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Synthetic lethality is thought to play an important role in anticancer therapies. Herein, to understand the
potential distributions and relationships between synthetic lethal interactions between genes, especially
for pairs deriving from different sources, we performed an integrative analysis of genes at multiple
molecular levels. Based on inter-species phylogenetic conservation of synthetic lethal interactions, gene
pairs from yeast and humans were analyzed; a total of 37,588 candidate gene pairs containing 7,816
genes were collected. Of these, 49.74% of genes had 2–10 interactions, 22.93% were involved in hallmarks
of cancer, and 21.61% were identified as core essential genes. Many genes were shown to have important
biological roles via functional enrichment analysis, and 65 were identified as potentially crucial in the
pathophysiology of cancer. Gene pairs with dysregulated expression patterns had higher prognostic val-
ues. Further screening based on mutation and expression levels showed that remaining gene pairs were
mainly derived from human predicted or validated pairs, while most predicted pairs from yeast were fil-
tered from analysis. Genes with synthetic lethality were further analyzed with their interactive
microRNAs (miRNAs) at the isomiR level which have been widely studied as negatively regulatory mole-
cules. The miRNA–mRNA interaction network revealed that many synthetic lethal genes contributed to
the cell cycle (seven of 12 genes), cancer pathways (five of 12 genes), oocyte meiosis, the p53 signaling
pathway, and hallmarks of cancer. Our study contributes to the understanding of synthetic lethal inter-
actions and promotes the application of genetic interactions in further cancer precision medicine.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Cancer is one of the leading causes of death worldwide but
many patients with metastatic cancers cannot be treated because
of drug resistance [1,2]. Recently, however, a type of genetic
interaction known as synthetic lethality that was first identified
in studies in fruit flies [3,4] and yeast [5,6] has emerged as a
promising anticancer strategy. A synthetic lethal interaction
between two paired genes indicates that perturbation of either
gene alone is viable, but that perturbation of both genes simulta-
neously causes the loss of viability [7] (Fig. 1A). The negative
genetic interaction, synthetic lethal interaction, or sick genetic
interaction may be used to identify new antibiotic or therapeutic
targets [8,9], and has become a potential strategy for clinical anti-
cancer therapies.
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Fig. 1. Synthetic lethal interaction and drug usage and analysis framework in this study. A. A model indicates relationship between synthetic lethal interaction and drug
usage, showing the potential role of synthetic lethal interaction in drug study. B. Data source and analysis framework of this study.
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In several human cancers, novel therapeutic strategies are
rapidly developing based on interactions of synthetic lethality via
the exploitation of loss-of-function mutations [10]. Mutant combi-
nations can be queried to screen and identify potential synthetic
lethal interactions, but limited synthetic lethal interactions with
higher confidence levels may hinder the possibility of developing
therapeutic targets. Compared with humans, largescale screening
of model organisms enables the straightforward surveillance of
multiple potential synthetic lethal interactions. This has been sys-
tematically studied and validated in yeast, and high conservations
of genetic interactions [11–16] have enabled the identification of
candidate gene pairs via phylogenetic conservation. Predictions
of cross-species genetic interactions may provide more references
for identifying potential cancer-relevant synthetic lethal interac-
tions, which would allow the specific targeting of cancer cells.
Although prediction by validated synthetic lethal interactions in
model organisms may provide more data references for cancer
treatment, it is nevertheless important to understand the potential
features of these predicted gene pairs, especially those identified
via integrative analysis.

In this study, to determine potential correlations between pre-
dicted gene pairs from yeast and humans, we performed a system-
atic pan-cancer analysis at multiple molecular levels based on
collected synthetic lethal interactions. These mainly included pre-
dicted gene pairs from yeast based on evolutionary conservation
and predicted or verified gene pairs from humans. The potential
relationships of candidate gene pairs were surveyed at the muta-
tion and expression levels across a diverse range of cancer types.
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Additionally, in-depth analyses of screened gene pairs were per-
formed, including the identification of potential therapeutic values
for further cancer treatment and potential interactions with nega-
tive regulatory microRNAs (miRNAs). Several studies have shown
the existence of multiple isomiRs in miRNA [17–20], which are
heterogenous with respect to sequence, length, and expression.
We therefore mainly investigated miRNA–mRNA interactions at
the isomiR level. Our integrated analysis provides an understand-
ing of the relationships of paired genes with synthetic lethal inter-
actions, which will facilitate the identification of mechanistic
complexities with potential applications in anticancer therapies.

