KYNA relieved the symptoms of drug-related epilepsy. The 
changes of KP enzyme activity which resulted in the imbal-
ance between glutamic acid (GLU)/gamma-aminobutyric acid 
(GABA) in epileptic foci were involved in the pathogenesis of 
epilepsy (100).

Intravenous injection of QUIN or its direct injection into 
specific parts of the experimental animal brain could lead to 
epilepsy-like seizures in rats. Researches confirmed that particu-
lar anatomical site of the hippocampus was sensitive to QUIN 
excitotoxicity (101). In gliocytes proliferating in epileptic foci, the 
levels of QUIN synthetase, 3-hydroxyanthranilate oxidase, were 
relatively increased; the activity of quinolinate phosphoribosyl-
transferase (QPRTase), a QUIN degrading enzyme, decreased. PIC 
enhanced epilepsy activity and was essential for the pathogenesis 
of drug-resistant epilepsy (102). As naturally occurring vesicular 
glutamate transporters (VGLUTs) inhibitors, Kynurenine and 
xanthurenic acid inhibited the uptake of glutamate by presynap-
tic membrane into vesicles, thereby affecting synaptic function. 
VGLUTs dysfunction was involved in many neuropsychiatric 
disorders such as epilepsy and schizophrenia (103). KP metabo-
lism of Trp provided a reasonable explanation for the correlation 
between epilepsy and depression. Neurobiochemistry and behav-
ioral studies found that minocycline, an IDO inhibitor, could 
promote antiepileptic effects of valproate in a dose-dependent 
manner, and improve depression associated with epilepsy (104), 
Quercetin combined with levetiracetam had a similar effect (105).

KP in Alzheimer’s Disease (AD)
Alzheimer’s disease is one of the most prevalent progressive 
neurodegenerative diseases, the most common type of dementia 
with insidious onset mainly affecting the elderly (106). The 
characteristic clinical manifestations include the deterioration 
of memory function, progressive decline in daily living capacity, 
various neuropsychiatric symptoms and behavioral disorders. 
Extracellular amyloid-β accumulation and intracellular tau 
deposition are the significant features of the pathomechanism 
related to AD (107).

Neuroendocrine disorders served as one of the pathogenesis of 
AD (108). Glutamate excitotoxicity, neuroinflammation, cerebro-
vascular dysfunctions, and mitochondrial metabolic disorders 
were also factors known to contribute to the neurodegenerative 
process (109). The enhanced IDO expression and increased KYN/
TRP ratio reflecting the activity of KP in tryptophan metabolism 
were observed in serum of AD patients, exhibiting an inverse 
correlation with the cognitive decline (110). Imbalances in the 
KP had been observed in many disorders with cognitive decline 
including AD, and influencing this delicate balance might be of 
therapeutic value (111).

Induced by upregulated generation of IDO mediated by 
interferon (IFN)-gamma and other proinflammatory cytokines, 
the production of various neurotoxic substances of KP involved 
in the pathogenesis of AD were increased (112, 113). QUIN was 
particularly associated with the pathogenesis of AD (59). Studies 
confirmed that QUIN immunoreactivity in cerebral hippocam-
pus of AD patients was related to disease progression. Increased 
levels of QUIN were observed in both the cerebrospinal fluid 
(CSF) and serum of AD patients, causing significant neuronal 
damage either by direct activation of NMDA receptors or the 
release of endogenous glutamate (114). QUIN promoted the 
expression of IDO in small keratinocytes and astrocytes, which in 
turn affected KP. In brains of AD patients, QUIN accelerated cell 
damage by oxidative stress, aggravated the pathological changes 
as an inducer of β-amyloid peptide and promoted the release of 
extracellular glutamate which could directly cause neurotoxicity. 
QUIN was not only co-localized with hyperphosphorylated tau 
in the AD cortex, but also capable of inducing tau phosphoryla-
tion in primary neurone cultures (115). KYN-NAD was involved 
in AD since Aβ 1-42, a cleavage product of amyloid precursor 
protein, induced the production of QUIN with neurotoxic con-
centrations from macrophages and microglia (116).

