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Abstract: Isosteviol (ISV), a diterpene molecule, is an isomer of the backbone structure of a group
of substances with proven antidiabetic capabilities. The aim of this study was to investigate if
ISV elicits dynamic insulin release from pancreatic islets and concomitantly is able to ameliorate
gluco-, lipo-, and aminoacidotoxicity in clonal β-cell line (INS-1E) in relation to cell viability and
insulin secretion. Isolated mice islets placed into perifusion chambers were perifused with 3.3 mM
and 16.7 mM glucose with/without 10−7 M ISV. INS-1E cells were incubated for 72 h with either
30 mM glucose, 1 mM palmitate or 10 mM leucine with or without 10−7 M ISV. Cell viability was
evaluated with a Cytotoxic Fluoro-test and insulin secretion was measured in Krebs-Ringer Buffer
at 3.3 mM and 16.7 mM glucose. In the presence of 3.3 mM glucose, 10−7 M ISV did not change
basal insulin secretion from perifused islets. However, at a high glucose level of 16.7 mM, 10−7 M
ISV elicited a 2.5-fold increase (−ISV: 109.92 ± 18.64 ng/mL vs. +ISV: 280.15 ± 34.97 ng/mL;
p < 0.01). After 72 h gluco-, lipo-, or aminoacidotoxicity in INS-1E cells, ISV treatment did
not significantly affect cell viability (glucotoxicity, −ISV: 19.23 ± 0.83%, +ISV: 18.41 ± 0.90%;
lipotoxicity, −ISV: 70.46 ± 3.15%, +ISV: 65.38 ± 2.81%; aminoacidotoxicity: −ISV: 8.12 ± 0.63%;
+ISV: 7.75 ± 0.38%, all nonsignificant). ISV did not improve impaired insulin secretion (glucotoxicity,
−ISV: 52.22 ± 2.90 ng/mL, +ISV: 47.24 ± 3.61 ng/mL; lipotoxicity, −ISV: 19.94 ± 4.10 ng/mL,
+ISV: 22.12 ± 3.94 ng/mL; aminoacidotoxicity: −ISV: 32.13 ± 1.00 ng/mL; +ISV: 30.61 ± 1.54 ng/mL,
all nonsignificant). In conclusion, ISV acutely stimulates insulin secretion at high but not at low
glucose concentrations. However, ISV did not counteract cell viability or cell dysfunction during
gluco-, lipo-, or aminoacidotoxicity in INS-1E cells.
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1. Introduction

Type 2 diabetes (T2D) continues to be a leading cause of death and mortality worldwide. It is
characterized by hyperglycemia and frequently accompanied by hyperlipidemia and slightly elevated
circulating amino acid levels. Inadequate levels of plasma insulin elevate hepatic glucose production,
reduce insulin-mediated glucose uptake in skeletal muscle, and increase free fatty acid mobilization
from adipose tissue, which promote the deterioration of glycemic control [1]. The total amount of
released insulin in plasma depends on pancreatic β-cell proliferation and function [2], which plays
a key role in T2D disease progression [3,4].
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Chronic exposure to abnormally high blood glucose levels (glucotoxicity) promotes oxidative
stress [5,6]. Subsequently, the adaptive antioxidant response impairs glucose-derived reactive oxygen
species (ROS) signaling and glucose-stimulated insulin secretion (GSIS). Over time, this can perpetuate
impaired pancreatic β-cell function and decreased β-cell mass [7,8]. Studies have reported that
glucotoxicity negatively regulates insulin gene expression by decreasing insulin transcription factors,
with pancreatic duodenal homeobox factor 1, BETA/NeuroD, and RIPE3b1/MafA included [5,9–12].
Kowluru et al. (2017) proposed that glucose toxicity induces inappropriate movement of the
unprenylated yet constitutively active G protein Rac1, leading to β-cell apoptosis and dysfunction [13].