2. Materials and methods

2.1. Data resources

Candidate synthetic lethality interactions were first collected
according to predicted gene pairs from experimentally validated
pairs in yeast [21] using InParanoid 6 [22] based on evolutionary
conservation (http://inparanoid.sbc.su.se/cgi-bin/index.cgi)
(Fig. 1B). Genes were collected based on their phylogenetic conser-
vation, and were always ancient genes in the evolutionary process.
Because novel genes are also important in cancer pathophysiolog-
ical processes [23], we simultaneously collected human candidate
predicted or validated synthetic lethality interactions from the
SynLethDB database [24] (Figs. 1 and S1).

To perform multiple analyses of these collected candidate gene
pairs, we obtained mutation data, gene expression profiles, small
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RNA expression profiles, and relevant clinical data for a diverse
range of cancer types from The Cancer Genome Atlas (TCGA)
(https://tcga-data.nci.nih.gov/tcga/) using the ‘‘TCGAbiolinks”
package [25]. Involved gene pairs were queried for detailed drug
responses using the Genomics of Drug Sensitivity in Cancer data-
base (GDSC) [26] (|DF| > 0.10 and p < 0.05 were considered signif-
icant correlations).

2.2. Functional enrichment analysis and potential gene characteristics
in tumorigenesis

To understand potential biological functions of candidate gene
pairs, relevant genes were analyzed using The Database for Anno-
tation, Visualization and Integrated Discovery (DAVID) version 6.8
[27]. Further, z scores in DAVID were estimated using the following
formula based on expression patterns in breast invasive carcinoma
(BRCA), which was used as an example to understand expression
trends:

z score ¼ up� downð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

count
p

where up and down are the numbers of up-regulated and down-
regulated genes in BRCA, respectively, and count indicates the total
gene number.

These genes were also queried for their potential roles in cancer
physiology, based on the distribution of hallmarks of cancer [28]
(http://software.broadinstitute.org/gsea/msigdb/), genes in the
cancer gene census (CGC) [29] (http://cancer.sanger.ac.uk/census),
core essential genes (common genes from Hart et al. [30], Blomen
et al. [12], and Wang et al. [31]), oncogenes, tumor suppressor
genes [32], and actionable genes [33].

2.3. Survival analysis

To estimate the potential prognostic values of candidate gene
pairs, survival analysis was performed based on two groups (both
mutations (MM) and both wildtypes (WW) at the mutation level,
both abnormally expressed (AA) and both normally expressed
(NN) at the expression level) and three groups (MM, MW, WW;
AA, AN, NN) at mutation and expression levels, respectively. A
log-rank test was used to estimate the potential difference, and
p < 0.05 was considered statistically significant.

2.4. Screening related regulatory miRNAs for candidate genes

Most human genes are negatively regulated by miRNAs, which
play an important role in pathological processes and the occur-
rence and development of cancers [34,35]. Therefore, for candidate
gene pairs with synthetic lethal interactions, we further surveyed
related regulatory miRNAs for each relevant gene to understand
the interactions between different RNAs. First, based on screened
genes, related miRNAs were mainly obtained from starBase v2.0
[36], and these miRNA–mRNA pairs were considered potential can-
didate interactions between mRNAs and small non-coding RNAs
(ncRNAs). Then, miRNAs with adverse expression patterns were
further screened. The expression profiles of miRNAs were mainly
collected from the most dominantly expressed isomiR for each
miRNA locus to estimate the expression pattern of classical miR-
NAs based on that of multiple isomiRs.