Kynurenic acid levels were altered in the brain and CSF of 
AD patients with its significance differently described in various 
research conclusions (117). In brains of pathologically confirmed 
AD patients, decreased levels of L-KYN, 3-OH-KYN, and 
elevated activity of KYNA and kynurenine aminotransferase-I 
(KAT-I) had been detected in the striatum and caudate nucleus 
(118). Kling et al. showed that KYNA had a positive impact on 
AD by promoting the activity and gene expression of enkephali-
naseand and facilitating Aβ degradation (119). KYNA exerted its 
neuroprotective effects by promoting amyloid degradation and 
increasing the neuronal cell survival through induction of the 
gene expression of neprilysin (120). Other mechanisms involved 
in the neuroprotective effects of KYNA and its derivatives 
included preferentially inhibiting of extrasynaptic NMDA and 
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α7 nicotinic acetylcholine receptors while sparing the synaptic 
NMDA-mediated currents (121).

The level of 3-hydroxy-kynurenine (3-HK), a downstream 
metabolite of tryptophan in KP, increased in the brain and serum 
of AD patients (122). Through increasing β-amyloid protein 
accumulation, glial activation, oxidative stress and positive 
feedback regulation mechanism in KP, 3-HK exacerbated the 
neurodegenerative lesions of AD. 3-HK inhibited the activity of 
mitochondrial respiratory chain enzyme complex I, II, III, result-
ing in energy metabolism disorder in neurons and subsequent 
nerve tissue injuries.

Studies indicated that blocking KYN pathway could protect 
mouse models of AD. The application of KP enzyme inhibitors 
or its metabolite analogs had been shown to be effective in the 
treatment of AD in preclinical studies. The extracts of rhizoma 
coptidis demonstrated therapeutic effects on AD through inhibit-
ing the activity of microglia and astrocytes and the expression 
of IDO, blocking the loss of neurons and reducing the forma-
tion of amyloid plaques in AβPP/PSI transgenic mice (123). 
Administered together with a transport inhibitor of KYNA known 
as probenecid, L-KYN prevented the morphological alteration 
and cellular damage caused by soluble Aβ which further resulted 
in a significant improvement of the spatial memory (124).

KP in Multiple Sclerosis
Multiple sclerosis (MS) is a demyelinating disease of the CNS, 
which is also regarded as a neurodegenerative disease trig-
gered by inflammation. Multiple demyelinating plaques in the 
CNS white matter are the pathological characteristics of MS. 
Demyelination may partially or wholly involve the white matter 
of the lateral ventricles, optic nerve, spinal cord, cerebellum, and 
the brain stem, among which, periventricular lesions are espe-
cially typical. Demyelination founded in the cerebral cortex of MS 
patients might be the cause of cognitive impairment (125). The 
pathogeny of MS has not been elucidated. The particular effects 
of various KP metabolites on nervous system (126), imbalance 
between neuroprotective and neurotoxic intermediates of KP and 
immunomodulatory effects mediated by IDO were all involved 
in the pathogenesis of MS (127). Recent studies suggest that 
abnormalities in the KP may be associated with the switch from 
early mild stage MS to debilitating progressive forms of MS and 
that analysis of KP metabolites in MS patient serum may have 
application as MS disease biomarkers (128).

Associated with disease condition, there was activation of the 
KP in MS. Decreased levels of Trp in serum and CSF of MS patients 
suggested an increase in KP activity, the increased serum L-KYN 
levels in MS patients treated with IFN-β were associated with 
disease remission (129). KYNA is the only known endogenous 
ionotropic glutamate receptor antagonist that inhibits presyn-
aptic α7 nicotinic acetylcholine receptors, regulates presynaptic 
glutamate release. Changed with patient’s condition, the fluctua-
tion of KYNA levels in CSF demonstrated the probable neuro-
protective effects on MS. QUIN was a potent agonist of NMDA 
receptors that could promote the onset of MS through inducing 
glutamate excitotoxicity, lipid peroxidation, and oxidative stress 
injury (130). Elevated levels of QUIN in the spinal cord of EAE 
rats were associated with an acute disease course (131). Multiple 

studies had consistently found structural changes in a variety of 
cellular proteins associated with QUIN that leading to the death 
of oligodendrocytes, neurons, and astrocytes. The QUIN/KYNA 
ratio has strong correlation with the disability and severity of MS 
patients (128). 3-HK, another potential neurotoxin, was found 
to be significantly higher in the serum of MS patients (128). 
QUIN and 3-HAA analogs selectively leaded to the apoptosis of 
Th1 cells, thereby further inducing immune tolerance. Increased 
levels of 3-HK in the spinal cord of EAE rats distinctly raised the 
production of free radicals.

