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Abstract: The transplantation of various immune cell types are promising approaches for the treat-
ment of ischemic cardiovascular disease including myocardial infarction (MI) and peripheral arterial
disease (PAD). Major limitation of these so-called Advanced Therapy Medicinal Products (ATMPs) is
the ischemic microenvironment affecting cell homeostasis and limiting the demanded effect of the
transplanted cell products. Accordingly, different clinical and experimental strategies have been
evolved to overcome these obstacles. Here, we give a short review of the different experimental and
clinical strategies to solve these issues due to ischemic cardiovascular disease.

Keywords: cell therapy; Advanced Therapy Medicinal Product (ATMP); cardiovascular disease;
Peripheral Arterial Disease (PAD); Myocardial Infarction (MI); Ischemia/Reperfusion (I/R)

1. Introduction

The recent development of gene and cell therapies in cardiovascular disease has given
rise to the expectation that the disastrous consequences of occluded vessels in myocardial
infarction (MI) and peripheral arterial disease (PAD) could be treated not only by surgical
or interventional revascularization, but also by induction of regeneration and angiogenesis
in ischemic tissues. However, the transplantation of cells in an ischemic microenvironment
means that a number of obstacles to effective treatment have to be overcome [1,2].

Restriction of blood flow due to arterial stenosis/occlusions leads to reduced perfusion
of the heart and/or peripheral limbs. Subsequently, an undersupply with oxygen, nutrients,
and metabolic substances develops in the area of the sub- or totally occluded arteries with
simultaneous accumulation of toxic cell metabolic products [3,4]. To compensate reduced
perfusion, angiogenesis is induced in the affected tissues, however, as ischemia progresses,
this compensatory capacity is exceeded and tissue ischemia develops [5]. Accordingly, cell
death and apoptosis occur in the supply area of the occluded vessel, which, if left untreated,
leads to the development of infarction/necrosis zones after some time and chronic ischemic
disease [3–5]. This process of tissue damage is characterized at the cellular level by damage
to the cell membrane, swelling of the mitochondria, and finally rupture of the sarcomeres.
In addition, tissue damage is intensified by the increased release of reactive oxygen species
(ROS) by leukocytes migrating into the ischemic areas [4–6]. Due to the cell damage, local
inflammation is induced and circulating monocytes migrate from the bloodstream along
a chemotactic gradient into the tissue [7,8]. During this process, a large proportion of
monocytes differentiate into M2 macrophages, which predominantly contribute to the
debridement of necrotic cells [7,8]. In the course of chronic tissue damage and the resulting
inflammatory response, the endothelial barrier function of vessels is also disrupted [4–6].

Therefore, any kind of cellular agent for cardiovascular therapy is exposed to oxygen
radicals, limited supply of nutrients, and immunological consequences of acute and chronic
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tissue inflammation. As a consequence, cell viability, therapeutic effect, and retention of
the cell product into the ischemic tissues are impaired [9]. Here, we describe several
exemplary strategies to improve cell therapy in ischemic tissues with a special focus on
cardiovascular disease.

Our search strategy included MEDLINE, EMBASE, and PubMed and a complete list of
search terms is given in the annex. In brief, we used a combination of terms that refer to cell
therapy in MI or PAD and supporting approaches (e.g., “cardiovascular disease” and “cell
delivery device”). To be included in this review, studies had to report on primary research,
(meta)data analysis, or recent experiences relating to the search terms, be published in peer-
reviewed journals, and be written in English, French, Italian, Spanish or German (as these
are the languages spoken by the current authors). The initial search yielded 481 papers, of
which 86 contained relevant data and were included in to this review. Table 1 provides an
overview of the different therapeutic strategies.

