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Abstract: Despite the many advancements in the pharmaceutical and medical fields and the develop-
ment of numerous antimicrobial drugs aimed to suppress and destroy pathogenic microorganisms,
infectious diseases still represent a major health threat affecting millions of lives daily. In addition
to the limitations of antimicrobial drugs associated with low transportation rate, water solubility,
oral bioavailability and stability, inefficient drug targeting, considerable toxicity, and limited patient
compliance, the major cause for their inefficiency is the antimicrobial resistance of microorganisms.
In this context, the risk of a pre-antibiotic era is a real possibility. For this reason, the research
focus has shifted toward the discovery and development of novel and alternative antimicrobial
agents that could overcome the challenges associated with conventional drugs. Nanotechnology is a
possible alternative, as there is significant evidence of the broad-spectrum antimicrobial activity of
nanomaterials and nanoparticles in particular. Moreover, owing to their considerable advantages
regarding their efficient cargo dissolving, entrapment, encapsulation, or surface attachment, the
possibility of forming antimicrobial groups for specific targeting and destruction, biocompatibility
and biodegradability, low toxicity, and synergistic therapy, polymeric nanoparticles have received
considerable attention as potential antimicrobial drug delivery agents. In this context, the aim of
this paper is to provide an up-to-date overview of the most recent studies investigating polymeric
nanoparticles designed for antimicrobial therapies, describing both their targeting strategies and
their effects.

Keywords: polymeric nanoparticles; antimicrobial therapy; medical field; antimicrobial resistance;
toxicity; limited patient compliance; nanotechnology; nanomaterials; up-to-date overview; target-
ing strategies

1. Introduction

Microorganisms are an essential part of human existence, being responsible for numer-
ous and diverse processes, including nitrogen fixation, vitamin production, photosynthesis,
and organic matter decomposition. However, the delicate balance between microorgan-
isms and the immune system may shift in favor of microorganisms, thus causing immune
deficiencies [1]. Therefore, diseases caused by pathogenic microorganisms, such as bacteria,
viruses, fungi, parasites, protozoa, or algae, can be directly or indirectly (vector-borne)
transmitted from one individual to another, which is termed as infectious diseases [2–5].

In antiquity, around half of the individuals died before reaching sexual maturity, while
in late medieval times, one-third of babies died in their infancy, which was mostly due
to infectious diseases [6]. Thus, the discovery of antimicrobials, including antibacterial,
antiviral, antifungal, and antiparasitic or anthelmintic drugs, has greatly impacted the
global health system, as the infection-related mortality was significantly reduced [4,7,8].
Specifically, they have allowed the early treatment of infections without identifying the
pathogen, consequently bringing novel possibilities for modern medicine, such as surgery,
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cancer chemotherapy, organ transplantation, and premature infant care [9]. While consider-
ably numerous antimicrobials have been developed for the suppression and destruction of
pathogenic microorganisms, infectious diseases are still one of the major worldwide causes
of death for both adults and children, affecting millions of lives daily [10,11]. Moreover, the
Sustainable Development Goals, created in 2015, classified infectious diseases as a priority
for health policies [12].

The inefficiency of antimicrobials is mainly associated with their low transportation
rate across cellular membranes and low activity inside the cells, which lead to limited
inhibitory, cidal, and static effects on microorganisms [10]. Additionally, antimicrobials
are associated with low water solubility, oral bioavailability and stability, inadequate drug
targeting, non-negligible toxicity, and limited patient compliance due to frequent drug ad-
ministration requirements [13]. Another major challenge is that the antimicrobial resistance
of microorganisms resulted from the overuse and abuse of antimicrobial drugs, which
has become a critical and serious health problem [7,10,14,15]. The World Health Organi-
zation (WHO) has warned about the real possibility of a pre-antibiotic era, identifying 12
emerging superbugs resistant to many antibiotics [9,16–18]. For instance, about 40% of the
Staphylococcus aureus strains present within hospitals are resistant to methicillin, accounting
for almost 120,000 blood-borne infections and 20,000 related deaths in the United States
in 2017 [4,13]. Contributing to approximately 700,000 deaths annually across the world,
it is estimated that by 2050, antimicrobial resistance will affect 230 million people and
result in 10 million deaths annually [4,9,13,19,20]. As the discovery of novel classes of
antimicrobials has slowed down since 1987, the situation is drastically worsening, and the
world is facing the risk of returning to the “medical dark ages” [16,17,21,22]. Therefore,
there is an urgent need for the development of novel alternative approaches to tackle the
antimicrobial-resistant pathogen crisis [7,9,10,13,20,23].

The recent advancements in nanotechnology have provided a new means for im-
proving the efficiency of antimicrobial therapies [11]. Nanomaterials and nanoparticles in
particular have proven a broad spectrum of antimicrobial activity against Gram-negative
and Gram-positive bacteria, mycobacteria, viruses, fungi, bacteriophages, protozoa, and
algae [24–26]. The two main strategies for using nanoparticles as antimicrobial agents
involve combatting antimicrobial drug resistance themselves or acting as carriers for the
delivery of conventional antimicrobials [24,27,28]. Specifically, while the precise mecha-
nisms are not completely understood, it has been demonstrated that nanoparticles can
penetrate and disrupt the microbial cell membrane through membrane-damaging abrasive-
ness, induce intracellular antimicrobial effects such as the production of reactive oxygen
species, interact with DNA/RNA and proteins, inactivate enzymes, increase efflux by
overexpressing efflux pumps, decrease cell permeability, release metal ions, and hinder
biofilm formation (Figure 1) [24,25,27,29–31]. The antimicrobial activity of nanoparticles is
directly affected by variables such as chemistry, particle size and shape, surface-to-volume
ratio, and zeta potential [17].

Recent years have witnessed increasing attention toward nanostructured antimicrobial
polymers owing to their superior advantages, i.e., efficient cargo dissolving, entrapment,
encapsulation, or surface attachment, the possibility of forming antimicrobial groups for
specific targeting and destruction, biocompatibility and biodegradability, low toxicity, and
synergistic therapy [17,32]. In this context, the aim of this paper is to provide an up-to-date
overview of the most recent studies investigating polymeric nanoparticles designed for
antimicrobial therapies, describing both their targeting strategies and their effects.
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Figure 1. Schematic representation of the main mechanisms involved in the antimicrobial resistance (left) and the antimi-
crobial activity of nanoparticles (right). 
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ery, selective recognition, and increased cellular uptake and internalization with no cyto-
toxicity for the host cells [34–38]. 