Prolonged exposure to high concentrations of palmitate has detrimental effects on β-cell viability
and function [14–18], possibly mediated by endoplasmic reticulum stress [19], increased ROS [20,21],
impaired mitochondrial functions [22,23], altered acetylation of multiple proteins [24]. We have
previously shown that long-term exposure to high lipid concentrations (lipotoxicity) causes a series
of alteration in pancreatic islets including relatively elevated glucagon secretion, decreased insulin
secretion, loss of α-cell sensitivity to glucose, and an accumulation of triglycerides [25].

We have also demonstrated that chronic exposure to elevated levels of leucine and proline
(aminoacidotoxicity) induces β-cell dysfunction, with increased basal insulin secretion and decreased
GSIS in both isolated pancreatic islets and clonal β-cells [26–28]. Interestingly there is an association
between high-protein intake and impaired glucose tolerance, insulin resistance, and T2D [29–31].
More over, during obesity and insulin resistance, high circulating levels of amino acids, e.g., leucine,
proline, and valine, are seen [31].

Isosteviol (ISV) is mainly obtained by acid hydrolysis of stevioside, the sweet food additive
extracted from the plant Stevia Rebaudiana Bertoni (Bertoni). Studies have shown that ISV
possesses various biological activities including anti-hyperglycemic, anti-hypertensive, anti-tumor,
anti-inflammatory, and antioxidant effects [32]. We have shown that ISV improves glucose and insulin
sensitivity, lowers plasma triglycerides, lowers weight in diabetic KKAy mice, and markedly changes
the gene expression profile of key insulin regulatory genes [33,34]. Additionally, we found evidence
that ISV counteracts α-cell hypersecretion and contributes to changes in the expression of key genes
after long-term exposure to palmitate [35].

In the present study, we tried to mimic T2D conditions in clonal β-cell line (INS-1E) by inducing
gluco-, lipo-, or aminoacidotoxicity, and tested whether ISV could counteract the detrimental effects
observed. We also wanted to investigate the dynamic insulin secretion elicited by ISV from pancreatic
mouse islets.

2. Materials and Methods

2.1. Materials

Tissue and cell culture medium RPMI 1640 was obtained from GIBCO BRL (Paisley, UK).
Guinea pig anti-porcine insulin antibody, mono-125I-(Tyr A14)-labeled human insulin, and porcine
insulin were from Novo Nordisk (Bagsvaerd, Denmark). Collagenase P was obtained from Boehringer
Mannheim GmbH (Mannheim, Germany) and Hanks’ balanced salt solution (HBSS), bovine serum
albumin (BSA), and other chemicals were obtained from Sigma Chemical (St. Louis, MO, USA).
ISV was purchased from Wako Pure Chemical Industries (Tokyo, Japan) and was added to the medium
from a stock solution (10−2 M) prepared in 99% ethanol.

50 mM palmitic acid: Palmitic acid (Sigma) was prepared by dissolving and heating equal molar
amounts of NaOH, supplemented with distilled water, to obtain a concentration of 100 mM. It was
further diluted with 10% BSA (fatty acid free) to 50 mM fatty acid, with 5% BSA. The stock solution
was frozen at −20 ◦C until usage.

Modified Krebs-Ringer Buffer (M-KRB): 125 mM NaCl, 1.2 mM MgCl2, 5.9 mM KCl, 1.28 mM
CaCl2, 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 5.0 mM NaHCO3 (pH 7.4;
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All Sigma). SYTO 24 solution: 5 mM SYTO 24 green fluorescent nucleic acid stain (molecular probes,
Invitrogen, Eugene, OR, USA) in dimethyl sulfoxide was diluted to a final concentration of 0.01 mM.

2.2. Isolation of Islets

Pancreatic islets were isolated from adult female NMRI mice (Taconic, Ry, Denmark) weighing
22 to 25 g by the collagenase digestion technique, as described previously [36,37]. Briefly, after the mice
were anaesthetized with pentobarbital intraperitoneally, a midline laparotomy was applied and the
distal end of the common bile duct was clamped at the papilla vateri. Thereafter, the hepatic duct was
cannulated and 3 mL of ice-cold HBSS containing 0.3 mg/mL of Collagenase P was injected into the
duct system of the pancreas. The whole pancreas was removed and then placed in a test tube in water
bath at 37 ◦C for 19 min. After being washed three times with HBSS, the islets were hand-picked under
a stereomicroscope and immediately transferred to RPMI 1640 medium and incubated overnight. Islets
for perifusion studies were obtained from 12~20 mice to compensate for inter-individual differences.