2. Cell Priming of Cell Products Prior to Transplantation
2.1. Cell Priming by Pro-Angiogenic Factors

A common strategy to enhance cell product efficacy in ischemic cardiovascular disease
is the development of preconditioning protocols prior to cell transplantation. The aim of
this approach is basically to first improve the viability of the cell product, and second, to en-
hance the demanded therapeutic effects (Figure 1A). Most experimental strategies focus on
increasing the release of pro-angiogenetic proteins by the cell product, predominantly vas-
cular endothelial growth factor (VEGF) via cell programming and culturing methods. Lee
and colleagues (2013) demonstrated that a cocktail containing β-mercaptoethanol, all-trans-
retinoic acid, basic fibroblast growth factor (bFGF), human platelet-derived growth factor
(PDGF)-AA, and heregulin-β1 have the potential to improve VEGF release from human
mesenchymal stem cells (MSCs) [10]. A further strategy was introduced by treating en-
dothelial cells and circulating proangiogenic cells (PACs) with a cocktail of pro-angiogenic
cytokines including VEGF, stromal cell-derived factor 1 (SDF-1α), and interleukin 8 (IL-8),
leading to an increase of nuclear factor E2-related factor 2 (Nrf2). The authors reported that
lack of Nrf2 attenuated survival, proliferation, migration, and pro-angiogenic potential
of murine PACs and affected the angiogenic transcriptome in vitro. The here described
involvement of Nrf2 in neoangiogenesis and its cytoprotective effects revealed a new
direction in research on therapeutic neovascularization in cardiovascular disease [11,12].

Immune cells, especially from mononuclear origin, also provide an interesting pheno-
type and outstanding properties for immune cell transplantation in ischemic disease [13,14].
It is a well-known fact that monocyte migration and macrophages from the reparative
type significantly contribute to tissue recovery and angiogenesis in MI and PAD [15,16].
However, the clinical transfer of this knowledge means that a particular cell type has to be
generated prior to transplantation. Therefore, so-called programmable cells of monocytic
origin (PCMO) and regulatory macrophages (Mreg) have been described as promising
cell types for transplantation into ischemic tissues [17]. Both cell types can be generated
from leukapheresis products and cultured similarly with macrophage colony-stimulating
factor (M-CSF) and interleukin 3 (Il-3), respectively, with interferon (IFN) γ [18,19]. PCMO
and Mreg were designed to overcome the obstacles of ischemic microenvironment show-
ing a robust phenotype in ischemia/reperfusion in vitro experiments and enhanced pro-
angiogenic potential by paracrine secretion of macrophage inflammatory protein α (MIP-1
α), granulocyte-macrophage colony-stimulating factor (GM-CSF), pentraxin-related pro-
tein 3 (PTX 3), and monocyte chemoattractant protein-1 (MCP-1) in vitro and in vivo
studies [17–19]. Moreover, cell lines from monocytic origin may provide further cellular
features that could also support or induce tissue regeneration due to the reparative ca-
pabilities and phagocytic activity of mononuclear cells. Transplantation of PCMO into
chronic ischemic heart and hind limb in mice contributed significantly to muscle recovery
most likely mediated by paracrine secretion of GM-CSF [17,18]. This might be a relevant
aspect in the development of cell products from mononuclear cells and in the treatment of
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chronic ischemic cardiovascular disease, especially in patients with PAD IV-V (Rutherford
Classification) or “no option” patients with coronary artery disease and MI.
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Figure 1. Overview of various strategies for the enhancement of cell therapy for ischemic cardiovascular disease: (A)
Strategies for cell priming prior to transplantation, (B) Cell delivery device (CDD) for intraarterial delivery of the cell
products, (C) hypoxia-directed immunotherapy, (D) strategies for co-transplantation of cell lines and modulation of redox
signaling in the ischemic microenvironment, (E) encapsulation of cell products prior to transplantation (miR = microRNA;
MSC = mesenchymal stem cell; HSC = hematopoietic stem cell; PAC = circulating proangiogenic cell; EPC = endothelial
progenitor cell).