Nanoparticles can target microbial cells through two general possibilities, namely 
passive or active targeting [39]. On one hand, passive targeting is associated with the ac-
cumulation of nanoparticles at the infection site due to a higher vascular permeability and 
impaired lymphatic system functioning, leading to prolonged drug retention [39–41]. This 
type of delivery is directly influenced by several factors, including hydrophobicity, van 
der Waals forces, and static electric attraction. Its potency can be increased with the elec-
trostatic interactions between the negative charge of the bacteria surface and the cationic 
charge of the nanoparticle surface [40,42]. On the other hand, active targeting is a widely 
employed phenomenon based on the conjugation of active molecules onto the surface of 
nanoparticles that will specifically bind to the surface molecules overexpressed by micro-
bial cells, such as polysaccharides, proteins, or lipids [39,40,43–45]. In this manner, a wide 
variety of functional groups and molecules or stimuli-responsive ligands can be attached 
through chemical, physical, or biological methods [35]. Active targeting is an advanta-
geous method to improve the therapeutic index by increasing the selectivity and recogni-
tion properties of nanoparticles and consequently reaching higher concentrations at the 
specific infection site in shorter periods. Thereby, side effects and their associated socio-
economic costs are considerably reduced [34,35,43,44]. Nonetheless, active targeting na-
noparticles’ design should ensure an appropriate balance between the interaction 
strength, the release rate, and the conjugate stability [39]. Common biomolecules used as 
moieties for active targeting include small molecules, peptides, antibodies, nanobodies, 
proteins, nucleic acids, carbohydrates, and antimicrobial drugs (Figure 2) [34–36,39–
41,43,46–48]. 
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2. Microbial Targeting Strategies

Generally, the design and development of nanosized systems for the delivery of an-
timicrobial drugs must consider the fulfillment of several characteristics, namely improving
the efficiency of the antimicrobial treatment, increasing the local concentration of the antimi-
crobial drug at the specific infection site, minimizing the accumulation of the antimicrobial
drug within healthy tissues, and the exposure of the commensal microflora to sub-lethal
doses for avoiding the development of antimicrobial resistance and reducing the associated
risks of toxicity [33]. In this context, nanoparticles must be specifically designed and/or
improved to achieve an efficient payload binding capacity, targeted delivery, selective
recognition, and increased cellular uptake and internalization with no cytotoxicity for the
host cells [34–38].

Nanoparticles can target microbial cells through two general possibilities, namely
passive or active targeting [39]. On one hand, passive targeting is associated with the
accumulation of nanoparticles at the infection site due to a higher vascular permeability
and impaired lymphatic system functioning, leading to prolonged drug retention [39–41].
This type of delivery is directly influenced by several factors, including hydrophobicity,
van der Waals forces, and static electric attraction. Its potency can be increased with the
electrostatic interactions between the negative charge of the bacteria surface and the cationic
charge of the nanoparticle surface [40,42]. On the other hand, active targeting is a widely
employed phenomenon based on the conjugation of active molecules onto the surface of
nanoparticles that will specifically bind to the surface molecules overexpressed by microbial
cells, such as polysaccharides, proteins, or lipids [39,40,43–45]. In this manner, a wide
variety of functional groups and molecules or stimuli-responsive ligands can be attached
through chemical, physical, or biological methods [35]. Active targeting is an advantageous
method to improve the therapeutic index by increasing the selectivity and recognition
properties of nanoparticles and consequently reaching higher concentrations at the specific
infection site in shorter periods. Thereby, side effects and their associated socio-economic
costs are considerably reduced [34,35,43,44]. Nonetheless, active targeting nanoparticles’
design should ensure an appropriate balance between the interaction strength, the release
rate, and the conjugate stability [39]. Common biomolecules used as moieties for active
targeting include small molecules, peptides, antibodies, nanobodies, proteins, nucleic acids,
carbohydrates, and antimicrobial drugs (Figure 2) [34–36,39–41,43,46–48].

2.1. Small Molecules

The use of small molecules for the surface functionalization of nanomaterials has
brought a new perspective for biomedical applications, as they possess the ability to
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modulate the biological properties of nanomaterials. In this manner, binding to the host
cell receptors can be mediated, and antimicrobial resistance can be further avoided [40].
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One example of such molecules is antifolates, with folic acid as the central molecule
of their metabolism [49]. Folic acid or folate is a group of water-soluble metabolites
that belong to the B-vitamin family, namely B9. Folates function as enzymatic co-factors
in the C1 transfer reactions, playing fundamental roles in amino acid metabolism and
purines, pyrimidines, and methionine synthesis. Alternatively termed tetrahydrofolate
molecules, they are characterized by a common chemical structure comprising a pteridine
ring, a p-aminobenzoic acid, and one or more γ-linked L-glutamate residues [49–51]. By
contrast to bacteria, fungi, and some plants, mammalian cells are unable to synthesize
folate de novo, but they possess specific folate receptors that allow for its internalization.
As microbial infections are characterized by an accelerated folate metabolism rate in order
to ensure the proper functioning of the processes involved in cell replication and protein
and nucleic acid synthesis, folic acid antagonists have been widely used as alternative
antibiotic agents [49–52]. Moreover, antifolates such as pyrimethamine, proguanil, and
sulfadoxine represent an important class of antimalarial drugs [53,54]. Additionally, the
specific cyclosporiasis drug treatment is based on the combination of two antibiotics,
namely trimethoprim and sulfamethoxazole or co-trimoxazole. Their action involves
blocking two consecutive steps required for the biosynthesis of nucleic acids and proteins
essential for the parasite by inhibiting tetrahydrofolic acid and dihydrofolic acid production,
respectively [55].

2.2. Peptides

The pathway involved in the targeted drug release using nanoparticles aims to ac-
complish the complex tasks of specifically targeting the cells of interest, crossing the
extracellular membrane and internalization into the cell, and localization to specific subcel-
lular organelles. In this context, peptides have been extensively researched and exploited
for their capacity to fulfill these aims after their surface attachment onto the surface of the
nanoparticles [56,57].
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Therefore, antimicrobial peptides have received a great interest in naturally occurring
antimicrobials produced by bacteria, fungi, protozoa, and some plants and animals, with
an improved biocompatibility, selectivity, and efficiency, safety, and tolerance by the human
organism [40,58–61]. These peptides comprise 5–50 amino acid chains and are generally
composed of L-amino acids, such as lysine, arginine, and histidine, which are defined
in α-helices and/or β-sheets secondary structures [60,62]. Their amphipathic or cationic
structure allows for an efficient microbial membrane targeting and a broad action spectrum
against Gram-positive and Gram-negative bacteria, fungi, viruses, and protozoa [58,60].
Owing to their biochemical properties, the action mechanisms are generally based on their
interaction with the microbial phospholipid membranes [60]. Specifically, subsequent to
the antimicrobial peptide binding to the target membrane, permeabilization of the mem-
brane occurs, consequently causing cellular component leakage and cell death [63]. This
binding is a result of the electrostatic forces between the positively charged antimicro-
bial peptides, i.e., an overall charge of +1 to +7, and the negatively charged microbial
membrane. Moreover, peptide features such as the amino acid sequence, the amphipathic
charge, the structure, and the hydrophobicity are key factors in the overall antimicrobial
activity. Therefore, the active targeting can be modulated, as antimicrobial peptides have a
tendency of binding to microbial cells, rather than mammalian cells, which are zwitterionic.
Furthermore, studies have shown that with sufficient positive charges present, reducing
their hydrophobicity favors bacterial cell targeting [62].