2.3. Perifusion of Islets

After overnight culture, the islets were rinsed twice with a M-KRB supplemented with 3.3 mM
glucose and 0.1% BSA. In the perifusion experiments, 30 pre-incubated islets were transferred to each
of the perifusion chambers [37]. The experiments were designed as follows: (1) 10-min pre-perifusion
at 3.3 mM glucose; (2) 20-min perifusion at 3.3 mM glucose with/without ISV (10−7 M); (3) 40-min
wash-out at 3.3 mM glucose; (4) 20-min perifusion at 16.7 mM glucose with/without ISV (10−7 M);
(5) 40-min wash-out at 3.3 mM glucose; (6) 20-min perifusion at 16.7 mM glucose with 0.1 mmol/L
carbamylcholine (Sigma). The flow rate was 75 µL/min. Samples were collected every 2 min.

2.4. Culture of INS-1E Cells

INS-1E cells (a generous gift from Prof. Claes B. Wollheim, Geneva, Switzerland) [38] with passage
numbers between 70–89 were cultured in RPMI 1640 medium containing 11.1 mM D-glucose at 37 ◦C
in a humidified atmosphere containing 95% air and 5% CO2. The medium was supplemented with:
10% fetal bovine serum, 100 IU/mL penicillin, 100 µg/mL streptomycin, 10 mM HEPES, and 5 µM
2-mercaptoethanol. The cells were passaged weekly.

2.5. Viability of INS-1E Cells

INS-1E cells were seeded in 96-well Black Visiplate TC plates (Wallac Oy, Turku, Finland) at
a density of 3 × 104 cells/well in 100 µL medium. The cells were allowed to adhere overnight.
Thereafter, they were treated and cultured with different concentrations of glucose, palmitic acid,
and leucine with/without 10−7 M ISV or 10−7 M Glucagon-like peptide-1 (GLP-1). After 72 h,
the number of dead cells in each well was calculated using a fluorometric assasy kit based on the cell
lysis and staining method (Cytotoxic Fluoro-test Wako; Wako Pure Chemical Industries, Osaka, Japan)
in the FLUOstar Galaxy (BMG, Ramcon, Denmark).

2.6. Insulin Secretion from INS-1E Cells

The INS-1E cells were seeded in 24-well Black Visiplate TC (Wallac Oy, Turku, Finland) plates at
a density of 3.0 × 105 cells/well in 1 mL medium. After adhering overnight, the cells were cultured
in RPMI 1640 with different concentrations of glucose, palmitic acid, and leucine with/without
10−7 M ISV or 10−7 M GLP-1. After 72 h of incubation, the cells were pre-incubated with M-KRB
supplemented with 3.3 mM glucose and 0.1% BSA for 15 min and then the cells were incubated in
1 mL M-KRB containing 3.3 or 16.7 mM glucose for 1 h. Subsequently, supernatants (300 µL) were
collected, centrifuged, and 200 µL were kept at −20 ◦C for insulin analysis. After the secretion study,
the number of cells was estimated using nuclear staining with 0.01 mM SYTO 24 reagent (20 µL/well)
and measured by FLUOstar Galaxy. Insulin levels were normalized to cell number.
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2.7. Insulin Assay

Insulin was analyzed by radioimmunoassay using guinea pig anti-porcine insulin antibody
(Novo Nordisk, Bagsvaerd, Denmark). Mono-125I-(Tyr A14)-labeled human insulin (Novo Nordisk)
was used as tracer and rat insulin (Novo Nordisk) was used as a standard. Ethanol was added to separate
bound and free radioactivity. The inter- and intra-assay variation coefficients were both less than 5%.

3. Statistical Analysis

All data analysis was performed with GraphPad Prism Software Version 7.0 (GraphPad Software,
San Diego, CA, USA). Statistical significance between two groups was evaluated using unpaired
Student’s t-test. Data are presented as the mean ± standard error of the meam (SEM); p-values < 0.05
were considered significant.