Indoleamine 2,3-dioxygenase gene expression and activ-
ity were predictive of relapse in MS patients, indicating that 
KP orchestrated self-protective mechanisms that inhibited 
antigen-specific immune responses in the CNS (132). Studies 
confirmed that immunoregulatory effects of IDO were involved 
in the pathogenesis of EAE. Enhanced inflammatory responses 
of Th1/Th17 exacerbated EAE in IDO-deficient mice (22). IDO 
activation increased the level of KYNA, thereby inhibiting the 
proliferation of reactive T  lymphocytes. The administration of 
1-methyl-tryptophan (1-MT), a specific IDO inhibitor, deterio-
rated the condition of EAE (133).

Immunomodulatory effects mediated by KP and IDO were 
crucial to the pathogenesis and treatment of MS (134). Inhibitors 
of KP enzymes, NMDA antagonist KYNA, and its pharmaco-
logical derivatives provided new options for MS treatment (135). 
Enzymes and metabolites related to KP had become potential 
therapeutic targets for MS (16), such as endogenous tryptophan 
metabolites and their structural analogs (cinnabarinic acid, 
tranilast), IDO inhibitors (1-MT and berberine). The admin-
istration of 3HAA, a downstream KP metabolite, reduced EAE 
severity through increasing the proportion of Tregs and inhibit-
ing Th1/Th17 response. Tranilast was an oral active synthetic Trp 
metabolite that inhibited myelin-specific T cell proliferation and 
the release of proinflammatory cytokines from Th1 cells, relieved 
inflammatory responses, modulated immunosuppressive effects, 
thereby reducing disease relapse frequency and the disease sever-
ity during relapse. Sundaram et al. (136) found that IDO inhibi-
tors significantly reduced the levels of QUIN in cultured cells and 
eliminated oligodendrocyte apoptosis. As an endogenous Trp 
metabolite, cinnabarinic acid was a partial agonist of metabo-
tropic glutamate receptor 4 (mGluR4), which has a protective 
effect on EAE. Treated mGlu4-deficient mice with cinnabarinic 
acid caused a turning of immune response to Tregs (137).

KP in vascular Cognitive impairment (vCi)
Vascular cognitive impairment is defined as a syndrome with 
evidence of clinical stroke or subclinical vascular brain injury 
and cognitive impairment affecting at least one cognitive domain, 
including attention, memory, language, visuospatial skills, and 
abstract reasoning (138, 139). Microvascular inflammation, cere-
brovascular dysfunction, and neurodegeneration were all involved 
in the development of VCI as pathogenic mechanisms (2, 140).

Previous studies described an IFN-γ-IDO-KYN and inducible 
nitric oxide synthase (iNOS) pathway through which micro-
vascular immune inflammation resulted in VCI. The impact of 
chronic inflammation on VCI was mediated by the unique ability 
of IFN-γ to transcriptionally induce the rate-limiting enzymes of 
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tryptophan–kynurenine metabolic pathways with the synergistic 
action of tumor necrosis factor-α (TNF-α) (141). Triggered by 
upregulated production of IFN-γ in periphery (macrophages) 
and brain (glia), a merger of tryptophan–KP into inflammation 
cascade involved in VCI (142). IFN-γ-induced upregulation of 
IDO increased the levels of certain metabolites of KYN associ-
ated with cognitive impairment. The significantly increased 
levels of iNOS in CSF of patients with vascular dementia (VD) 
were involved in VCI by mediating excitatory neurotransmission 
and affecting synaptic plasticity. Under pathological conditions, 
excessive release of NO induced by positive feedback loop in 
inflammation that mediated by IDO leaded to neuronal oxidative 
stress injury which affected the learning and memory function 
of brain (16).

