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Therapeutic drug monitoring is considered to be an effective tool for the individualized use
of voriconazole. However, drug concentration measurement alone doesn’t take into
account the susceptibility of the infecting microorganisms to the drug. Linking
pharmacodynamic data with the pharmacokinetic profile of individuals is expected to
be an effective method to predict the probability of a certain therapeutic outcome. The
objective of this study was to individualize voriconazole regimens by integrating individual
pharmacokinetic parameters and pathogen susceptibility data through Monte Carlo
simulations The individual pharmacokinetic parameters of 35 hospitalized patients who
received voriconazole were calculated based on a validated population pharmacokinetic
model. The area under the concentration-time curve for free drug/minimal inhibitory
concentration (fAUCss/MIC) > 25 was selected as the pharmacokinetic/
pharmacodynamic (PK/PD) parameter predicting the efficacy of voriconazole. The
cumulative fraction of response (CFR) of the target value was assessed. To verify this
conclusion, a logistic regression analysis was used to explore the relationship between
actual clinical efficiency and the CFR value. For the 35 patients, the area under the free drug
concentration-time curve (fAUCss) was calculated to be 34.90 ± 21.67 mgh/L. According
to the dualistic logistic regression analysis, the minimal inhibitory concentration (MIC) value
of different kinds of fungi had a great influence on the effectiveness of clinical treatment. It
also showed that the actual clinical efficacy and the CFR value of fAUCss/MIC had a high
degree of consistency. The results suggest that it is feasible to individualize voriconazole
dosing and predict clinical outcomes through the integration of data on pharmacokinetics
and antifungal susceptibility.
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INTRODUCTION

Voriconazole is a broad-spectrum antifungal agent commonly
used to treat invasive aspergillosis and candidiasis infections
(Allegra et al., 2018; Ikeya et al., 2018). The most commonly
used dose for adults in our country is 4 mg/kg or 200 mg twice
daily (Chen et al., 2018). Because of the nonlinear
pharmacokinetic behavior of voriconazole, in clinical practice,
about 15–28% of patients failed to respond to treatment even if
administered in the same manner, and about 12.5% of patients
had severe adverse reactions (Taylor et al., 2003). Voriconazole
showed significant individual differences in the plasma
concentrations according to the recommended dosage
regimens (Wang et al., 2014). Based on the complex
pharmacokinetic behavior and the narrow therapeutic window
of voriconazole (Xu et al., 2016a), it is necessary to strengthen the
therapeutic drug monitoring (TDM) and individualized
medication management.

Therapeutic drug monitoring is considered to be an effective
tool for the individualized use of voriconazole (Dolton et al., 2012;
Huurneman et al., 2016; Perreault et al., 2018). However, relying
only on the information of Pharmacokinetics (PK) to guide
individual drug administration had great limitations, because it
doesn’t take into account the susceptibility of the infecting
microorganisms to the drug. Therefore, this study tried to
establish the optimal voriconazole dosage regimen both
considering the PK and pharmacodynamics (PD) factors (such
as the minimal inhibitory concentration (MIC) distribution) and
predicting the clinical outcomes.Monte Carlo simulation (MCS)
is a calculation method based on the “random number” (Schmidt
et al., 2008). It can simulate the real system according to the
appropriate model, and obtain information that would be difficult
to acquire through experimentation. The MCS is widely used for
PK/PD parameter evaluation and dosing regimen optimization. It
could predict the probability of target attainment (PTA) or the
cumulative fraction of response (CFR) for pathogen response to
different dosing regimens, which would be useful for the
determination or optimization of an effective clinical dosing
regimen (Li et al., 2016). In the present study, Monte Carlo
simulation was performed to determine the probability of
reaching a target AUCss/MIC ratio of voriconazole. The
dosing regimens were evaluated and determined by estimating
the CFR. It has been demonstrated that the area under the
concentration-time curve for free drugs (fAUC0→24h)/MIC >25
could be used as an indicator for the efficacy evaluation of
voriconazole (Andes et al., 2003; Liao et al., 2015).