4. Results

4.1. Effects of ISV on the Dynamic of Insulin Release from Perifused Mouse Islets

In the presence of 3.3 mM glucose, the addition of ISV did not change basal insulin secretion.
As expected, a biphasic insulin response was found when glucose level was increased from 3.3 to 16.7 mM.
Figure 1 shows that in the presence of high levels of glucose (16.7 mM), ISV (10−7 M) elicited a pronounced
and sustained 2.5-fold (p = 0.0016) monophasic increase in insulin release. At 130–150 min, the insulin
AUC (area under the curve) increased 2-fold (p = 0.0058) in the ISV group compared to the control.
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Figure 1. Insulin secretion from mouse islets in perifusion experiments in the absence (control #) or
presence (intervention ) of 10−7 M isosteviol (ISV) at 3.3 mM and 16.7 mM glucose. Each curve represents
the average ± standard error of the meam (SEM) of six perifusion experiments, each containing 30 islets.
Experiments were finished off with carbamylcholine as a positive control at 16.7 mM glucose.

4.2. Impact of Gluco-, Lipo-, and Aminoacidotoxicity on the Viability of INS-1E Cells

4.2.1. Glucotoxicity

INS-1E cells were challenged with low (5.5 mM) and high (30 mM) glucose for 72 h with and
without 10−7 M ISV and 10−7 M GLP-1. A significant increase of cell death rate was discovered at high
glucose levels compared to the control group (11.1 mM glucose), while no change was found at low
glucose levels. However, no significant change was induced by co-incubation with either 10−7 M ISV
or 10−7 M GLP-1(Figure 2).
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Figure 2. Effects 10−7 M ISV and 10−7 M Glucagon-like peptide-1 (GLP-1) on cell death rate in
glucose-treated INS-1E cells. We measured cell death rate following 72 h of incubation with or without
10−7 M ISV/10−7 M GLP-1, in the presence of 5.5 mM, 11.1 mM, or 30 mM glucose. Data are presented
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4.2.2. Lipotoxicity

Figure 3 shows the effect of 10−7 M ISV and 10−7 M GLP-1 on the viability of INS-1E cells treated
with 0.1 mM, 0.5 Mm, or 1 mM palmitic acid. Cell death level was significantly increased to 36% at
0.5 mM palmitic acid, and to 70% at 1 mM palmitic acid. No significant difference was found after
co-incubation with either 10−7 M ISV or 10−7 M GLP-1.
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cells. We measured cell death rate following 72 h OF incubation with or without 10−7 M ISV and
10−7 M GLP-1, in the medium containing 0.1 mM, 0.5 mM, or 1 mM palmitic acid. Data are presented
as the mean ± SEM of 28 samples per group from three independent expriments. The vehicle of 0 mM
palmitic acid is equivalent to that of 0.5 mM palmitic acid.
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4.2.3. Aminoacidotoxicity

As shown in Figure 4, cell death rates were slightly increased when INS-1E cells were exposed to
1 mM and 10 mM leucine. However, no significant change was induced by co-incubation with either
10−7 M ISV or 10−7 M GLP-1.
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Figure 4. Effects of 10−7 M ISV and 10−7 M GLP-1 on cell death rate in leucine-treated INS-1E cells.
We measured cell death rate following 72 h of incubation with or without 10−7 M ISV and 10−7 M
GLP-1, in the medium containing 1 mM or 10 mM leucine. Data are presented as the mean ± SEM of
28 samples per group from three independent experiments.

4.3. Impact of Gluco-, Lipo-, and Aminoacidotoxicity on Insulin Secretion of INS-1E Cells

4.3.1. Glucotoxicity

Figure 5 shows that at 3.3 mM glucose, BIS (basal insulin secretion) from INS-1E cells remained
unchanged after 72 h of incubation with 5.5 mM and 30 mM glucose. High glucose (16.7 mM)
stimulated insulin secretion increased after 72 h of exposure of the cells to 5.5 mM glucose, but
decreased insulin secretion to 30 mM glucose. Neither 10−7 M ISV nor 10−7 M GLP-1 elicited any
significant changes from INS-1E cells incubated at 5.5 mM, 11.1 mM, and 30 mM glucose
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Figure 5. Effects of 10−7 M ISV and 10−7 M GLP-1 on insulin secretion from glucose-treated INS-1E
cells. After 72 h of incubation with or without 10−7 M ISV and 10−7 M GLP-1, in the medium
containing 5.5 mM, 11.1 mM, or 30 mM glucose, cells were stimulated with low (3.3 mM) and high
(16.7 mM) glucose for 1 h, and subsequently insulin secretion was measured. Data are presented as the
mean ± SEM of 18 samples per group from three independent experiments.