Indoleamine 2,3-dioxygenase and KYN metabolites increased 
markedly with deterioration of cognitive impairment accompa-
nied with immune activation and nerve injury (8). The long-term 
activation of the KP resulted in an imbalance in critical neuroactive 
compounds involving the reduction of tryptophan and increase 
of tryptophan metabolites, which had definite implications in 
cognitive impairment (143). KP metabolites, some kynurenines 
(e.g., quinolinic and PICs) had also been implicated in VCI (55). 
Changes of kynurenine metabolites had also been suggested to 
correlate with the post-stroke cognitive impairment. Activation 
of IDO and increased production of kynurenine metabolites had 
been observed in post-stroke cognitive impairment patients. One 
study demonstrated an association between elevated kynurenine/
tryptophan (K/T) ratios and the extent of cognitive impairment 
in patients with acute ischemic stroke, and what is more, the K/T 
ratio was described as an important biomarker of VCI (144). 
Kynurenine was also identified as candidate diagnostic biomarker 
for VCI in a metabolomics study, which provided a novel strategy 
for stratifying stroke patients with cognitive impairment using 
serum-based metabolite markers and might be of great importance 
in further investigating the pathological mechanisms of VCI (145).

VCI was also identified as age-associated neuroendocrine 
disorders. The transcriptional induction and activation of IDO 
shifted tryptophan metabolism from serotonin synthesis to for-
mation of “kynurenines,” which might contribute to development 
of VCI via their apoptotic, neurotoxic, pro-oxidative effects, and 
the upregulation of iNOS, phospholipase A2, arachidonic acid, 
prostaglandin, 5-lipoxygenase, and leukotriene cascade (146).

KP in Depression
Depression is commonly characterized by anhedonia (loss of 
interest or pleasure) for 2 weeks or longer and the presence of 
at least four of the following persistent symptoms: weight loss or 
gain, sleep disturbances, psychomotor agitation or retardation, 
fatigue, worthlessness or inappropriate guilt, diminished con-
centration, or indecisiveness (147). As one of the most common 
mental disorders and social issues worldwide, depression causes a 
low quality of life or even suicide for many people (148). However, 
the underlying mechanisms of depression remain elusive and the 
effectiveness of the currently used antidepressants is still far from 
satisfactory (149).

The hypothesis of cytokine-induced sickness behavior, which 
was recognized within a few years of the cloning and expression 

of interferon-alpha, IL-1 and IL-2, may provide some meaning-
ful references. The proinflammatory cytokines activated in the 
brain can induce common symptoms of sickness, such as loss of 
appetite, sleepiness, withdrawal from normal social activities, and 
fatigue. These cytokine actions may offer some of the first clues 
about the pathophysiology of certain mental health disorders, 
including depression.

Tryptophan degradation and its role in the availability of 
serotonin and the setting of inflammation had brought atten-
tion to the KP for potential mechanism and treatment studies 
of depression (150). Kynurenine metabolism was hypothesized 
to be a key mechanism that linked inflammation and depres-
sion. Increased inflammation and toxic KP activation, including 
excitotoxicity mediated by NMDA receptor, as well as decreased 
5-HT levels were associated with pathophysiology of depression 
(151, 152). Bay-Richter et al. (153) revealed that levels of QUIN 
increased and KYNA decreased over time in suicidal depression 
patients versus healthy controls (153). The activation of KP as a 
marker of inflammation presented in a subgroup of individuals 
with major depressive disorder (MDD). The abnormalities in the 
concentrations of KP metabolites (KYNA and QUIN) were asso-
ciated with reduced volume of striatum, which played the central 
role of in motivated behavior, reward processing, and anhedonia. 
The KYN/TRP ratio was inversely associated with striatal vol-
umes in the MDD sample (154). Research revealed that relative 
neurotoxic shift in the balance of kynurenine metabolites with 
reduced KYNA/quinolinic acid (QA) was associated with sleep 
disturbance in the currently depressed patients. It was considered 
that altered kynurenine metabolism might also molecularly link 
sleep disturbance and depression (155).