2.5. Randomization test

To determine the significance of detected frequencies of prog-
nostic values of candidate gene pairs, a randomization test was
performed by randomly selecting other gene pairs (generated by
3245
CFinder [37]) with equal numbers. This analysis was repeated
1000 times (the significance was estimated based on the propor-
tion of times) to assess whether the observed average values were
higher than the actual average values.
2.6. Statistical analysis and network visualization

Abnormal expression profiles for mRNAs and miRNAs were
assessed using DESeq2 [38], and hypothesis testing in relevant
analysis was used to estimate the potential difference between
or among groups (such as a trend test). Potential interactions
between multiple genes were presented using Cytoscape 3.7.1
[39]. Venn distributions were analyzed using a publicly available
tool (http://bioinformatics.psb.ugent.be/webtools/Venn/), and all
statistical analyses were analyzed using R programming language
(version 3.6.1).
3. Results

3.1. Overview of collected gene pairs with synthetic lethality

According to validated gene pairs with synthetic lethality in
yeast (score � –0.35), we collected relevant genes to screen homol-
ogous human gene pairs using InParanoid 6 (Fig. 1B and S1A).
Involved gene were classified as essential or non-essential genes.
Pairs containing essential genes were common, although their
partners might not be essential genes (Fig. S1B). Additionally, the
detailed gene features might not be consistent with those in yeast.
Most gene pairs were scored between �0.35 and �0.80, and these
were considered candidate pairs to perform further analysis.

Simultaneously, to understand the potential correlations of the
predicted conserved gene pairs with humans, we also collected
human gene pairs with synthetic lethal interactions from the Syn-
LethDB database. Thus, a total of 37,588 candidate gene pairs con-
taining 7,816 genes were obtained (Tables S1 and S2). Of these,
only 1066 genes were found to be common between data from
yeast and the SynLethDB database (the top picture in Fig. S1C).
Compared with the specific genes collected from human gene pairs
(n = 5453), fewer genes (n = 1297) were collected from yeast. Most
of these genes showed abnormal expression patterns in cancers
(middle picture in Fig. S1C and D), implicating their potential roles
in tumorigenesis.
3.2. In-depth gene analysis showing potentially important biological
roles

Most genes involved in potential synthetic lethal interactions
were found to have 1–10 interactions (Fig. 2A and lower picture
in Fig. S1C). Specifically, 49.74% of genes were found with 2–10
interactions, and only 2.28% of genes had more than 51 interac-
tions (Fig. 2A). These direct or indirect interactions would likely
complicate synthetic lethal interactions and further gene–drug
interactions.

Genes with potential synthetic lethal interactions could be drug
targets for cancer treatment. To understand their biological roles,
we investigated their specific characteristics We found that
22.93% of these genes were involved in hallmarks of cancer, and
21.61% were identified as core essential genes (Fig. 2B and
Table S2). Many genes were shown to have multiple characteristics
(Fig. 2B). For example, both ABL1 and BCL2 genes were validated as
oncogenes, actionable genes, essential genes, genes in CGC, poten-
tial drug targets, and also contributed to hallmarks of cancer. This
provided evidence for their possible roles in cancer treatment, so
they were analyzed further.
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Fig. 2. In-depth analysis of involved genes in synthetic lethal interaction. A. Number distribution of interacted genes. The left pie distribution shows the total distributions of
interacted gene numbers, and the right histogram shows the detailed distributions of interacted numbers (2–50). B. Distribution of gene classifications for involved all genes,
and a pie distribution shows the detailed percentages of each gene type. C. The network of gene interactions. All of these involved genes have potential important roles in
tumorigenesis, and they are validated with at least four gene characteristics in Fig. 2B. The red circle shows up-regulated expression patterns in BRCA (BRCA as an example),
the blue circle shows down-regulated expression, and the grey circle shows normally expressed. D. Distribution of interacted numbers based on each gene, and the frequency
of interaction numbers is also presented. E. Significant enriched GO terms based on the screened 65 genes. BP, biological process; CC, cell component; MF, molecular function.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Gene interactions were shown to be quite complex based on an
analysis of 65 genes that had been validated with at least four
types of characteristics (Fig. 2C). Some genes were found to only
interact with one other gene (n = 17, 26.15%), but most had multi-
ple interactions that were quite complex (Fig. 2C and D). We only
present some of the interactions from the 65 screened genes, but
more widespread interactions exist within all collected genes
(Fig. S2A and B). Most relevant gene pairs (each containing one
or two screened genes) had three interactions (Fig. S2A), but some
genes including KRAS, HRAS, and NRAS had more than 1500 interac-
tions (Fig. S2B), implying their important role as hub genes. Indeed,
these three genes are known to have crucial biological roles in the
occurrence and development of cancers. Oncogenic KRAS drives an
immune suppressive program in colorectal cancer by repressing
interferon regulatory factor 2 expression [40], and may sensitize
lung adenocarcinoma to GSK-J4-induced metabolic and oxidative
stress [41]; moreover, KRAS-targeted anticancer strategies have
been documented [42]. Additionally, HRAS-driven cancer cells are
vulnerable to TRPML1 inhibition [43].