The models proposed for membrane permeabilization involve (i) the toroidal-pore
model based on the accumulation of peptides on the surface, which leads to a continuous
lipid monolayer bending through the pore and their building up within the pore, (ii)
the barrel-stave model, through which the hydrophilic part of the peptide moves from
the core interior region, while the hydrophobic part is localized toward the lipids, thus
inserting into the cell membrane, and (iii) the carpet-like model, where the peptides
parallelly aggregate to the microbial membrane and cover it without forming any pores,
and membrane permeabilization is triggered by peptides attached to the surface, thus
causing its disruption in a manner similar to detergent mechanisms that result in micelle
formation [63].

2.3. Proteins

Nanoparticle functions and targeting can also be enhanced by protein coating [35,64].
The lysozyme is a potential candidate, as it is a biomolecule with key defensive roles
in the innate immune system widely distributed in phages, bacteria, plants, vertebrates,
and humans [65]. Owing to its antibacterial, antiviral, and anti-inflammatory proper-
ties, it has been extensively used in the medical, environmental protection, and food
industries [35,65–67]. The lysozyme’s antimicrobial activity mainly relies on the degrada-
tion of the microbial cell wall through the peptidoglycan hydrolyzation, specifically the
β-1,4-glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine monosac-
charides [35,65–68]. Furthermore, there is evidence of lysozymal antiviral character based
on its potential activity against the human immunodeficiency virus [65].

The field of antimicrobial therapy has also witnessed the emergence of monoclonal an-
tibodies that are able to target specific microbial phenotypes [69,70]. Their advantages are
numerous, including but not limited to high specificity against one specific microbial type,
longevity, and multiple antimicrobial mechanisms that limit toxicity and resistance [71].
An example of such types of antibodies is the human monoclonal antibody 3E9-11, which
specifically targets the O25b O-antigen present within the Escherichia coli ST131 O25b:H4
clonal group that is associated with extended-spectrum beta-lactamases acquisition and
fluoroquinolone resistance [69]. Furthermore, monoclonal and polyclonal antibodies target-
ing the poly-N-acetyl-d-glucosamine and the deacetylated poly-N-acetyl-d-glucosamine
polysaccharides that are highly conserved and expressed by a multitude of microorganisms,
including Gram-positive and Gram-negative bacteria, fungi, and protozoa, have shown
promising in vitro and in vivo efficiency [72].
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Nanobodies, a novel and unique class of single domain antibodies derived from
naturally occurring heavy-chain-only antibodies only present within camelid serum, have
been widely investigated in recent years for their superior physicochemical properties.
Specifically, nanobodies are nanoscaled compounds with a robust structure, high stability,
antigen-binding affinity, one cognate target specificity, water solubility, and reversible re-
folding that have the potential for the development of next-generation biomolecules [73,74].
These polypeptides with a molecular weight of less than 15 kDa have emerged from the
phage display process and are an important tool for developing novel nanobiotechnologies,
as some are already under clinical investigation for a variety of human diseases, such
as chronic inflammation, brain tumors, breast cancer, lung disorders, and infectious dis-
eases [73–75]. Specifically, the European Medicines Agency (EMA) and the US Food and
Drug Administration (FDA) have approved the use of caplacizumab, which is a bivalent
nanobody with efficiency in the treatment of thrombotic thrombocytopenic purpura [74].
Nanobodies have also proven their efficacy in the targeting of specific microbial strains,
including bacteria, viruses, and protozoa [76,77].

2.4. Nucleic Acids

Nucleic acid–nanoparticle complexes have also attracted significant interest, as most
of the small interfering RNA (siRNA) or microRNA delivery systems have been approved
for clinical trials for virus infections, cancer therapy, and many other diseases [78].

Moreover, aptamers are a special kind of targeting biomolecules, possessing excellent
physicochemical features for superior infectious disease diagnosis and treatment [75].
Precisely, they are short single-stranded nucleic acids or peptides with defined three-
dimensional structures and the ability to recognize and bind targets with high affinity
and specificity [75,79–82]. Aptamers can discriminate between molecules structurally
different with only one group or even enantiomers, establishing dissociation constants
in the picomolar to nanomolar range for high molecular weight targets nanomolar to the
micromolar range for low molecular weight targets [81]. They are generally obtained
through a process of in vitro selection, following the methodology described by Tuerk
and Gold in 1990 of The Systematic Evolution of Ligands by Exponential Enrichment
(SELEX) [75,79–82]. The SELEX scheme involves three main steps, namely library and
target incubation, aptamer–target complexes separation from unbound oligonucleotides,
and bound molecules amplification [83]. Their small size, low molecular weight, stability
under a variety of conditions, and lack of toxicity have allowed for an efficient nanoparticle
functionalization for numerous active targeted delivery applications [79–81]. Moreover,
they are a potential alternative for the use of antibodies, as they are able to overcome their
limitations, such as higher temperature stability [80]. Therefore, aptamer–nanoparticle
systems’ potential relies on the increase of targeting interactions due to a higher aptamer
density onto the surface of the nanoparticles while being protected from the nuclease
digestion [81].

2.5. Carbohydrates

Carbohydrates are an essential type of macromolecules that are ubiquitously found
throughout living organisms, playing vital roles in numerous biological recognition pro-
cesses associated with cell differentiation, development, adhesion, communication, and
signaling [84]. In the context of infectious diseases, many pathogenic microorganisms
attach onto the surface of host cells through carbohydrate–protein interactions between
cell-surface glycans and adhesins or agglutinins. Bacteria, viruses, and fungi express
onto their surface a vast number of glycan-binding proteins, which are also known as
lectins [84–86].