In this study, the MCS was conducted to evaluate the dosing
strategies based on the target fAUC/MIC of voriconazole against
Aspergillus spp. and candida in patients of Peking University
Third Hospital who were treated with voriconazole. Previous
MCSs studies have typically used population pharmacokinetic
(PPK) parameters (e.g., popfAUC) to calculate and predict the
target value (Xu et al., 2016a; Box et al., 2018; Liu et al., 2019; Ren
et al., 2019), which might be appropriate for a region or certain
types of people. So far, however, there has been little discussion
about probability simulation of treatment outcome using
individual’s PK/PD parameters. This is the first study

achieving requisite PK/PD target by MCS using individual
pharmacokinetic parameters. The simulation results are
accurate, targeted and suitable for the formulation of
individualized drug regimen. By integrating of data on
pharmacokinetics and antifungal susceptibility, this approach
can guide clinicians in selecting appropriate antibiotic regimens.

MATERIALS AND METHODS

Research Objects and Data Sources
Patients receiving intravenous or oral voriconazole for the
prevention or treatment of invasive fungal infection during
hospitalization in hematology department from 2018 to 2020
were enrolled in the study. The exclusion criteria were as follows:
1) age < 18 years, 2) pregnancy, 3) patients with abnormal liver
and kidney function. The patient’s laboratory examination data
and CYP2C19 genotyping were obtained from our electronic
medical record system of Peking University Third Hospital.
Demographic data, administration of voriconazole, invasive
fungal infections (IFIs), clinical outcomes, were also recorded.

Blood Sampling and Analytical Assay
The Ctrough blood samples (30 min predose) were collected after
steady-state from each patient. The concentration of voriconazole
in plasma samples was determined by a sensitive and specific
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
method validated previously in our laboratory (Zhang et al.,
2020). Calibration standard responses were linear over the
range of 50–10,000 ng/mL. A lower limit of quantification was
50 ng/ml, and the intra-run and inter-run precisions were both
within 4.4%.

Pharmacokinetics
Numerous population pharmacokinetic studies on voriconazole
have been conducted recently.(Shi et al., 2019). Voriconazole is
extensively metabolized by and is also an inhibitor of the
cytochrome P450 (CYP) isozymes (Friberg et al., 2012), and
the polymorphism of CYP2C19 is one of the factor for the
pharmacokinetic changes. By screening the published
population pharmacokinetic studies of voriconazole, four
candidate literatures were included (Hope, 2011; Liu and
Mould, 2014; Wang et al., 2014; Lin et al., 2018), and finally
the model suitable for Chinese patients and considering
CYP2C19 polymorphism was selected for the calculation of
personalized pharmacokinetic parameters in this study (Wang
et al., 2014). The PPK model could be described as follows: CL �
6.95×[1–0.012×(AGE-61)]×(1–0.37×PM)×[1–0.0016×(ALP-
104)]×eƞ1, V � 200×[1 + 0.0098×(AGE-61)]×eƞ2, Ka � 1.1.
Where, ƞ is the relationship between the individual and the
population typical value, which is normally distributed with
mean 0 and variance ω2. In the literature, ωcL � 0.287, ωV �
0.254 (Wang et al., 2014).

Model performance was evaluated by creating goodness-of-fit
(GOF) plots, including individual predictions (IPRED) and
population predictions (PRED) versus the observed values and
plots for conditional weighted residuals (CWRES) versus PRED,
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and CWRES versus time after dose. Meanwhile, the visual
predictive check (VPC) method was also used for external
validation of the model. For the VPC, the data set was
simulated 1,000 times using the population Pharmacokinetic
model parameters (Zhao et al., 2013). The simulated
concentrations (5th, 50th and 95th percentiles) and the
corresponding observed concentrations were described
against time.

Calculation of Individual Pharmacokinetic
Parameters of Patients
The population pharmacokinetic model was carried out in the
pharmacokinetic software NONMEM (version 7.2.2, ICON
Development Solutions, Ellicott City, MD, United States ), the
PK parameters (clearance, CL) of 35 patients were estimated
using the population pharmacokinetic model and bayesian
estimate. The protein binding of voriconazole was set as 58%
(Bellmann and Smuszkiewicz, 2017) for the calculation of fAUC
values. The fAUCss of voriconazole in patients was calculated
using the formula (fAUCss � F ×DOSE × f/CL). Where, DOSE is
daily DOSE (mg/d); F is bioavailability, in this study, F value was
set to 1, f was set to 0.58 (Liu et al., 2019), and CL is the clearance.

The MIC Distribution of Voriconazole to
Aspergillus Fumigatus and Candida
TheMIC distribution of voriconazole to aspergillus fumigatuswas
obtained from literature (Luo et al., 2017).The MIC distribution
of candida was obtained from the clinical laboratory department
of our hospital, which was shown in Table 1. The percentage of
MIC distributions was used for each simulation to calculate the
cumulative fraction of response (CFR).