Depression is predominately female disease but with unclear 
reason. With different disease forms such as premenstrual 
depression, postnatal depression, and perimenopausal depres-
sion, depression is obviously related to hormonal fluctuations. 
The successful treatment of certain common types of depression 
by estrogens provided further evidence. Meier et al. found that a 
reduction in KynA concentrations in women might constitute a 
vulnerability factor that partly explained the higher incidence of 
depression in females. Furthermore, the significant association 
between oral contraceptive (OC) use and reduced KynA could 
conceivably partially account for the epidemiological association 
between OC use and depression in females (156). Characterized 
by low tryptophan levels, increased breakdown toward kynure-
nine and a downstream shift toward the 3-OH-KYN arm, women 
in the first 2 months of the physiological postpartum period were 
at very high risk for the first onset of acute and severe depres-
sion (157). de Bie et  al. found that progesterone attenuated 
interferon-γ-induced KP activity in macrophages with increased 
of neuroprotective KYNA levels and reduced the inflammatory 
marker neopterin, which could partly explain how hormones 
were involved in the pathogenesis of depression (158).

Patients with various chronic diseases of different systems might 
suffer from depression. Depression occurred more frequently in 
patients after stroke than in the general population (159), with 
a varied incidence from 18 to 61%. Several studies reported an 
increase activation of both tryptophan-2, 3-Dioxygenase (TDO)/
IDO and also kynurenine aminotransferases, which leaded to an 
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augmentation of 3-HK, QUIN, L-Kyn, and KYNA production, 
which finally induced ROS generation and alterations in gluta-
matergic neurotransmission in stroke patients (160). A reduction 
in 5-HT production and an increased KP catabolism was clearly 
observed in poststroke depression. Neuropsychiatric symptoms 
are among the earliest manifestations of SLE. Depression-like 
behavior was evident in the murine model of lupus. Increased 
levels of KP metabolites (kynurenine, 3-hydroxy-kynurenine, 
3-hydroxynthranilic acid, and QUIN) in cortex and hippocam-
pus of these murine models suggested that activation of the 
KP might among the potential pathophysiological mechanisms 
responsible for neuropsychiatric symptoms of SLE (NP-SLE) 
(161). Positive correlations were drawn between KYN, QUIN, 
KYNA, and specific pro-inflammatory immunological variables 
in the CSF, and depressive symptoms in patients with hepatitis 
on IFN-α treatment. In addition, a significant relationship was 
found between depression developed in patients with chronic 
viral hepatitis after IFN therapy and especially the type of IFN-α 
(162). With significantly higher kynurenine levels and KYN/TRP 
ratios post-chemotherapy, many women with breast cancer expe-
rienced more severe depression after chemotherapy treatment 
(163). Chronic inflammation was the likely common instigator 
between cardiovascular pathology and depression. Certain pro-
inflammatory substances released by macrophages and microglia 
upregulated the rate-limiting enzymes in the KP, resulted in the 
formation of neurotoxic metabolites. Inflammation was closely 
associated with endothelial dysfunction in cardiovascular dis-
ease, a preamble to atherosclerosis and atherothrombosis, which 
had also been detected in depression (164).

KP in Parkinson’s Disease (PD)
Parkinson’s disease is a chronic progressive neurodegenerative 
disorder characterized by loss of dopaminergic neurons in the 
midbrain and presence of localized neuroinflammation and pro-
tein inclusions called Lewy bodies in the midbrain several years 
before the actual onset of symptoms (165, 166). PD is normally 
identified by motor symptoms (bradykinesia, rigidity, resting 
tremor, and gait disturbances), which are believed to be largely 
related to the loss of nigral dopamine neurons. Moreover, patients 
also frequently exhibit a range of non-motor disturbances includ-
ing constipation, hyposmia, depression, and cognitive decline 
(167), being more debilitating than motor signs and worsening 
with disease progression (168).