The sugar-binding activity of lectins has led to various in vivo functions, including
host–pathogen interactions, nutrition absorption inhibition, intercellular recognition and
signal transduction, and cell migration [87,88]. In this manner, glycans could represent an
important candidate for nanoparticle surface functionalization for the active targeting of



Polymers 2021, 13, 724 7 of 31

microorganisms. There are many studies proving the potential of glycoprotein binding of
many viruses, including human immunodeficiency virus-1, influenza, coronavirus, Ebola,
Zika, herpes simplex, etc. [89], and bacteria, e.g., Escherichia coli, through the interaction
between gluconamide-functionalized nanoparticles and the lipopolysaccharide molecules
present onto the outer membrane of the microorganisms [90].

2.6. Antimicrobial Drugs

Nonetheless, the surface of nanoparticles can also be modified using vancomycin,
which acts by targeting peptidoglycans present onto the surface of Gram-positive bacteria,
polymyxin, which is responsible for targeting lipopolysaccharides found onto Gram-
negative bacteria, or zinc(II)-bis(dipicolylamine), which targets phosphatidylserine and is
present onto the surface of both Gram-positive and Gram-negative bacteria. Notably, they
are able to specifically bind bacteria, since healthy mammalian cells do not express these
types of molecules [45].

Vancomycin is a broad-spectrum glycopeptide antibiotic that specifically binds Gram-
positive bacteria, including staphylococci, streptococci, and most enterococci, through
hydrogen bonds between its carbonyl and amine groups and the peptidoglycans found
onto the cell wall [91–93]. The mechanisms of action mainly involve the inhibition of
the cell wall synthesis by forming non-covalent complexes with the C-terminal L-Lys-
D-Ala-D-Ala motif within the bacterial peptidoglycan precursors and the inhibition of
RNA synthesis [92–94]. While the administration of vancomycin has resulted in the
development of vancomycin-resistant Staphylococcus aureus, vancomycin-intermediate
Staphylococcus aureus, and vancomycin-resistant enterococci [92], its attachment onto the
surface of nanoparticles has allowed for the capture of both Gram-positive and Gram-
negative bacteria within complex samples, such as urine or blood [91].

Polymyxins are a class of cationic polypeptide antibiotics comprising five types of
compounds, namely polymyxin A-E, which is the standard gold treatment against Gram-
negative bacterial infections [95–97]. While their use has been avoided in the 1970s and
1980s due to the introduction of presumably safer broad-spectrum antibiotics, the emer-
gence of multiple drug-resistant Gram-negative bacteria, especially Pseudomonas aeruginosa
and Acinetobacter baumannii, has led to its clinical reintroduction [96,98]. The precise mech-
anisms involve binding to the bacterial cell wall and subsequently altering the outer and
inner membrane permeability to K+ and Na+ ions. In this manner, the osmotic barrier of
the cell is lost, leading to the death of the bacterium through lysis [8].

2.7. Stimuli-Responsive Nanosystems

Another approach for microbial targeting is the development of stimuli-responsive
nanosystems, which can either recognize specific microenvironmental changes associated
with the pathological state of infection or inflammation, such as pH, enzyme, and chemical
compound concentrations, and redox state variations, or respond to external physical
stimuli, such as thermal, magnetic, light, or ultrasound effects (Figure 3). Consequently,
the nanosystems react dynamically, leading to a controlled release of the drug at the
targeted site [33,44,99,100]. Similarly, the targeting characteristics and the efficiency of
the antimicrobial therapy are considerably enhanced, while the side effects are signifi-
cantly minimized [33,99]. Additionally, this approach allows for the reversibility to the
nanosystems’ initial state to control the antimicrobial effects [33,44].

An example of such nanosystems involved developing gentamicin sulfate-functionalized
nanoparticles covalently grafted onto the surface of titanium implants. As the bioactive
molecules were linked to the nanoparticles through pH-sensitive imine bonds, a decrease
in the local pH induced by bacterial proliferation and infection would lead to the drug’s
release due to the hydrolysis of the imine bond [93,101].
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3. Antimicrobial Applications of Polymeric Nanoparticles

Due to their insolubility and administration route, bioactive compounds are generally
prone to lose their pharmacological activity. Thus, the process of drug discovery and
development must be optimized in order to ensure optimal pharmacokinetics, absorption,
distribution, metabolism, excretion, toxicity, and therapeutic effect duration [102]. In the
context of infectious diseases, the life and bioavailability of antimicrobial drugs must be
enhanced, while the administered dose must be reduced [103,104].

After administration, conventional antimicrobial drugs are distributed throughout
the body via bloodstream, where a considerable percentage of the drug undergoes rapid
clearance and inactivation. By contrast, drug-carrying nanosystems have the capacity to
stay in the circulatory system for longer time periods and specifically target the tissue
of interest. In this manner, an appropriate drug dose is administered, thus reducing the
plasma fluctuations and the associated adverse effects. Furthermore, the nanoscale of these
systems allows for an improved penetration through the tissue barriers while ensuring the
protection of the drug until cellular uptake and targeted release [102,103,105,106]. The main
mechanisms involved in the controlled release of antimicrobial drugs include diffusion-
based, elution-based, and chemically- or stimuli-controlled release (Figure 4) [105].

In this context, nanostructured systems appear to be an ideal tool for combating
antimicrobial resistance and developing efficient treatment options [102]. As previously
mentioned, polymeric nanosystems are superior due to many advantages, such as high
drug solubility and storage, biocompatibility, biodegradability, and stability, permitting the
deliberate and precise drug release at the targeted sites [103,106,107].

Polymeric nanosystems can be synthesized from a variety of natural or synthetic pre-
cursors, such as collagen, chitosan, gelatin, or albumin, and polyethylene glycol, polylactic
acid, poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA) or polycaprolactone (PCL),
respectively [42,108,109]. Additionally, they can be developed in multiple forms, including
nanoparticles, micelles, vesicles, dendrimers, or hybrid inorganic–polymer nanosystems
(Figure 5) [17].

This review focuses on polymeric nanoparticles, which are categorized into polymeric
nanospheres and polymeric nanocapsules, depending on their internal structure and
morphology (Figure 6). On one hand, nanospheres comprise a continuous polymeric
network with a regular sphere structure in which drug molecules are either retained inside
the matrix or attached to its surface. On the other hand, nanocapsules consist of a polymeric
shell surrounding the liquid/solid oily core. The drug is dissolved and modulates the
release profile of the drug [110,111].
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3.1. Antibacterial Nanoparticles

The pathway involved in bacteria growth is based on the conversion of chemical
nutrients that enter into the bacterial cell through its pores into biomass. In this manner,
the biomass increase leads to increased cell size and bacterial DNA replication, and finally
to the division into two daughter cells [112]. There are two types of bacterial growth,
namely the planktonic growth associated with the free-swimming unicellular phase that
is not attached to any surfaces, and the biofilm growth phase, which is related to the
multicellular sessile state that results in community formation [47,112]. While both are
a serious concern, bacterial colonization and biofilm development allow the bacteria to
survive in hostile environments and form new and permanent colonies, thus posing the
risk of severe systemic infections [47,113].