These 65 screened genes were also analyzed for their potential
biological roles to help understand their function in multiple bio-
logical pathways. We detected a series of significantly enriched
gene ontology (GO) terms and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (false discovery rate [FDR] < 0.05)
(Fig. 2E and Fig. S2C), implying that most have crucial roles in mul-
tiple biological processes. More importantly, a pan-cancer analysis
showed that many of these genes were relatively stably expressed
across a range of cancer types (Fig. S2D).

3.3. Analysis of candidate gene pairs at the mutation level

Although candidate synthetic lethal interactions were initially
identified from yeast and human predicted/validated pairs, further
screening was essential to obtain gene pairs with higher confi-
dence levels based on an integrative analysis of multiple mole-
cules. First, the mutation profiles of all involved genes was
investigated in 33 cancer types. We collected a total of 75 gene
pairs (containing 74 genes), and the mutation status of both the
two-paired genes was detected (each gene pair was detected in
at least five cancer types) (Fig. 3A). Some gene pairs had higher
mutation frequencies, especially in the uterine corpus endometrial
carcinoma. Missense mutations were the most common mutation
type (Fig. 3A). To understand their potential value as drug targets,
the 75 gene pairs were investigated for their correlations with drug
response. Interestingly, some genes showed significant positive
and negative correlations with the drug response in specific cancer
types based on a comparison of both mutations (MM) and both
wild types (WW) of the two-paired genes (Fig. 3B), MM and MW,
and MW andWW gene pairs (Fig. S3A–C). Compared with compar-
isons in multiple groups, more significant correlations could be
found between groups of MM and WW (Fig. S3C). These results
implied the potential role of the complex genetic interactions in
relevant anticancer drug design.

To better understand the biological function of the these genes,
functional enrichment analysis was performed using DAVID. Mul-
tiple significant biological pathways were enriched, including
pathways in cancer, glioma, central carbon metabolism in cancer,
miRNAs in cancer, melanoma, non-small cell lung cancer, and pros-
tate cancer (Fig. 3C). Many of the genes showed abnormal expres-
sion patterns in some cancer types, and most showed consistent
dysregulated trends across a diverse range of cancers (Fig. S3D).
Interestingly, only 11 genes were predicted to be conserved in
yeast, six were also found in the SynLethDB database, and 63 were
obtained from human predicted or validated gene pairs (Fig. S3E).
Among the six common genes, most showed relatively stable
expression in a diverse range of tissues, and no significant
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differences could be detected among cancer samples (Fig. S3D
and E). Further analysis based on potential gene functions showed
that many of them had roles in hallmarks of cancer, and some were
potentially crucial in the occurrence and development of cancer
(Fig. S3E).