The detailed pathogenesis of PD is unclear, but several 
mechanisms have been proposed including neuroinflammation, 
glutamatergic neurotoxicity, the dysregulation of the KP and 
alterations in serotoninergic and melatoninergic pathways (35). 
The KP of TRP catabolism is implicated in the inflammatory and 
neurotoxic events in Parkinsonism. Studies demonstrated that 
increased TRP catabolism positively correlated to the increases 
of inflammatory markers (IL-6, CRP, and MCP-1) in both the 
periphery and CSF of PD patients, which were associated with 
non-motor symptoms of PD such as fatigue, depression and cogni-
tive impairment (169). Lewitt et al. assayed CSF of pathologically 
verified PD subjects using ultra-high-performance liquid and 
gas chromatography linked to mass spectrometry. The results 
showed that the mean 3-HK-KYN concentration was increased 

and the mean oxidized glutathione was decreased, providing 
direct support for the involvement of the KP and excitotoxicity 
in development of PD (170).

Several neuroactive compounds are produced through the 
KP, among which KYNA and QUIN are intensively studied in 
PD. KYNA possessed antioxidant properties and was a non-
competitive antagonist of a7-nicotinic acetylcholine receptors 
at physiological levels regulating the levels of acetylcholine, 
dopamine, and glutamate in the CNS (171). QUIN could activate 
the NMDA receptor-signaling pathway leading to excitotoxicity 
and amplify the inflammatory response (164).

The increase in KYNA not only modulated glutamate release 
from cortical areas to striatum but also directly acted on the 
NMDA receptors as antagonist, thereby limiting glutamate exci-
totoxicity. Ogawa et al. reported for the first time that TRP/KYN 
and KYNA/TRP ratios were significantly increased in the frontal 
cortex, putamen of PD patients (172). There were also increased 
Kynurenine/Tryptophan (K/T) ratios in both serum and CSF of 
PD patients compared to controls (173, 174). By driving tryp-
tophan down the KP, alterations in gut microbiota were widely 
accepted as relevant to the etiology, course, and treatment of many 
neuropsychiatric disorders, including PD (175). Investigators 
observed altered levels of kynurenine metabolites in PD patients 
with L-3, 4-Dihydroxyphenylalanine (L-DOPA)-induced dyski-
nesia. There were obvious increases of the 3-HK-MYN/KYNA 
ratio and 5-hydroxytryptophan (5-HTP) levels, but decrease of 
anthranilic acid levels in plasma and CSF of this patient group. 
Through affecting the KP of tryptophan metabolism, L-DOPA 
might play a role in the development of L-DOPA-induced dyski-
nesia as the most effective drug in the symptomatic treatment of 
Parkinson’s disease (176).

QUIN, a metabolite of the KP of tryptophan catabolism, plays 
a role in the oxidative stress associated with many neurological 
disorders including Parkinson’s disease. Intrastriatal administra-
tion of QUIN in rats was reported to be able to induce significant 
behavioral changes including involuntary movements (177). 
Through activating NMDA receptor, endogenous QUIN released 
by microglia played a crucial role in mediating the progressive loss 
of dopaminergic neurons in PD (178). Recent researches indicated 
that QUIN was directly involved in mood and behavioral changes 
in PD patients (179). The deficits in spatial reference memory had 
also been observed in rats following the development of QUIN 
lesions, suggesting that QUIN could induce cognitive deficits in 
PD patients. Apart from its excitotoxic effects, QUIN could also 
enhance lipid peroxidation in an iron (II) dependent manner (180).

The abnormalities of enzyme activity of KP are observed in 
PD. Diminished immunoreactivity of KAT-I, the KP enzyme, 
which leaded to KYNA formation in the pars compacta of the 
substania nigra, was found in mouse models of PD (181). The 
enzyme aminocarboxymuconate-semialdehyde-decarboxylase 
(ACMSD) located at a key branch-point of the KP, limited the 
production of the neurotoxin QUIN with inflammatory proper-
ties. The missense mutation in the ACMSD gene predicted to 
disrupt enzyme function in typical PD individual, suggesting that 
this enzyme might influence PD pathogenesis (167). Vilas et al. 
reported a novel ACMSD mutation resulting in the change of 
p.Glu298Lys amino-acid in a sporadic PD patient, which was not 
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present in neurologically normal population, suggesting that not 
only common genetic variability but also rare variants in ACMSD 
alone might increase the risk of PD (182).