In this context, the studies discussed below are targeting the application of polymeric
nanoparticles against both planktonic and biofilm growth. The criteria involved in the
process of article selection involved papers published after 2018 from the Scopus database
using the keywords “polymeric nanoparticles” and “antibacterial” or “biofilm”. Thus, 24
relevant studies were identified and categorized according to the type of polymer used,
either natural or synthetic.

Table 1 summarizes all the identified studies investigating the use of natural polymers
to develop nanoparticles applied in antibacterial therapies. Among natural polymers,
chitosan is the most widely used as a nanocarrier to deliver both antibiotics and alternative
antibacterial drugs. For instance, Qiu et al. developed phosphatidylcholine–chitosan hy-
brid nanoparticles coated with the gentamycin antibiotic. The reason for the introduction
of the lipid component is based on the potential of lipid drug carriers to fuse with the bac-
terial phospholipid membrane. The results confirmed the synthesized system’s capacity to
inhibit both Gram-positive and Gram-negative bacteria growth and biofilm formation [114].
Alruwaili et al. also investigated the antibacterial effects of gentamycin-containing chitosan
nanoparticles that were further dispersed into pH-sensitive Carbopol polymer solutions
to obtain sol–gel systems ocular delivery [115]. Ampicillin-loaded chitosan–polyanion
nanoparticles were developed by Ciro et al. through ionic gelation and polyelectrolyte
complexation using anionic polyelectrolytes corresponding to the sodium and potassium
salts of poly(maleic acid-alt-ethylene) and poly(maleic acid-alt-octadecene) and studied
for their antibacterial properties [116]. Furthermore, Evangelista et al. also synthesized
supramolecular polyelectrolyte complexes based on the interactions between the positively-
charged -NH3

+ groups of the β-cyclodextrin-grafted chitosan and the negatively-charged
-SO3

- groups of the carrageenan for antimicrobial applications. Specifically, β-cyclodextrin
was used owing to its possibility to form host–guest inclusion complexes with the silver sul-
fadiazine molecules that will release silver ions against bacterial cells [117]. Another study
by Walvekar et al. investigated the antibacterial effects of hyaluronic acid–oleylamine conju-
gates with different degrees of conjugation as drug nanocarriers against methicillin-resistant
S. aureus. Precisely, the vancomycin antibiotic was encapsulated into polymersomes, which
are nanocapsules comprising hydrophilic polymers grafted with long fatty acids that have
the capacity to self-assemble into spherical drug carriers [118]. Moreover, Oliveira et al.
developed a double-layer biomembrane comprising chitosan, hydroxypropyl methylcel-
lulose, and lidocaine chloride as an anesthetic drug as the first layer and polymyxin B
sulfate antibiotic-containing sodium alginate nanoparticles as the second layer for wound
treatment [119].
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Table 1. Summary of the identified studies investigating the antibacterial properties of nanoparticles synthesized from natural polymers.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

phosphatidylcholine
CS NPs 137.2–231.8 −27.6 to −31.8 L. monocytogenes,

S. aureus
P. aeruginosa, E.

coli
L. monocytogenes,

P. aeruginosa passive gentamycin

MIC results indicated
similar antibacterial

effects between the NPs
and gentamycin alone;

biofilm mass results
showed a stronger

inhibition capacity of
the systems than

gentamycin alone.

[114]

CS NPs and CS
NPs dispersed
into Carbopol

sol–gel systems

135.2 +25.1 S. aureus E. coli - pH-responsive gentamycin

ZOI was higher for NPs
than for the marketed
Gentacin eye drop, but
lower than for sol–gel

systems due to a
sustained drug release
in both bacterial types.

[115]

CS–polyanion
NPs 130.7–249.2 +39.5 to +49.2

S. aureus
(ATCC25923,

ATCC29213, and
ATCC43300)

- - passive ampicillin

MIC increased by 50%
once the antibiotic was
encapsulated into the
NPs, independent of

the
ampicillin-resistance

degree.

[116]
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Table 1. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

β-cyclodextrin-
grafted CS and

carrageenan
SPECs

10–60 −40 to +42

S. aureus
(ATCC25923), E.

durans/hirae
(SS1225/ IAL

03/10)

K. pneumoniae
(ATCC700603),

E. coli
(ATCC25922)

- passive silver
sulfadiazine

ZOI for the
drug-loaded SPECs was

similar to the ZOI for
the drug alone and
gentamycin alone,

especially in the case of
Gram-positive bacteria;

MIC values for the
drug-loaded SPECs

were equal to the values
for the drug alone and
half of the values for
the gentamycin alone
against both S. aureus

and E. coli.

[117]

hyaluronic
acid–oleylamine
polymersomes

201.4–360.9 −20.4 to −17.6 S. aureus and
MRSA - - passive vancomycin

MIC values were
considerably lower for

the free gentamycin,
but it lost its activity

after 24 h;
polymersomes were not

as potent as the free
vancomycin but were
able to improve the

antibacterial effects due
to a slow and controlled

release over a
prolonged period of

time.

[118]
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Table 1. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

Double-layer
membrane

comprising a
sodium alginate
NPs layer and a

chitosan and
hyaluronic acid

layer

n.r. n.r. S. aureus
(ATCC25923)

P. aeruginosa
(ATCC27853) - passive polymyxin B

sulphate

MIC values for the NPs
were lower than for the

drug alone;
MIC values for the
biomembrane were

lower than for the NPs
due to the synergistic
antibacterial effects of

the components.

[119]

mannose-
functionalized CS

NPs
180 +25.4 L. monocytogenes,

S. aureus
E. coli, P.

aeruginosa

L. monocytogenes,
S. aureus, E. coli,

P. aeruginosa

mannose-
binding
lectins

-

mannose
functionalization

increased inhibited
bacterial growth more
significantly due to the

interaction with the
bacterial membrane

lectins;
growth inhibition was

higher for
Gram-negative bacteria;
NPs effectively reduced

the adherence of
bacteria in the

polystyrene adherence
assay;

mannose-
functionalized CS NPs
exhibited the highest

antibiofilm potential, as
compared to the simple

CS NPs, especially
against E. coli and P.

aeruginosa.