2.2. Cell Priming by Modulation of microRNA (miR)

Moreover, top-down and bottom-up experimental strategies have revealed a wide
range of molecular targets for the enhancement of therapeutic cell properties in ischemic mi-
croenvironment. Recently, the modulation of several microRNAs (miRs) in pro-angiogenic
cell lines has been reported as a sufficient strategy for the enhancement of angiogenic
properties and survival rates of transplanted cells (Figure 1A). Besnier et al. (2018) reported
that the increase of miR-210 by hypoxia leads to the repression of Ephrin A3 inducing
proangiogenic responses in PACs [20]. Hence, the ex-vivo pre-miR-210 transfection of
PACs induced post-ischemic therapeutic neovascularization and blood flow recovery in a
mouse limb ischemia model and therefore modulates PAC function and improves their
therapeutic potential in PAD. A further study has analyzed twenty-eight miRs potentially
able to modulate angiogenesis in patients with PAD; miR-15a and miR-16 were identified
as promising therapeutic targets and the improvement of pro-angiogenic cell products. In
further studies, transplantation of healthy PACs ex vivo–engineered with anti–miR-15a/16
improved postischemic blood flow recovery and muscular arteriole density in immunod-
eficient mice. Unfortunately, only a short timeframe of two weeks after initial ischemic
event was observed in the in vivo experiments. In line with other experimental approaches,
a clear distinction between the therapeutic effect on acute and chronic ischemic tissue
damage is not possible and further research appears necessary [21].
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2.3. Cell Priming by Hypoxia

More recently, hypoxia-based strategies for preconditioning cell lines, mostly MSCs,
have also been explored to improve bioactivity and survival under ischemic conditions
(Figure A).

A regulatory role of hypoxia-inducible factor (HIF)-proteins on miR expression under
hypoxia, especially on miRNA-214 and 210, was reported to be involved in cell survival and
proliferation [22,23]. Thus, Lee et al. (2017) investigated the influence of hypoxia precondi-
tioning and underlying mechanisms on MSCs and ascertained that hypoxia-induced 78-kD
glucose-regulated protein (GRP78) promoted the proliferation and migration potential of
MSCs through the HIF-1α-GRP78-Akt signal axis [24]. After hypoxic preconditioning, the
transplanted MSCs showed suppression of the cell death signal pathway and augmentation
of angiogenic cytokine secretion in an ischemic hind limb mouse model. Likewise, a recent
study examined the therapeutic effects of the hypoxia-induced secretome of MSCs: the
authors described that hypoxic preconditioning induced secretion of MSCs enhanced cell
viability and angiogenesis and promoted wound healing in a gastric ulcer model in rats.
Activation of the cyclooxygenase (COX)-prostaglandin E (PGE) 2 axis being mediated by
the extracellular signal-regulated kinases (ERK) 1/2 pathway was discovered as the under-
lying mechanism in this study [25]. A large number of similar trials have supported these
results, but without making a significant step toward clinical translation and underlining
that potentially, the hypoxia-induced cell-free secretome itself might be a more sufficient
solution for a potential clinical application [26–28].

Equally, the utilization of hypoxic cell priming was introduced to the experimental
treatment of acute and chronic ischemic heart disease. Hypoxia-conditioned medium
derived from hypoxia treated bone marrow MSCs was used in a heart transplantation
model to prevent the ischemia/reperfusion injury and consecutive heart failure after
heart transplantation. A cardioprotective effect was observed and attributed to the phos-
phoinositide 2/3-kinases-Akt (PI2K/PI3K-Akt) signaling pathway, but the authors also
mentioned that their study was unable to precisely identify the underlying cytokine sig-
naling responsible for the beneficial effects, emphasizing again the unsolved issues of
cell priming [29]. Further studies investigating the cardioprotective effects of secretome
from various hypoxia-conditioned cell lines have supported these findings and on putting
further emphasis on HIF-1α mediated pathways [30–32].

Finally, concerns remain if approaches of hypoxic-preconditioning could be sufficiently
transferred into clinical practice. The permanent effect of hypoxia on cell products has
not been investigated so far and only data from basic research are actually available. The
clinical use of instant hypoxic preconditioning, virtually using a hypoxia chamber for
bedside application before cell transplantation, remains doubtful due to logistic concerns.
It might be speculated whether co-delivery approaches (e.g., transfection of HIF-proteins
or therapeutic strategies like remote ischemic preconditioning (RIPC)) could be supporting
concepts to adapt cell transplantation and ischemic conditioning in clinical practice [33].