To estimate the potential value of these synthetic lethal interac-
tions, the role of gene pairs as prognostic markers was investigated
based on survival analysis. Comparisons between the two groups
and among the three groups were analyzed, and the gene pairs
were shown to be significantly more likely to be potential prognos-
tic markers than other pairs without synthetic lethal interactions
based on a randomization testing (1,000 times, p = 0.035 < 0.05
for the two groups, and p = 0.040 < 0.05 for the three groups)
(Fig. 3D). These results suggest that the synthetic lethal interac-
tions could be markers for disease prognosis, and also indicate
their importance in the development of cancer and potential roles
in further drug treatment.

3.4. Analysis of candidate gene pairs at the mRNA level

Based on candidate synthetic lethal interactions, the potential
expression patterns for the two-paired genes could be used as
markers to estimate their expression and further biological func-
tion. Therefore, we screened abnormally expressed genes from
candidate gene pairs, and collected those that were dysregulated
in more than 10 cancer types (Fig. 4A). Many of these genes
showed consistent expression in a diverse range of cancer types,
suggesting the similarity of their roles in tumorigenesis.

Compared with gene pair analysis at the mutation level, gene
pairs at the mRNA level also showed more significant prognostic
values than other gene combinations without potential synthetic
lethality based on a randomization testing (1000 times, p < 0.001
< 0.05 for the two groups, and p = 0.012 < 0.05 for the three groups)
(Fig. 4B). Interestingly, we found that paired genes both showing
dysregulated expression were associated with a higher probability
of long-term survival than other pairs with one gene dysregulated
or both normally expressed (Fig. 4B). Similar to analysis at the
mutation level, these results indicated that the synthetic lethal
interactions have potential prognostic value in cancer treatment.

We also screened 97 gene pairs containing 68 dysregulated
genes (paired genes were identified as dysregulated expression in
more than 10 cancer types) (Fig. 4C). The interaction network
showed potential interactions between these genes, with up-
regulated expression patterns dominating (Fig. 4C and D). Based
on whole candidate gene pairs with synthetic lethal interactions,
many of these genes were found to have more complex interac-
tions than expected (Fig. 4E), implicating their potential roles
and interactions with drug sensitivities.

3.5. Candidate gene pairs based on mutation and expression levels

A total of 4023 candidate gene pairs were collected that
included one gene with more than 2.0% mutation frequencies in
at least five cancer types. The expression patterns of these gene
pairs were then investigated, and 377 pairs containing 310 genes
were identified in which one gene showed abnormal expression
in more than 10 cancer types (Fig. 5A). Of these, only 28 were iden-
tified as predicted gene pairs from yeast, and most were derived
from human synthetic lethal interactions.

A total of 91 gene pairs (Table S3) were identified containing
one mutated gene in at least five cancer types and its partner with
up-regulated expression in more than 10 cancer types. Of these
pairs, 53 were mutated in the first gene (the relative position in
paired genes) and 38 were mutated in the second gene. Compared
with the mutated genes, their partners showed obvious up-
regulation across a diverse range of cancer types (74.90% and