[120]
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Table 1. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

cationic betaine
CS derivatives

NPs
108–807 +33.1 to +69.1 S. aureus E. coli - passive -

NPs possess higher
antibacterial activity

than pristine polymers;
antibacterial activity is

dependent upon the
NPs size and the

ξ-potential—smaller
sizes and higher

ξ-potentials leads to
increased antibacterial

activity.

[121]

CS NPs 223.2–444.5 +10.1 to +34.5 L. monocytogenes,
S. aureus S. typhi, E. coli - passive clove EOs

the highest inhibitory
activity was achieved
for EOs-encapsulated
NPs, as compared to

the pure EOs and
unloaded NPs against

all bacterial strains;
IH values were higher

for S. aureus and L.
monocytogenes;

MIV values were the
lowest for the

EOs-encapsulated NPs
against all bacterial

strains.

[122]
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Table 1. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

CS NPs 208.3–369.4 +14.4 to +30.1
L. monocytogenes,

S. aureus, B.
cereus

S. typhi, E. coli - passive nettle EOs

the highest inhibitory
activity was achieved
for EOs-encapsulated
NPs, as compared to

the pure EOs and
unloaded NPs against

all bacterial strains;
IH values were higher

for S. aureus;
MIV values for the

EOs-encapsulated NPs
were similar to the

values for the pure EOs
and considerably lower
than the unloaded NPs.

[123]
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Table 1. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

cellulose acetate
NCs 150–200 −42 to −38 S. aureus

(ATCC25923)

P. aeruginosa
(ATCC25324), E.

coli
(ATCC25922)

P. aeruginosa, E.
coli, S. aureus passive

peppermint,
cinnamon, and

lemongrass EOs

the most efficient were
cinnamon

EOs-encapsulated NCs,
with significant growth

inhibition of all
bacterial strains,
especially E. coli;

peppermint
EOs-encapsulated NCs

demonstrated a low
inhibitory activity

against the growth of S.
aureus and C. albicans;

lemongrass
EOs-encapsulated NCs
slightly inhibited the

development of E.coli;
P. aeruginosa strain

revealed the highest
resistance to the tested

NCs;
lowest MIC values were

obtained for the
cinnamon

EOs-encapsulated NCs;
most significant

antibiofilm formation
was observed against S.

aureus biofilms for
cinnamon

EOs-encapsulated NCs.

[124]
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Table 1. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

zein protein NCs 134.9 −28.6 S. aureus
(ATCC25923) - - antibody-based

targeting oregano EOs

EOs encapsulation
enhanced the

antibacterial effects as
compared to the

pristine EOs;
antibody attachment
further enhanced the
antibacterial activity;
antibody attachment

ensured a more specific
activity against S.

aureus co-cultured with
the P. aeruginosa

(ATCC10145) strain;
antibody attachment

inhibited S. aureus
growth and protected
human skin fibroblasts

in co-culture.

[125]

CS NPs 210.0/329.6 +30.8/+37.4 S. aureus
(ATCC25923) - -

rhamnolipid-
based

targeting

sophorolipids
and

rhamnolipids

significantly higher
MIC values for
rhamnolipid-

containing NPs and
sophorolipid-

containing NPs
compared to the

levofloxacin control;
lower MIC values for

both
glycolipid-containing
NPs compared to the

unloaded NPs.

[126]
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Table 1. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

dextran NPs 18 −13 - P. aeruginosa
(PAO1) - SET-M33

peptide
SET-M33
peptide

similar MIC values
between the free
peptide and the

peptide-functionalized
NPs;

regrowth occurred after
24 h of exposure to the

nanosystems.

[127]

CS and
hydroxypropyl-
methylcellulose

NPs

440–1660 +18.1 to +38.9 -

E. coli
(ATCC25922), E.
coli producing

extended-
spectrum

beta-lactamases,
carbapenemase-

producing K.
pneumoniae

- passive
ceftriaxone and

S. brasiliensis
extract

lowest MIC values for
the nanosystems
compared to the

ceftriaxone-containing
NPs and S.

brasiliensis-containing
NPs against all strains;
lowest MBC values for

the nanosystems
compared to the

ceftriaxone-containing
NPs and S.

brasiliensis-containing
NPs against all strains.

[128]

CS—chitosan; NPs—nanoparticles; MIC—minimum inhibitory concentration; ZOI—zone of inhibition; SPECs—supramolecular polyelectrolyte complexes; MRSA—methicillin-resistant S. aureus; n.r.—not
reported; EOs—essential oils; IH—inhibitory halo; NCs—nanocapsules; MBC—minimum bactericidal concentration.
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By contrast, many recent studies are focusing on alternative antimicrobial agents
in order to avoid the use of antibiotics that are prone to cause the resistance of the bac-
teria. The study performed by Ejaz et al. is an example of such applications, as they
developed mannose-functionalized chitosan nanoparticles with intrinsic antibacterial prop-
erties against Gram-positive and Gram-negative bacteria and antibiofilm character [120].
Moreover, Kritchenkov et al. developed betaine-type chitosan derivative nanoparticles
through an ultrasound-assisted catalyst-free thiol-yne click chemistry with antibacterial
activity [121]. Alternatively, there is an increasing interest in the use of essential oils as
antibacterial agents in polymer-based drug delivery systems. In this context, there are two
studies performed by Hadidi et al. and Bagheri et al., respectively, that investigated the
effects of clove [122] and nettle [123] essential oils encapsulated into chitosan nanoparticles.
Another study by Liakos et al. investigated the antimicrobial properties of peppermint,
cinnamon, and lemongrass essential oils containing cellulose acetate nanocapsules [124].
Furthermore, Ivanova et al. developed antibody-functionalized self-assembled nanocap-
sules comprising zein plant protein and containing oregano essential oils. This approach
allows for the specific targeting of S. aureus bacterial strains while reducing the dosage and
the system’s toxicity [125]. Other bioactive compounds that can be used as antimicrobial
agents include antimicrobial glycolipids, such as sophorolipids and rhamnolipids encapsu-
lated into chitosan nanoparticles [126], and antimicrobial peptides, such as the SET-M33
peptide, encapsulated into dextran nanoparticles [127].

Another strategy for antibacterial therapies involves developing polymeric nanoparti-
cles as nanocarriers of both antibiotic drugs and alternative biocompounds. For example,
de Oliveira et al. developed polymeric nanoparticles consisting of chitosan and hydrox-
ypropylmethylcellulose to administer the ceftriaxone antibiotic and S. brasiliensis extract in
antibacterial therapies [128].