The Monte Carlo Simulation
The area under the concentration–time curve and the MIC
(fAUCss/MIC) was chosen as the PK/PD index for
voriconazole therapeutic effectiveness. The Oracle Crystal Ball®
(V.11.1.2.2) was used to performMonte Carlo simulation for each
patient with pharmacokinetic parameters and the MIC
distributions. The MCSs were iterated 5,000 times to estimate
the CFR for pharmacodynamic exposure (Lim et al., 2018)
(fAUss/MIC) using weighted summation, which was used to
support dose selection decisions. During simulations, MICs
followed a discrete distribution. The fAUC followed a
lognormal distribution. The variability came from the random
effect parameter of the applied PPKmodel. The CFR value > 90%
was considered optimal for a dosage regimen to reach a target of

fAUCss/MIC>25. The CFR value ≥ 90% was defined as predicted
clinically effective, while the CFR value < 90% was defined as
predicted clinically ineffective.

Statistic Methods and Determination of
Clinical Outcome
The relationship between predictive probability of clinical efficacy and
Ctrough, relationship between predicted CFR value and clinical efficacy
were analyzed by logistic regression implemented with SPSS software
(version17.0). The Odds Ratios (OR) were obtained using binary
logistic regression model. For treatment of invasive fungal infections
(IFI), a successful clinical outcomewas determined to be a complete or
partial response to the clinical signs and symptoms of invasive fungal
infection, or a serologic outcome and negative fungal culture results.
The clinical outcome of failure was 14 days after voriconazole
treatment, stable IFD (symptoms and signs of the disease, no
improvement in survival, stable radiosurgery, negative serology),
progressive IFD (worse symptoms and signs of the disease,
worsening radiosurgery), and even death. For IFI prevention, the
absence of breakthrough fungal infection was considered a successful
clinical outcome, otherwise was considered an outcome of failure.

RESULTS

Demographic Characteristics of Patients
and Voriconazole Plasma Concentration
Data
In total, 35 patients were incorporated in the study. Among them, 16
patients were treated with voriconazole for the invasive fungal
infections (IFI), and the remaining 19 were treated to prevent

TABLE 1 | The frequency distribution of MIC values of voriconazole against Aspergillus fumigatus and Candida albicans (%).

Microbial species Number
of isolated strains

MIC

0.015 0.03 0.06 0.125 0.25 0.5 1 2 4 8 16

aspergillus fumigatus 2,778 0 0.04 0.58 4.43 42.94 39.27 10.48 1.4 0.61 0.25 0
Candida 290 0 0 77.93 9.31 7.59 8.17 0 0 0 0 0

TABLE 2 | demographic parameters for 35 patients and voriconazole plasma
concentration data.

Parameter Value/mean ± SD (range)

Voriconazole Ctrough,ss (mg·L −1) 2.15 ± 1.74 (0.03–7.94)
Gender (male/female) 24/11
CYP2C19 phenotype EM:IM:PM 16:15:4
Patient age/years 47.80 ± 17.42 (19–91)
ALP/U·L −1 113.23 ± 53.56 (40–274)
Indication for therapy (n (%) of patients)
Antifungal prophylaxis 19 (54.29%)
Empirical therapy 16 (45.71%)

Ctrough,ss: the trough concentrations at steady-state. EM:extensive metabolize, IM:
intermediatemetabolizer, PM:poor metabolizer; For CYP2C19 *2 *3 *17 phenotyping, *2/
*2, *2/*3, *3/*3:PM; *1/*2, *1/*3, *2/*17,*3/*17:IM; *1/*1:EM; ALP: Alkaline phosphatase.
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infection. All of the 35 patients were treated with voriconazole orally.
The observed plasma concentration was from 0.03 to 7.94mg L−1.
Demographic and clinical data were listed in Table 2.

Population Pharmacokinetic Model
Suitability Evaluation
GOF plots were used to evaluate the fitness of the model
(Supplementary Figure S1). The IPRED agreed with the
dependent values (DV) well. The CWRES in the model were
uniformly distributed within the accepted range (y � ± 2).

The VPCs were based on 1,000 simulations on the retrospective
data for the PPK model (Supplementary Figure S2). The purple
shaded areas in this figure indicate the 90% confidence interval of the
5th and 95th of the simulated data, the pink shaded areas show the
90% confidence interval of the 50th of the simulated data. The
observed data and the simulated data have similar distribution
characteristics. The VPC plots associated with the selected model
indicated a good agreement between the observed and predicted data.