3. Encapsulation Techniques for Cell Transplants

The development of encapsulation techniques for target orientated drug delivery to
organs and delayed relief of drug agents have also influenced the field of cell and gene
therapy during the last two decades [34,35]. However, cell products for the treatment of
PAD or critical limb ischemia have demonstrated only modest results or failed in clinical
studies due to poor cell retention within the ischemic microenvironment [36–38]. During
the last decade, a research group from King’s College London has continually evolved a
Good Manufacturing Practice (GMP)-compliant method for encapsulation of pro-angiogenic
macrophages respectively monocytes introducing 300 µm alginate capsules (Figure 1E).
Analyses revealed that the encapsulated macrophages did not undergo phenotype switch
and preserved their pro-angiogenic potential. The results from in vivo experiments of
intramuscular injection into ischemic mouse hind limbs demonstrated increased cell reten-
tion, improved pro-angiogenic capacity, and restoration of the chronic ischemic muscle.
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Moreover, this study is one of the few trial designs providing GMP-compliant solutions
for cell therapy in an ischemic microenvironment, gaping the bridge from experimental
design to potential clinical application [38,39]. Previous studies have already explored the
potential of different encapsulation techniques for cell therapy in cardiovascular disease
predominantly describing biocompatible alginate microcapsules or gelatin hydrogels. Inter-
estingly, encapsulation techniques enable application, especially in chronic cardiovascular
disease due to the delayed release of reparative and pro-angiogenic cells. Despite auspi-
cious results, encapsulation as a strategy for cell therapy has mostly remained a preclinical
concept thus far [40–44].

4. Strategies for Ischemia-Directed Guidance of Cell Products

Apart from overcoming the ischemic tissue barrier, there are also a modest number
of studies trying to profit from ischemic conditions. The theoretical concept of these pio-
neering experimental designs is based on the hypoxia-directed guidance of cell products
(Figure 1 C). Hypoxia as a stimulus for the monocyte/macrophage axis is well described in
numerous physiological and pathological processes (e.g., cardiovascular remodeling, stem
cell homing, and rheumatoid arthritis) [45–47]. Furthermore, hypoxia-directed guidance
of biocompatible nanoparticles, mostly for drug delivery in cancer research, has been re-
ported by various research groups [48,49]. Consequently, hypoxia-directed guidance of cell
products appears as the next step. A macrophage-mediated delivery of hypoxia-activated
prodrug nanoparticles was introduced in cancer related therapy, but might be open for a
wide range of different indications, especially in cardiovascular remodeling [47,50]. The
here described mechanism of action, so called “trojan horse strategy” in cell therapy, include
nanoparticle loading of macrophages and the chemotactic and phagocytic abilities of the
monocyte/macrophage axis to penetrate regions of hypoxia for remodeling processes [50].
In this context, the chemokine (C–C motif) ligand 26 (CCL 26) has been investigated for
hypoxia-directed migration of mononuclear cells. The administration of recombinant
CCL26 abolished the hypoxia-induced directed migration of human monocytes, while
the addition of CCL26 under normoxic conditions resulted in a repulsion of monocytes
from the source of CCL26. Due to its chemorepulsive nature, these findings might be
directly linked with monocyte migration toward hypoxia and might be a promising tar-
get for hypoxia-directed immunotherapy, not only for cancer, but also for cardiovascular
therapy [19,51].