4.3.2. Lipotoxicity

As can be seen in Figure 6, there was no significant change in BIS at 3.3 mM glucose from
INS-1E cells after 72 h of incubation with 0.1 mM, 0.5 mM, or 1 mM palmitic acid. By contrast, high
concentrations (0.5 mM and 1 mM) of palmitic acid significantly decreased insulin secretion after 72 h.
Neither 10−7 ISV nor 10−7 GLP-1 made a significant change in this situation.
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Figure 6. Effects of 10−7 M ISV and 10−7 M GLP-1 on insulin secretion in palmitic acid-treated
INS-1E cells. After 72 h of incubation with or without 10−7 M ISV and 10−7 M GLP-1, in the medium
containing 0.1 mM, 0.5 mM, or 1mM palmitic acid, cells were stimulated at low (3.3 mM) and high
glucose (16.7 mM) for 1 h. Subsequently, insulin secretion was measured. Data are presented as the
mean ± SEM of 18 samples per group from three independent experiments. The vehicle of 0 mM
palmitic acid is equivalent to that of 0.5 mM palmitic acid.
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4.3.3. Aminoacidotoxicity

When INS-1E cells were exposed to 1 mM or 10 mM leucine for 72 h, no significant effect on
insulin secretion was found compared to the control group. Both 10−7 M ISV and 10−7 M GLP-1
showed no effect in these conditions, as illustrated in Figure 7.
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5. Discussion

Numerous studies have shown that the major steviol glycosides, stevioside and Rebaudioside A,
possess anti-hyperglycemic effects [39–44]. The stevioside derivative, ISV, has a higher bioavailability
and a more potent insulinotropic effect. This study is the first to demonstrate that ISV causes a dynamic
insulin stimulatory effect. However, ISV is not able to counteract the toxic effects of chronic exposure
of INS-1E cells to high concentrations of glucose, palmitic acid, or leucine.

T2D is a chronic metabolic disorder that results from relative insulin deficiency and insulin
resistance. In T2D patients, hypoglycemia is a major safety issue that can be fatal, particularly in patients
with cardiovascular diseases. The risk of hypoglycemia is one of the main reasons preventing patients
from achieving optimal glucose levels [45,46]. The incidence of hypoglycemia is a major drawback
for sulfonylureas, a classic medication towards T2D, and it has therefore been assigned a lower
priority in the AACE/ACE (American Association of Clinical Endocrinologists/American College of
Endocrinology) treatment algorithm for T2D [47]. There is an urgent need to identify potential new
drugs that enable T2D patients to both achieve glycemic goals and avoid hypoglycemia simultaneously.
Steviol glycosides seem to have this potential. In the perifusion experiment, we have demonstrated
that ISV elicits a distinct monophasic insulin response, similar to what we have previously found
for stevioside, Rebaudioside A, and steviol [40,44]. That is, ISV stimulated insulin secretion in a
dose-dependent manner. It showed no insulinotropic action at a low glucose level of 3.3 mM, while it
caused a clear-cut insulin release at high glucose levels. Consequently, our results indicate that ISV
possesses the desired potential in the treatment of T2D, since the insulinotropic action present at high
glucose levels disappears at low glucose concentrations.
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Carbamylcholine is a cholinergic agonist, which depolarizes the β-cell by the activation of
the acetylcholine receptors. In the present study, carbamycholine is used as a positive control to
confirm the secretory capacity of the islets. It is noteworthy that during the wash-out period at
90–130 min, the effect on ISV showed some “tale effect”, that is, the effect of ISV did not vanish
immediately but declined gradually toward a basic level. This may be because ISV influences a
receptor (e.g., a TRPM5-related receptor) and remains bound for some time, resulting in the effect
gradually disappearing. TRPM5, transient receptor potential cation channel subfamily melastatin
member 5, is a monovalent cation channel located in various human cells, including Type II taste
receptor cells and pancreatic β-cells [48–50]. An increase in intracellular calcium would activate
TRPM5; Philippaert K. et al. (2017) proved that the potentiation of the channel’s activity by steviol
glycosides modulates taste responses and insulin release, which would explain the feature of the
compound being sweet and lowering blood glucose concurrently [51].