Synthetic polymers are also widely used in nanoparticle development for biomedical
applications [129]. In this context, Table 2 summarizes all the identified studies investigat-
ing their use in antibacterial therapies. Among them, the most commonly used include
PLGA, PEG, PLA, and PCL, which have been investigated for the delivery of both antibi-
otics and alternative antibacterial drugs.

For instance, Ucak et al. investigated the antibacterial effect of teicoplanin-containing
PLGA nanoparticles functionalized with S. aureus-specific aptamers [130]. Moreover,
Deepika et al. synthesized PEG–PLGA nanoparticles for the co-delivery of rutin, a natural
drug, and benzamide, a synthetic compound [131]. Alternatively, Durak et al. studied
the effects of PLGA NPs containing natural biocompounds known for their antibacterial
activities, namely caffeic acid and juglone [132]. Another study performed by Parmar et al.
synthesized hybrid nanocomposites based on biogenic zinc oxide nanoparticles treated
with A. indica leaf extract and PLGA [133].

Moreover, Da Costa et al. investigated the potential of rifampicin-containing PLA
nanoparticles functionalized with poly-L-lysine. This cationic peptide could reverse the
negative nanoparticle surface charge to positive, against planktonic bacteria and biofilm
growth [134]. By contrast, Vrouvaki et al. developed PLA nanoparticles encapsulating
the Pistacia lentiscus L. var. chia essential oil against Gram-positive and Gram-negative
bacteria [135].

PCL was also studied for its potential in polymeric drug delivery systems applications
in antibacterial therapies. Specifically, Srisang et al. prepared chlorhexidine-loaded PCL
nanospheres for coating urinary catheters using a semi-automatic spray coater. The an-
tibacterial effects of the coating were tested against common uropathogens causing urinary
tract infections [136].
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Table 2. Summary of the identified studies investigating the antibacterial properties of nanoparticles synthesized from synthetic polymers.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

PLGA NPs 226 −29

S. aureus
(ATCC29213,
ATCC25923,

ATCC43300), B.
cereus

(ATCC12228),
MRSA

(EGE-KK-13,
EGE-KK-95)

- - aptamer-based
targeting teicoplanin

MIC values were
considerably decreased
upon the encapsulation
of teicoplanin into the
NPs for all bacterial

strains;
MIC values decreased

even more after
aptamer attachment for
the S. aureus strains but
considerably increased

for the B. cereus.

[130]

PEG–PLGA NPs 260–291 −22.4 to −17.6 S. aureus
(MTCC96)

P. aeruginosa
(MTCC2488)

S. aureus, P.
aeruginosa passive rutin and

benzamide

MIC values decreased
with the encapsulation

of the drugs into the
NPs when compared to

either drug alone;
rutin and

rutin-encapsulated NPs
exhibited higher MIC

values than benzamide
and benzamide-

encapsulated NPs,
respectively;

biofilm inhibition
analysis followed a
trend similar to the

MIC assay.

[131]
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Table 2. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

PLGA NPs 151.4–196.1 −25.7 to −21.2 S. aureus E. coli - passive caffeic acid and
juglone

MIC values were
similar or slightly lower
for the drug-containing

NPs;
ZOI were similar or

slightly lower for the
drug-containing NPs.

[132]

PLGA–ZnO
nanocomposites 185.7 −5.9 S. aureus E. coli - passive -

ZOI were considerably
higher for the

nanocomposites than
for the zinc oxide NPs

or the standard
antibiotic;

ZOI were higher
against S. aureus due to

electrostatic
interactions.

[133]
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Table 2. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

PLA NPs 162 +40 S. aureus
(SH1000) - S. aureus

poly-L-lysine
attached on the

surface
rifampicin

MIC values against
planktonic S. aureus
were similar for all

tested systems, namely
the free antibiotic,

antibiotic-encapsulated
NPs, and

antibiotic-encapsulated
NPs functionalized
with poly-L-lysine;

antibiofilm properties
were similar for all

tested systems, namely
the free antibiotic,

antibiotic-encapsulated
NPs, and

antibiotic-encapsulated
NPs functionalized
with poly-L-lysine;

interactions between
poly-L-lysine-
functionalized

nanoparticles are
dose-dependent.

[134]

PLA NPs 239.9/286.1 −29.1/−34.5
B. subtilis sub.

spizizenii
(DSM-347)

E. coli
(DSM-1103) - passive Pistacia lentiscus

L. var. chia EOs

MIC values for the
EOs-functionalized NPs
were lower than for the

EOs dissolved in
organic solvents but

higher than for
gentamycin against E.
coli and higher than all

cases for B. subtilis.

[135]
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Table 2. Cont.

Nanoparticle
Type

Size Range
[nm]

Zeta Potential
[mV]

Targeted Bacteria Targeting
Strategy

Antibacterial
Agent Results Ref.

Gram-Positive Gram-Negative Biofilm

PCL NSs 152 −10.2 S. aureus
(ATCC25423)

E. coli
(ATCC25922) - passive chlorhexidine

inhibition of 50%
growth of the

microorganisms up to
15 days.

[136]

cationic acrylate
copolyvidone–

iodine
NPs

200 +11.7 S. aureus E. coli - passive -

no bacterial growth in
the presence of the NPs
due to the synergistic
effects of iodine and

quaternary ammonium
salts;

NPs maintained
antibacterial effects for

11 days;
growth inhibition of S.
aureus was lower than

that of E. coli;
NPs exhibited

significant
dose-dependent

inhibitory effects.

[137]

PEC NPs >200 ≈0/>|40|

S. aureus
(ATCC25923,
ATCC29213,
ATCC43300)

- - passive ampicillin

different antibacterial
behaviors depending
on the family of the

complex.

[138]

NPs—nanoparticles; MRSA—methicillin-resistant S. aureus; MIC—minimum inhibitory concentration; ZOI—zone of inhibition; EOs—essential oils; NSs—nanospheres; PEC—polyelectrolyte complex.
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Other polymeric nanoparticles include cationic acrylate copolyvidone–iodine nanopar-
ticles with a dual antibacterial activity center comprising the small molecule iodine and
quaternary ammonium salt copolymers [137] and polyelectrolyte complex nanoparticles
formed between the polymeric salts derived from Eudragit-E100™ and sodium salt of
poly(maleic acid-alt-octadecene) for the delivery of ampicillin [138].

It can be observed that all the polymeric nanoparticles-based drug delivery systems
exceed 100 nm, which is the generally accepted size limit for nanomaterials. However,
considering the significant difficulty associated with the synthesis of small size polymeric
nanoparticles, they are generally expected to be smaller than 200 nm in drug delivery
applications in order to avoid any adverse reactions to the organism, such as embolisms.
Therefore, most of the presented studies describe polymeric nanoparticles that are safe to
use as nanocarriers for antimicrobial agents.