5. Cell Delivery Devices

Another opportunity to reach the therapeutic region of interest (ROI) besides molecu-
lar and cellular modulation is the utilization of so-called “cell delivery devices” (CDDs)
(Figure 1B). Mainly, these devices are constructed as a catheter-based technique with con-
secutive cell product-colonized stent implantation or direct cell injection at the therapeutic
ROI (e.g., coronary artery in MI or peripheral femoral artery in critical limb ischemia
(CLI)) [52–54]. First descriptions of CDD for gen- and cell therapy in cardiovascular disease
and cancer therapy appeared two decades ago, but more as a future prospect rather than a
real therapy option in the near future [55]. Most CDDs provided a catheter-based cell ther-
apy, enabling the delayed release of VEGF in “no-option” chronic arterial occlusions and
consequently the induction of angiogenesis at the therapeutic ROI [52–54,56]. Nevertheless,
the combination of a cell therapy and a mechanical device has raised several issues—most
of them unsolved until today. Cell colonization on devices, cell line modification due to
artificial surface interaction, storage, immediate availability in clinical routine, and loss of
cell viability due to catheter introduction into the vascular system are only some of these
obstacles and as a consequence, despite promising results from animal experiments, none
of the described CDDs have made it into clinical translation yet [54,56].
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6. Cell Transplantation and Modulation of Ischemic Microenvironment
6.1. Injection and Transplantation Strategies

In the past, several studies have reported the transplantation of pro-angiogenic cell
lines (e.g., stem cells, mononuclear cells, and lymphatic cell lines into ischemic cardiac
tissue or muscle) [57,58]. In clinical trials treating PAD with stem cell or immune cell
transplantation into the lower limb, the muscle injection sites differed highly and ranged
between 10–20 different spots [59–61]. Mostly, the angiosome model served as a rationale
for cell transplantation, defining an angiosome as an area of tissue comprising skin, sub-
cutaneous tissue, fascia, muscle, and bone supplied by a specific artery and drained by a
specific vein [62–64]. Hence, injection of the cell product is oriented toward this area of
vascular supply with the underlying hypothesis that the injected cells unfold their regener-
ative potential due to the interaction of migrating macrophages respectively circulating
monocytes, and vascular endothelial signaling and sprouting [65,66].

Despite this, no approach has yet provided a standard rationale for cell transplantation
in cardiovascular disease [59,60,67]. Accordingly, various authors have reported that the
identification of the ischemic/normoxic border zone (i/nBZ) in patients with MI and PAD
and consecutive controlled injection of the cell product have the potential to improve the
efficacy of the applied cell therapy and to reduce cell doses. Based on the hypothesis that
cells directly injected into the therapeutic ROI are poorly incorporated by ischemic tissue,
several studies could show the advantages of this strategy (identification of the i/nBZ)
in clinical and experimental studies. Shin et al. (2016) demonstrated that transplantation
of human MSC into mouse ischemic limbs, in consideration of the i/nBZ, significantly
enhanced cell engraftment and secretion of paracrine factors, which effectively stimulated
vessel sprouting, enhanced blood perfusion in ischemia/reperfusion injury and enabled
the application of significantly reduced cell doses [68]. Impact of the injection-site was also
investigated in cell therapy for MI. Transplantation of both bone marrow MSCs into the
i/nBZ and the central zone of the MI area contributed to the restoration of heart function.
MSCs transplanted into the central zone of MI did not have an initial effect on the recovery
of the heart function, but the authors hypothesized that these MSCs contribute to reverse
remodeling of ventricular dilation [69].

Despite this, in clinical practice, there are barely diagnostic tools available to enable
ROI and/or i/nBZ orientated molecular treatments and most of the so far described ap-
proaches are limited to experimental studies. The rapid development of cardiovascular
imaging combined with the existing and evolving tools of interventional cardiology, car-
diovascular surgery, and radiology could be the next important step in reaching a more
individualized cell therapy of cardiovascular disease [70,71].