Individual Pharmacokinetic Parameters
The individual pharmacokinetic parameters of 35 patients were
estimated by the population pharmacokinetic model. CL � 9.16 ±
6.51 L/h, fAUCss � 34.90 ± 21.67 mgh/L.

Monte Carlo Simulation
Monte Carlo simulation was performed using a PK/PD target of
fAUCss/MIC>25. The CFR values distribution in the case of
existing empirical dosage regimen, for Aspergillus fumigatus
and Candida were displayed as a violin plot (Figure 1). It
shows a widely dispersed values of the CFR distribution for
Aspergillus fumigatus, while for the case of Candida, the CFR
values were concentrated between 82.4–98.9%.

Logistic Regression Analysis
The predicted clinical effectiveness for prevention and treatment
of aspergillus fumigatus and candida infection was calculated. The

logistic regression analysis showed a relationship between the
predicted clinical outcome and Ctrough, described as Eq. 1 and Eq.
2. (OR 14.99; 95% CI 2.4–93.2; p � 0.004 and OR 5.3E58; 95% CI
0-; p � 0.982, respectively).

Ln
P

p − 1
� −3.751 + 2.707Ctrough (1)

Where, p was the probability of predicted clinical effectiveness for
prevention and treatment of aspergillus fumigatus infection.

Ln
P

p − 1
� −20.462 + 135.21Ctrough (2)

Where, p was the probability of predicted clinical effectiveness for
prevention and treatment of candida infection.The correlation
between the probability of predicted clinical effectiveness and
Cthough, for prevention and treatment of aspergillus fumigatus and
candida infection using logistic regression analyses were shown in
Figures 2A,B.

As from Figure 2A, for prevention and treatment of aspergillus
fumigatus, when Ctrough > 2 mg/L, the probability of predicted
clinical effective was able to reach more than 85%, while in the
case of candida (Figure 2B), At very low Ctrough value, 99% of
probability of clinical effective can be obtained.

Among the 35 patients, 16 patients receiving voriconazole
were for the treatment of IFD, and the actual clinical effectiveness
was observed. The logistic regression analysis showed the
correlation between actual clinical outcomes and the CFR
value of fAUCss/MIC >25, the OR was 1.10 (95% CI 1.0–1.2;
p � 0.036).

Ln
P

p − 1
� −6.847 + 0.097CFR% (3)

Where, p was the probability of actual clinical effectiveness.
For Eq. 3, there was a strong correlation between CFR values

and actual clinical outcomes (p � 0.036), and the accuracy of
predicting the effective clinical treatment is 90.9%, and ineffective
clinical treatment is 60%. It can be seen from Figure 2C that when
CFR> is 90%, the probability of actual clinical effectiveness is also
close to 90%.

DISCUSSION

Therapeutic drug monitoring (TDM) of voriconazole
concentrations plays an important role in maximize efficacy
and to minimize adverse events(Miyakis et al., 2010).
However, during the treatment of deep fungal infection with
voriconazole, the efficacy of the drug was suboptimal in some
patients even though the plasma concentrations of voriconazole
appeared to be within the therapeutic window, implicating that
the plasma concentration alone is insufficient in decision making.
Therefore, it is very important to consider PK, PD
(microbiological parameters) in individualized medication. In
this research, a population pharmacokinetic model was used to
calculate the individual pharmacokinetic parameters of patients,
then MCSs is applied to forecast the probability of clinical

FIGURE 1 | The violin plot of CFR distribution for Aspergillus fumigatus
and Candida.
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efficacy. Based on therapeutic drug monitoring, considering the
pharmacokinetic characteristics of individual patients, and MIC
values for specific fungi to predict the likelihood of a treatment
result can improve the clinical effectiveness of voriconazole. The
importance and originality of this study are that it explores a new
application of Monte Carlo simulation in individualized drug
administration strategy.