Fig. 3. Analysis of synthetic lethal interactions at mutation level. A. Distribution of screened candidate 75 gene pairs based on mutation data (both two involved genes are
detected mutation). These gene pairs are detected mutation in at least five cancer types (more than 2% total samples in each cancer type). The number shows frequency
detected in samples. The right figure shows their distributions across patients. Below figure indicates percentage distribution of involved mutation type for each gene pair. B.
Drug responses of gene pairs (based on grouping at mutation level, between group 1 and group 3) across cancer types. * indicates drug with significant statistical difference
between gene pairs with double mutations and double wildtype groups (DR > 0.10 or DR < �0.10 and simultaneously p < 0.05 (FDR < 0.10)). C. Enriched biological KEGG
pathways of involved genes (FDR < 0.05). Fold Enrichment values are presented in outer ring in white words. The detailed enriched significant KEGG pathways include: Bladder
cancer, Central carbon metabolism in cancer, Choline metabolism in cancer, Endometrial cancer, ErbB signaling pathway, Focal adhesion, Gap junction, Glioma, HTLV-I
infection, Melanoma, MicroRNAs in cancer, Non-small cell lung cancer, Pancreatic cancer, Pathways in cancer, PI3K-Akt signaling pathway, Prostate cancer, Proteoglycans in
cancer, Rap1 signaling pathway, and Ras signaling pathway. D. Survival analysis of different groups based on the most dominant mutation type (missense mutation). The
observed number of significant gene pairs is compared with a randomization test in COAD (1000 times). The empirical p-value based on the two groups is 0.035, and the
empirical p-value based on the three groups is 0.04. An example shows probability of survival for PIK3CA:PRKDC gene pair in BLCA based on 2 (MM, n = 11;WW: n = 309) and 3
groups (MM, n = 11; MW: n = 91;WW: n = 309), respectively. MM: double mutations in candidate gene pair; MW: onemutation and another wildtype;WW: double wildtypes.
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Fig. 4. Analysis of synthetic lethal interactions at gene expression level. A. Expression distributions for screened abnormal genes across diverse cancer types. * indicates
significantly deregulated gene with |log2FC| >1.50 and padj < 0.05. B. Survival analysis of different groups based on expression patterns. The observed number of significant
gene pairs is compared with a randomization test in COAD (1000 times). The empirical p-value based on the two groups is 0.000, and the empirical p-value based on the three
groups is 0.012. An example shows probability of survival for PTGS1:WNT5A gene pair in KIRC based on 2 (AA, n = 314; NN, n = 47) and 3 groups (AA, n = 314; AN, n = 169; NN,
n = 47), respectively. AA: both deregulated in candidate gene pair; AN: one abnormally and another normally expressed; NN: both normally expressed genes. C. An interaction
network for screened 68 abnormally expressed genes. The deregulated expression pattern is derived from BRCA as an example to present their expression trends. D.
Expression patterns of these 68 genes across diverse cancer types. The specific values of log2FC, 1.50 and �1.50 are presented as the cutoff values. E. The detailed distributions
of interacted numbers with other genes based on the whole candidate gene pairs. The main pie distributions based on several classes of interactions are also presented.
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72.59% of partners were up-regulated, respectively), but most
mutated genes (>80%) showed normal expression patterns
(Fig. 5B and C). Additionally, 30 genes were simultaneously
3249
detected as the first and second genes in different pairs, but rela-
tive expression patterns still showed the same expression trends
for mutated genes and their partners. Although paired genes were



Fig. 5. Screening candidate gene pairs based on both mutation and expression levels. A. The detailed mutation and expression patterns based on 377 candidate gene pairs
containing at least one mutated gene (the up picture) or abnormally expressed gene (the below picture). Mutated gene is identified if it is detected at least in 5 cancer types,
and abnormally expressed gene is identified if it is deregulated in more than 10 cancer types. First and second genes indicates the relative positions in paired genes. B. Scatter
plots indicate expression patterns of involved genes across diverse cancer types based on further screened paired genes (first gene is involved in mutation). The pie
distributions for deregulated numbers are also presented. The specific values are presented using dotted lines. C. Scatter plots indicate expression patterns of involved genes
across diverse cancer types based on further screened paired genes (second gene is involved in mutation). The pie distributions for deregulated numbers are also presented.
The specific values are presented using dotted lines. D. The expression patterns of different gene classes based on baseMean values according to Fig. 5B and C. The detailed
dots show the baseMean values in diverse cancer types. The median value of log2baseMean for all relevant genes is presented.
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Fig. 6. Potential gene-gene interactions and related miRNAs. A. The distributions of interacted numbers based on screened gene pairs. B. Distributions of mutated genes across
different cancer types. * indicates that mutation frequency in specific cancer is more than 3.0%. C. Further screened interaction networks and distribution of genes with higher
mutation frequencies (circle is highlighted in green). Each circle with pie distribution shows the detailed expression patterns across cancer types. The red pie shows up-
regulated expression, the blue shows down-regulated expression, and the green shows normally expressed in tumor samples. D. The distributions of related miRNAs for genes
in Fig. 6C. Simultaneously, the number of target mRNAs for eachmiRNA is also presented. E. The expression patterns for involvedmiRNAs across diverse cancer types. Themost
dominant sequence is selected as classical miRNA to estimate its expression pattern, and the highlighted red miRNAs are collected to construct interaction network. F. miRNA-
mRNA interaction network. The dotted line shows the potential regulatory interaction between miRNA and mRNA, and the red solid line shows the potential synthetic lethal
interaction between mRNA and mRNA. The ellipse indicates mRNA (the red ellipse shows the essential gene), and the triangle indicates miRNA. The distributions of the top six
KEGG pathways (each KEGG pathway contains at least 4 genes) are presented on the right (the above picture), and the detailed gene characteristics for each gene are also
presented on the right (the below picture). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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screened for up-regulation, expression trends of mutated genes
were not considered during the screening process. These mutated
genes showed diverse expression levels in various tissues, and
were only rarely dysregulated in some cancer types (Fig. 5B–D),
although they were sometimes enriched in some cancer types.