Using PD animal models, the modulation of the KP by enhanc-
ing endogenous KYNA and/or decreasing QUIN production was 
demonstrated to be a potential therapeutic strategy for PD (183). 
Administration of KYNA directly into the globus pallidus internus 
of parkinsonian non-primate protected against 1-methyl-4-phe-
nyl-1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP)-induced 
toxicity. In addition, systemic administration of exogenous KYNA 
showed very limited therapeutic efficacy because KYNA had poor 
permeability across the BBB and a very short biological half-life. 
KYNA injection into the brain could protect dopaminergic neu-
rons against QUIN or NMDA-mediated excitotoxicity. Silva-Adaya 
et  al. reported that L-kynurenine (L-KYN) pretreatment had a 
protective effect on locomotor asymmetry, striatal reactive gliosis, 
and neurodegeneration, and changes of dopamine levels in rodent 
PD models (184). Further study demonstrated that synthetic 
kynurenine analogs had neuroprotective effects on mice model of 
PD (185). Silva-Adaya et al. showed that co-administration of the 
main KYNA precursor, L-KYN and an inhibitor of organic anion 
transporter could increase KYNA and result in the reversal of glu-
tamate-induced excitotoxicity in 6-hydroxydopamine (6-OHDA)-
induced PD rats (184). Analogs of L-KYN and KYNA with long 
half-life such as 4-Cl-L-KYN, 7- Cl-KYNA and more recently 
2-(2-N, N-dimethylaminoethylamine- 1-carboyl)-1H-quinolin-
4-one hydrochloride had been designed to enhance their stability 
and pharmacological therapeutic properties (186–188). Several 
preclinical studies showed that activation of group II- metabo-
tropic glutamate receptor (mGluR) and group III-mGluR were 
potentially important drug targets to provide both symptom relief 
and neuroprotection in PD implying that, apart from KYNA, 
these two KP metabolites might have therapeutic importance in 
PD (189). When administered intraventricularly with systemic 
L-KYN, kynureninase inhibitors elevated KYNA levels in brain 
and showed protective effects against QUIN-induced toxicity in 
PD rats. Recent work had highlighted the therapeutic potential of 
inhibiting two critical regulatory enzymes in KP, KMO, and TDO. 
In fly models of Parkinson’s disease, Breda et al. provided genetic 
evidence that inhibition of TDO or KMO improved locomotor 
performance and ameliorated shortened life span (190). Parasram 

revealed that phenolic compounds, a class of phytochemicals, 
including flavonoids and diarylheptanoids, had been shown to 
reduce striatal lesion size, reduce inflammation, and prevent lipid 
peroxidation caused by QUIN in PD and other oxidative stress 
related neurological disorders (191).

A growing body of evidence suggested that the KP and its 
metabolites of KP were involved in the pathogenesis of PD. 
Modification of altered KP represented important targets to 
prevent the progression of the underlying neurodegeneration in 
PD. Drugs targeting the KP are pivotal to further understanding 
of the therapeutic value of KP manipulation in patients with PD.

CONCLUSiON

Dysfunction of neuroimmunomodulation and destruction of 
immune homeostasis are the pathogenesis of various neurologi-
cal diseases in which a variety of immune molecules or reaction 
pathways were involved. With the determination of immu-
nomodulatory property of sCD83 and related mechanisms, an 
expanded neuroimmunomodulation axis, sCD83-IDO-KP, was 
formed, which had been proved to have important impacts 
on the development of various neurological diseases, includ-
ing ischemic stroke, epilepsy, AD, multiple sclerosis, PD, and 
depression. Further researches are still needed on doubts about 
the downstream effector molecules, other neuroactive effects 
of these cells and molecules besides immunoregulation and 
the specific processes of their interaction with immune effector 
cells. The answers to the above mysteries will also provide more 
new strategies for the prevention and treatment of neurological 
autoimmune diseases and other immune-related diseases.
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