The result of the dualistic logistic regression analysis showed
the relation between the predicted clinical effectiveness of
fAUCss/MIC and Ctrough for prevention and treatment of
aspergillus fumigatus and candida infection. For Eq. 1, the
95% Cl in Eq. 1 is relatively large. This might be related to
the small sample size. The statistical accuracy for predicting the
two outcomes was 92.3 and 95.5%, respectively (p < 0.05),
suggesting that Eq. 1 is appropriate to describe the
relationship between Ctrough and probability of predicted
clinical effectiveness in the case of aspergillus fumigatus
infection. For Eq. 2, the 95% CI could not be estimated. The
reason might well be that the number of predicted clinical failure
groups was too small (2 cases) to meet the statistical
requirements. Eq. 2 may be not appropriate for predicting the
probability of clinical outcome in the case of candida a infection
(p � 0.982) in this study. However, we can still see the overall
trend between Ctrough and the probability of the predicted
treatment effectiveness. It can be seen that the MIC value has
a great influence on the effectiveness of clinical treatment.

The relationship between the real clinical efficiency and
the CFR values of fAUCss/MIC>25 was also built based on the
logistic regression model in this study. The result showed that
there was a statistically significant and positive correlation
between the two variables. This result was a verification of the
proposed prediction methods in our study. The complete
chain of evidence for PK/PD studies from “drug
concentration - PK/PD target - clinical outcome” was
achieved. At the same time, we also tried to use Ctrough as
covariate for the observed clinical efficacy in logistic
regression. The result showed that the correlation between
Ctrough and actual clinical outcomes was not significant (p �

0.994). This result was also compatible with the point of view
that we could not predict clinical outcomes based on patient’s
Ctrough alone. Therefore, in the clinical treatment and
prevention with voriconazole, we should consider both
Ctrough and the CFR value of fAUCss/MIC>25. It’s worth
noting that when the Ctrough was between 0.5 and 2 μg/ml, we
recommend obtaining the accurate MIC for the patient, and
calculating the AUC/MIC value. If AUC/MIC<25, the dose
could be increased. If AUC/MIC≥25, the current dose is
maintained. In general, high blood drug concentrations are
associated with high CFR values. The situation of Ctrough

greater than 2 while CFR less than 90% are unlikely to occur.
It is suggested that the MIC value of voriconazole against

the fungus for each patient should better be detected at the
initial stage of treatment. If the MIC value for each person is
available, we can calculate the AUCss/MIC directly without
the process of Monte Carlo simulation. But in reality, that
might be difficult to realize. The proposed approach based on
CFR would help the dose guidance if MIC data for the
causative pathogen is not provided. In this study, the MIC
distribution of candida was narrow and the geometric mean
was small. Therefore, in the MCSs simulation, most of the
CFR values were above 90%, to reach the goal value of
fAUCss/MIC >25. Therefore, for the case with very small
MIC, the significance of MCSs simulation may be less than
the concentration monitoring results.

An accurate and predictive PK/PD model is an extremely
powerful tool to find the needed dose to meet efficacy breakpoints
(Schmidt et al., 2008). In Chen’s study, logistic regression model
showed a high correlation between voriconazole Cmin/MIC ratio
and clinical response (Chen et al., 2016). In Mangal’s research
(Mangal et al., 2018) both preclinical (fAUC24/MIC≥25) and
clinical (Ctrough/MIC >2) PK/PD index of efficacy yielded similar
probability of target attainment. In the existing studies based on
PK/PD models, the predicted dose of voriconazole against
aspergillus was different with that against Candida albicans
(Wang et al., 2014; Xu et al., 2016b; Chen et al., 2016; Mangal
et al., 2018).

FIGURE 2 | (A-B) the correlation between predict probability of clinical efficacy and Cthough, for prevention and treatment of aspergillus fumigatus and candida
infection using logistic regression analyses (n � 35). (C) The correlation between the actual clinical efficacy and CFR value of fAUCss/MIC using logistic regression
analyses (n � 16).
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There were a couple of limitations in this study: the sample size
was insufficient, and this may lead to no statistically significant
difference in the logistic regression analysis. Besides, the enrolled
patients were all from the department of hematology, which
might have introduced some bias in the result.

Taken together, this study has proposed a new PK/PD
approach that would further improve the antifungal
management. However, there might be situations that patients
develop serious side effects of voriconazole or their symptoms are
not improved despite having drug levels with the therapeutic
concentration range or achieving the optimal fAUC/MIC ratio. In
this regard, a further study is needed to explore the possibility of
integrating the PK/PD data with clinical indicators, which may
include the improvement of clinical signs and symptoms, or
occurrence of adverse reactions.

CONCLUSION

The individual PK/PD parameters and therapeutic drug
monitoring are equally important in the individualized
administration of voriconazole for patients. The results suggest
that it is feasible to individualize voriconazole dosing and predict
clinical outcomes through the integration of data on
pharmacokinetics and antifungal susceptibility.
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