6.2. Modulation of the Ischemic Microenvironment

Modulation of the ischemic microenvironment itself is also required to stimulate neo-
vascularization in PAD (Figure 1D). In particular, a physiological level of oxidants is critical
for the engraftment of the neo-vessel, whereas the pathological enrichment of oxidants
attenuates vascular growth. Glutaredoxin-1 (Glrx) is an enzyme catalyzing the reversal of
so-called S-glutathionylation (GSH adducts) representing a radical scavenger [72,73]. Ac-
cordingly, loss of Glrx leads to improvement of vascular growth in vivo whereas Glrx over-
expression attenuates VEGF signaling in vitro and ischemic vascularization in vivo [72].
Hence, several Glrx targets including HIF-1α may contribute to inhibition or activation
of vascularization by reducing or increasing GSH adducts [73,74]. In animal experiments,
it could be demonstrated that enrichment of antioxidants may be counter-productive for
the treatment of ischemic disease, and highlights Glrx as a potential therapeutic target in
molecular medicine to improve ischemic limb vascularization [73,75,76]. A further strat-
egy of influencing the ischemic microenvironment was introduced by Wang et al. (2021)
reporting the blocking of monocyte recruitment by anti-C–C chemokine receptor type 2
(CCR 2). The transplantation of MSCs and subsequently treatment with anti-CCR2 showed
promising results in the treatment of acute MI [77]. This could be explained by the initial
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detrimental effect of migrating monocytes/macrophages, and subsequently cytokine re-
lease in the early phase of ischemia related tissue damage, which was potentially abolished
in this study [77,78]. Accordingly, accurate control of oxidants is required to stimulate
vascularization, while targeting and modulation of i/nBZ might be further promising ways
of improving the effect and survival of transplanted cells in ischemic disease.

6.3. Stabilization of Vascular Growth and Neo-Vessels

A further challenge in the therapy of cardiovascular ischemic disease is that the in-
duction of neoangiogenesis essentially depends on the precise signaling in the ischemic
microenvironment regulated by several exactly balanced factors. Otherwise, the novel de-
veloping vascular structures remain immature, so-called tumor-like vessels, with aberrant,
thin, and inoperative vessel walls [79–81]. In particular, different isoforms of VEGF with
varying affinities for extracellular matrix and the concentration of VEGF itself combined
with the migration of perivascular cells and vascular smooth muscle cells (SMCs) are es-
sential not only for providing a vascular scaffold, but also for enabling paracrine signaling
for vessel sprouting and maturation [79,81].

Thus, different approaches have been developed to orchestrate vascular growth in
ischemic tissue. It has been shown that co-culturing of endothelial cells (ECs) with MSCs
or fibroblasts and consecutive paracrine secretion by both cell types promote stabilization
of neo-vessels [82–85]. Grigorescu et al. (2015) investigated the therapeutic stabilization
of induced neo-vessels in ischemic microenvironments employing an ischemic hind limb
mouse model and co-administration of PAC-secreted factors at the time of endothelial
progenitor cell (EPC) transplantation (Figure 1D). This procedure improved tissue regener-
ation and vascular repair through the stabilization of newly-derived blood vessels. The
responsible factors identified by the authors included von Willebrand factor (vWF), cad-
herin 5 (CDH5), multiple EGF-like-domains 10 (MEGF10), early growth response protein
1 (EGR-1), fatty acid binding protein 3 (FABP3), and VEGF [9]. In relation to the cardiac
ischemic microenvironment, Lemcke et al. (2017) reported the benefits of co-transplantation
of MSCs and hematopoietic stem cells (HSCs) in MI (Figure 1D). Cardiomyogenic plasticity
of MSCs was mediated via junction-dependent crosstalk between cardiomyocytes and
transplanted stem cells whereas HSCs were involved in the regulation of neoangiogenesis.
This approach underlines, first, the importance of investigating cell/tissue interaction after
transplantation in detail, and second, that often a more sophisticated concept is necessary
instead of mono-cell type transplantation [86].

Table 1. Exemplary overview of therapeutic strategies.

Strategy Cell Subset Disease/Model References

Improvement of injection site
of transplanted cells MSCs Mouse/Rat Cardiac and hind limb

ischemia [68,69]

Cell Priming by Pro-Angiogenic Factors
MSCs, PACs, PCMO, Mreg,

Macrophages,
Monocytes

Mouse, rat
Cardiac and hind limb ischemia

(acute and chronic stage)
[10–12,17–19]

Transfection of pro-angiogenic cell lines
and enhancement of

microRNA
PACs Mouse/hind limb

ischemia [20,21]

Co-administration of PAC secreted
factors and EPC, HSCs

Co-administration with MSCs
and HSCs

PACs, EPCs,
MSCs, HSCs Mouse/hind limb ischemia [9,86]
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Table 1. Cont.