Steviol glycosides share a common aglycone core structure steviol (ent-13-hydrozykaur-16-
en-18-oic acid), which as mentioned could be converted to ISV through acid hydrolysis. The chemical
structures of steviol and ISV are very similar, see Figure 8, indicating that their insulin-secreting effect
is mostly related to their common diterpene skeleton [52].
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As illustrated in Figures 2–4, the toxic concentrations of glucose (30 mM), palmitate (0.5 mM and
1 mM) or leucine (10 mM) caused INS-1E cell death, with an increasing toxic sequence: 10 mM leucine,
30 mM glucose, and 0.5 (or 1) mM palmitic acid. ISV did not counteract the detrimental effects caused
by gluco-, lipo-, or aminoacidotoxicity. However, in the control groups the presence of ISV did not
change cell viability, indicating the absence of cytotoxic effects of ISV and pointing to a promising
safety profile of ISV.

The insulin secretion results depicted in Figures 5–7 are in line with the results from cell viability
studies. When INS-1E cells were exposed to gluco- or lipotoxicity, a large portion of cells were dead and
undoubtedly not functioning well. Therefore, the insulin amount released from the cells was decreased
dramatically. Surprisingly, in the present study the aminoacidotoxicity was minimal since cell death
was only slightly increased and insulin secretion was unaffected during high amino acid levels.

Our results suggest that ISV possesses no protective effects on INS-1E cells when exposed to
gluco-, lipo-, or aminotoxicity. Interestingly, we have previously found that after nine weeks of
treatment with standard chow diet plus ISV, plasma glucose was reduced by 38% in KKAy diabetic
mice, of which the plasma glucose levels were about 26 mM before the treatment [33]. The apparent
discrepancy between the results from the two studies may indicate that the protective effects of ISV
may not operate directly via an effect on INS-1E cells. Alternatively, INS1-E cells per se may not be
sensitive to the protective effects of ISV after long-term gluco-, lipo, or aminoacidotoxicity.
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We also included glucagon-like peptide-1- (7-36) amide (GLP-1) in this study to compare the
pharmacological effects of these two compounds. GLP-1, a potent incretin hormone, has been
developed into an important drug for the treatment of T2D [52]. Until now, few studies have
investigated the effect of GLP-1 in α-cells regarding change in glucagon secretion and cell proliferation
under gluco-, lipo-, and aminoacidotoxicity conditions, and no previous studies have compared its
effect with ISV. GLP-1 and ISV seem to share a few features, e.g., both show glucose-dependent
insulinotropic effects and both lower body weight. Like ISV, GLP-1 did not show significant effects on
cell viability or insulin secretion during long-term gluco-, lipo-, or aminoacidotoxiciy in INS-1 cells.

Impressively, when INS-1E cells were exposed to low glucose (5.5 mM) there was no significant
influence on cell viability, whereas the insulin secretion was dramatically raised. This may reflect that
the cells are more sensitive to glucose stimulation when the prevailing glucose level is relatively low.
This underlines the importance of maintaining optimal glycemic control.

6. Conclusions

In conclusion, ISV did not increase cell death and, in this respect, it appears safe. We showed
a pronounced dynamic effect of ISV on glucose-stimulated insulin secretion from mouse pancreatic
islets. However, ISV does not counteract gluco-, lipo-, or aminoacidotoxicity in INS-1E cells. Further
studies are required to demonstrate the antidiabetic effects of ISV and to further confirm its safety
profile in humans.
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