Based on the 91 gene pairs of 78 genes (Table S4), 73.08%
showed one or two interactions (46 genes had one interaction
and 11 genes had two) (Fig. 6A). KRAS was found to have 25 inter-
actions, RAD51 to have 10, and BRCA1 and XRCC2 to have eight
each. KRAS has been characterized as a cancer-related gene with
potential importance for future cancer treatment [44–46], while
RAD51 and XRCC3 polymorphisms may be associated with an
increased risk of prostate cancer [47].

To understand potential regulatory patterns of gene pairs con-
taining higher mutation frequencies with small non-coding RNAs,
we performed an in-depth analysis of 14 gene pairs involving 16
genes (Fig. 6B and Table S5). Of these, TP53 was found to have
higher mutation frequencies in 19 cancer types, and five interac-
tions with other validated genes (Fig. 6C). Expect for two gene
pairs, other interactions showed a network with potential interac-
tions among 12 genes. These interactions were further analyzed
with respect to miRNAs.
3.6. The regulatory role of small RNAs in synthetic lethal interactions

miRNAs have been widely studied because of their crucial neg-
ative regulatory roles in mRNA expression process. Whether the
small RNAs also contribute to paired genes with synthetic lethality
via coding-non-coding RNA regulatory network? To understand
the potential roles of these small RNAs in synthetic lethal interac-
tions, related interacting miRNAs for each gene were identified
based on biological relationships. Each gene was shown to be reg-
ulated by multiple miRNAs, and many miRNAs bound to several
mRNA sites (Fig. 6D). These multiple miRNA–mRNA interactions
suggested a complex regulatory network of diverse RNAs.

miRNA expression analysis was undertaken according to poten-
tial miRNA–mRNA interactions. Because of the existence of multi-
ple isomiRs at miRNA loci, we used the most dominant isomiR
sequence to analyze detailed expression patterns for each locus.
miRNAs were shown to have diverse expression across different
tissues, indicating their varied spatiotemporal expression. Because
most genes were up-regulated in our analysis (Fig. 6C), a series of
miRNAs were identified to construct an miRNA–mRNA network if
they were down-regulated in at least four cancer types (Fig. 6E).
Thus, we constructed an miRNA–mRNA interaction network
(Fig. 6F) showing possible interactions among different RNAs,
which may influence related biological pathways.