Strategy Cell Subset Disease/Model References

Modulation of redox signaling via thiol
modification

Anti-CCR2 and transplantation of
MSCs

MSCs Mouse/cardiovascular hypertrophy
and hind limb ischemia [72,74,76,77]

Biomechanically defined
microenvironment n.a. Mouse [79]

Hypoxic-preconditioning MSCs
Mouse, rat

Cardiac and hind limb ischemia
(acute and chronic stage)

[24,28,29]

Encapsulation of cell products Monocytes, macrophages
Mouse/ hind limb ischemia
(GMP compatible protocol)
(acute and chronic stage)

[38,39,41,42]

Hypoxia-directed
immunotherapy Monocytes, macrophages Mouse/ tumor model [50,51]

Cell delivery devices EC, MSC, SMC Swine/
Cardiac and hind limb ischemia [52–54]

Finally, various hydrogels including pro-angiogenic factors or mechanobiological
approaches have been developed to provide microenvironmental control in ischemic tissue
contributing to cell transplantation. Nonetheless, most of these translational strategies
resemble rather whole tissue transplantation than a cell therapy and the translational
transfer remains questionable [79].

7. Final Remarks

In conclusion, most of the here described approaches are still a promise to the future
rather than an actual therapy option and currently more bench than bedside. Only a
very limited number of the here described approaches and techniques have reached the
clinical stage or provided a GMP-compatible strategy. Most researchers and therapists
conducting gene and cell therapy are still concerned with questions like “who to treat,
which disease, and which gene/cell agent”, despite clinical scientists who should already
have an eye on the flanking conditions of the here described ATMPs. What we can already
learn from the here described approaches is that in this early stage of experimental and
clinical development, it might be the surrounding parameters, thus the knowledge of the
ischemic microenvironment, that could decide the success or failure in the treatment of
cardiovascular disease.

In the future, it appears that there is a significant step toward more sophisticated
and holistic forms of cell therapy defining a priori the demanded cell/tissue interaction,
cell delivery, cell retention, and delayed release of active ingredients. To ensure this kind
of translational development process, the establishment of specialized centers for the
development of ATPMs seems to be a mandatory requirement. Evolving cell therapies
of cardiovascular disease might be an important part of the development toward an
individualized form of medicine.

Author Contributions: Conceptualization, R.B. and R.R.; Writing—original outline and first draft
preparation R.B., M.A.; R.R., and M.A.; Writing—review, supplementing and editing, R.B., R.R., and
M.A. All authors have read and agreed to the published version of the manuscript.

Funding: R.B., R.R., and M.A. received funding from Ferring Pharmaceuticals and the German
Foundation for Heart Research (Deutsche Stiftung für Herzforschung).

Conflicts of Interest: The authors declare no conflict of interest.



Int. J. Mol. Sci. 2021, 22, 2312 9 of 13

Abbreviations

ATMPs Advanced Therapy Medicinal Products
CCL26 Chemokine (C-C motif) ligand 26
CCR2 C-C Chemokine Receptor Type 2
CDD Cell Delivery Device
CDH5 Cadherin 5
COX Cyclooxygenase
EC Endothelial Cell
EGR-1 Early Growth Response Protein 1
EPC Endothelial Progenitor Cells
ERK Extracellular Signal-regulated Kinases
FABP 3 Fatty Acid Binding Protein 3
Glrx Glutaredoxin-1
GM-CSF Granulocyte Macrophage-Colony-Stimulating Factor
GMP Good Manufacturing Practice
GRP78 78-kD Glucose Regulated Protein
GSH adducts S-Glutathionylation
HIF Hypoxia Inducible Factor
HSC Hematopoietic Stem Cells
IL-3 Interleukin-3
IL-8 Interleukin-8
i/nBZ Ischemic/normoxic Border Zone
IFN γ Interferon γ

M-CSF Macrophage-Colony Stimulating Factor
MSC Mesenchymal Stem Cells
MCP-1 Monocyte Chemoattractant Protein-1
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