Furthermore, zeta potential was considered as the primary indicator for colloidal
stability, with an appropriate stability for values other than −30 to +30 mV. Additionally,
as it was previously mentioned, particles with positive surface charges exhibit increased
antimicrobial potential due to the electrostatic interactions with the negative charge of the
bacteria surface. Therefore, the optimum zeta potential values for polymeric nanoparticles
for antimicrobial therapies should be higher than +30 mV, ensuring both the stability and
the antimicrobial effects of the nanoparticles.

In this manner, chitosan remains a promising candidate for the development of
antimicrobial agents due to its positively charged surface, providing intrinsic antimicrobial
properties, and the possibility to synthetize nanoparticles with sizes lower than 200 nm.
Additionally, chitosan is a natural polymer, thus eliminating the risk of toxicity when
introduced into the organism and ensuring a proper biodegradability for a controlled drug
release without toxic by-products.

Other applications involve the development of nanocoatings containing both inor-
ganic and polymeric nanoparticles through various methods, such as the matrix-assisted
pulsed laser evaporation. Examples of such studies include silver nanoparticles/PLA
nanocoatings [139] or silver nanoparticles/polyethylene terephthalate nanofibers [140]
and simple [141] or functionalized with lincomycin [142], cefepime [143], or Nigella sativa
essential oils [144] magnetite nanoparticles/PLGA nanocoatings.

3.2. Antiviral Nanoparticles

In the context of antiviral properties, the studies discussed below are targeting the
application of polymeric nanoparticles for antiviral therapies. The criteria involved in the
process of article selection involved papers published after 2018 from the Scopus database
using the keywords “polymeric nanoparticles” and “antiviral”. Thus, two relevant studies
were identified and briefly described.

Alamdaran et al. developed chitosan nanoparticles with HIV-1 P24 protein-derived
peptides adsorbed onto the surface as an alternative to counteract microbial resistance.
The nanoparticles’ loading and releasing efficiency were investigated on human periph-
eral blood lymphocyte cells, and results showed reduced toxicity and side effects and a
controlled and sustained peptide drug release [145]. Furthermore, Belgamwar et al. investi-
gated the efficiency of dolutegravir sodium-loaded nanoparticles comprising hydroxypropyl-
β-cyclodextrin cross-linked with diphenyl carbonate in order to enhance the central nervous
system uptake through the intranasal administration route. Results proved an improved
permeation of the drug through the nasal mucosa and access in the cerebrospinal fluid
without damaging the mucosa [146].

3.3. Antifungal Nanoparticles

In the context of antifungal properties, the studies discussed below are targeting
the application of polymeric nanoparticles for antifungal therapies. The criteria involved
in the process of article selection involved papers published after 2018 from the Scopus
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database using the keywords “polymeric nanoparticles” and “antifungal”. Thus, five
relevant studies were identified and briefly described.

Costa et al. developed chitosan nanoparticles for the co-administration of miconazole
and farnesol for the treatment of vulvovaginal candidiasis, which is mainly caused by
the opportunistic fungal strain C. albicans. Results regarding the microorganism growth
inhibition on the C. albicans (ATCC28367) showed a minimum inhibitory concentration
(MIC) for the nanosystems similar to the values for the miconazole free drug. Moreover,
the nanosystems administered in the murine model of vulvovaginal candidiasis were
considered the most effective for infection inhibition [147]. Similarly, Charanteja Reddy et al.
developed chitosan nanoparticles incorporating itraconazole that could be potentially used
against C. neoformans, C. albicans, and A. fumigatus [148]. Furthermore, nanocapsules
based on Sterculia striata polysaccharide modified with propionic anhydride through the
acylation reaction were synthesized by Sombra et al. for the delivery of amphotericin B. The
nanosystems revealed antifungal activity against four C. albicans strains, with MIC values
lower for two strains and higher for the other strains when compared to the free drug [149].
Additionally, the previously described studies by Liakos et al. [124] and Srisang et al. [136]
also exhibited antifungal activity against C. albicans strains.

3.4. Antiparasitic Nanoparticles

In the context of antiparasitic properties, the studies discussed below are targeting
the application of polymeric nanoparticles for treatment against parasitic infections. The
criteria involved in the process of article selection involved papers published after 2018 from
the Scopus database using the keywords “polymeric nanoparticles” and “antiparasitic”.
Thus, two relevant studies were identified and briefly described.

Specifically, Real et al. studied the effect of chitosan nanocapsules containing triclaben-
dazole, a poorly water-soluble compound used as the drug of choice in the treatment of
fascioliasis. Results showed increased stability of over one month and strong interactions
with enterocytes, thus enabling a higher uptake and sustained release of the drug [150].
Furthermore, the previously mentioned study performed by Durak et al. also exhibited
antiparasitic effects against the Leishmania promastigotes protozoan parasites, with a
dose-dependent antileishmanial [132].

4. Conclusions and Future Perspectives

The antimicrobial resistance of microorganisms that resulted from the overuse and
abuse of antimicrobial drugs has become a critical and serious health problem that has
led to many deaths worldwide. Nanotechnology has been applied to design alternative
antimicrobial agents that could overcome the limitations of conventional drugs. Particularly,
polymeric nanoparticles have been widely investigated for their potential to passively or
actively target microbial strains and act both as a drug nanocarrier and as an antimicrobial
agent due to intrinsic antimicrobial properties. In this context, numerous studies are
investigating their application in antimicrobial therapies, but most are targeting bacterial
pathogens. Therefore, there is still room for the improvement of polymeric nanoparticles
for antiviral, antifungal, or antiparasitic applications, especially concerning the current
COVID-19 pandemic situation that has been affected by the lack of effective antiviral agents.
In this context, polymeric nanoparticles could efficiently target the coronavirus through
active microbial targeting strategies and release appropriate quantities of the antiviral
agent to destroy the pathogen.

While polymer-based nanoparticles offer a series of advantages, such as increased
biocompatibility, biodegradability, and clearance from the human organisms, there are still
some limitations associated with the currently available systems that must be considered.
Specifically, the size and the size distribution of polymeric nanoparticles are variables that
generally pose significant challenges in the manufacturing process. In this regard, mi-
crofluidic approaches could offer a potential alternative that could lead to the development
of more uniform and smaller nanoparticles. Additionally, such technologies could allow
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for the one-step functionalization and drug encapsulation, thus eliminating some of the
reaction steps involved in the conventional synthesis and ensure the optimum stability of
the nanoparticles through the possibility of modulating the surface charge.
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