In this network, we found that many genes contributed to mul-
tiple KEGG pathways (Fig. 6F), especially involving the cell cycle
(seven of 12 genes), cancer (five of 12 genes), oocyte meiosis,
and the p53 signaling pathway. These KEGG pathways are impor-
tant in the occurrence and development of cancers, suggesting that
the genes have a key role in tumorigenesis. More importantly,
many genes were also found to have a close association with the
hallmark of cancer, especially evading apoptosis, genome instabil-
ity, and mutation. Many were also identified as genes with partic-
ular characteristics in tumorigenesis (Fig. 6F). Specifically, EGFR is a
widely studied oncogene with a potential role in cancer therapeu-
tics [48], six are core genes (AURKA, CDK1, CDT1, PRKDC, RAD51, and
XRCC2), six are potential drug targets, and five were identified as
drug actionable genes. These potential roles strongly indicated that
the genes make direct or indirect contributions to pathology and
that synthetic lethal interactions among them will provide impor-
tant data for anticancer therapeutic targets.
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4. Discussion

Genetic robustness or genetic buffering can contribute to the
phenomenon of synthetic lethality, especially because functional
genetic redundancy is widespread in many organisms [49,50],
typically including the presence of two alleles [51]. Synthetic
lethality occurs when the silencing of two genes leads to cell
death while silencing of either gene alone does not result in a
severe phenotype. It is a possible means of cancer drug target dis-
covery [52] and personalized cancer medicine [53] that may be a
better approach to specifically kill cancer cells than current
treatments.

According to the potential correlations between paired genes
with synthetic lethality, we thought that these interacted genes
may have complex correlations at different molecular levels. In this
study, to understand the potential relationships of interacting
genes, especially based on different data sources, we performed a
systematic analysis of synthetic lethality between yeast and
human data. According to validated gene pairs in yeast, a series
of candidate pairs are firstly collected based on evolutionary con-
servation. However, further analyses from mutation and expres-
sion levels filter many predicted gene pairs, and most remained
pairs are human validated or predicted genes. These results impli-
cate that predicted synthetic lethal interactions from yeast may
not show significant associations via an integrative analysis of
multiple molecular levels, while human synthetic lethal interac-
tions are prone to be screened to perform in-depth analysis.
Indeed, this result is not strange, because predicted gene pairs from
yeast are well-conserved genes. These ancient genes may play an
important biological role in multiple basic biological processes,
implicating that they are very stable than other mutated or abnor-
mally expressed genes. Additional screening of candidate gene
pairs based on one gene having higher mutation frequencies iden-
tified partner gene up-regulated are performed further in-depth
analysis. These collected gene pairs contain many genes associated
with tumorigenesis (Fig. 6), such as core essential genes, genes of
CGC and actionable genes, implicating their possible roles as
potential drug targets in cancer treatment. Indeed, genes in the col-
lected candidate synthetic lethal interactions may be potential
drug target in cancer treatment, and further study based on syn-
thetic lethality should be performed to search potential combined
medicines.

Furthermore, except for involved genetic interactions, the small
RNAs, also play a role in this RNA network. These miRNAs nega-
tively regulate these genes directly or indirectly (Fig. 6), and the
widespread interactions between miRNAs and mRNAs may con-
tribute to gene interactions via coding-non-coding RNA regulatory
network. It may be a way to understand synthetic lethal interac-
tions via the small regulatory ncRNAs, and the dynamic and popu-
lar miRNA:mRNA interactions in vivo will provide more references
for studies on synthetic lethality. However, althoughmiRNA:mRNA
has been widely studied as an important regulatory patterns
between ncRNA and mRNA, multiple isomiRs in miRNA locus
should be not ignored. Herein, we only consider the most domi-
nant isomiR to perform the relevant analysis, but indeed other iso-
miRs are also unexpectedly dominantly expressed. Further studies
should focus on the potential roles of multiple isomiRs in synthetic
lethal interactions, especially for from the coding-non-coding RNA
regulatory network.

Taken together, to understand their potential distributions and
relationships, our study analyzes candidate synthetic lethal inter-
actions from different sources across molecular levels in diverse
cancer types, and then screens a series of gene pairs to identify
related regulatory miRNAs. Some gene pairs have important roles
in tumorigenesis and potential prognostic value for cancer
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treatment. Furthermore, interactions among diverse RNAs compli-
cate synthetic lethal interactions, which could contribute to the
application of synthetic lethality to personalized anticancer thera-
peutics. Further systematic study should be performed based on
more candidate data to reveal the potential application in future
anticancer therapeutics.
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