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In the somatosensory nerves, the tactile perception of texture is
driven by spatial and temporal patterns of activation distributed
across three populations of afferents. These disparate streams of
information must then be integrated centrally to achieve a unified
percept of texture. To investigate the representation of texture in
somatosensory cortex, we scanned a wide range of natural
textures across the fingertips of rhesus macaques and recorded
the responses evoked in Brodmann’s areas 3b, 1, and 2. We found
that texture identity is reliably encoded in the idiosyncratic re-
sponses of populations of cortical neurons, giving rise to a high-
dimensional representation of texture. Cortical neurons fall along
a continuum in their sensitivity to fine vs. coarse texture, and
neurons at the extrema of this continuum seem to receive their
major input from different afferent populations. Finally, we show
that cortical responses can account for several aspects of texture
perception in humans.
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Our sense of touch endows us with an exquisite sensitivity to
surface microstructure. We can perceive surface features

that range in size from tens of nanometers (1) to tens of milli-
meters and integrate these to form a cohesive textural percept.
In the somatosensory nerves, surface features at different spatial
scales are encoded in different populations of afferents and rely
on different neural representations. Coarse-surface features are
reflected in the spatial patterns of activation evoked in slowly
adapting type-1 (SA1) and rapidly adapting (RA) afferents,
whose small receptive fields give rise to a faithful neural image of
surface elements measured in millimeters (2, 3). However, many
tangible surface features are too small and too close together to
be encoded spatially because the spatial code is limited by the
innervation density of the skin (4, 5). To perceive fine textural
features requires movement between skin and surface, which
leads to the elicitation of texture-specific skin vibrations, which
in turn evoke precisely timed texture-specific spiking patterns in
RA and Pacinian corpuscle-associated (PC) afferents (6–11).
These spatial and temporal representations must be combined
and synthesized to achieve a unified percept of texture, a process
about which little is known.
While neurons in somatosensory cortex have been shown to

encode information about texture, previous studies investigating
cortical texture representations used surfaces with elements in the
range of millimeters, such as Braille-like dot patterns (12, 13) and
gratings (14–16), which span only a small fraction of the wide
range of tangible textures. We have previously shown that re-
sponses to such textures—which only engage the spatial mecha-
nism—provide an incomplete view of the neural mechanisms that
mediate the perception of texture (10, 11).
To fill this gap, we examined how textures that span the tan-

gible range are encoded in somatosensory cortex. To this end, we
scanned a wide range of textures—including fabrics, furs, and
papers, in addition to the traditional embossed dots and gratings—
across the fingertips of (awake) rhesus macaques and recorded
the responses evoked in somatosensory cortex, including Brod-
mann’s areas 3b, 1, and 2. First, we found that texture identity is

faithfully encoded by these neuronal populations and that tex-
ture information is distributed across neurons which each exhibit
idiosyncratic texture responses. Second, we showed that the
heterogeneity across somatosensory neurons is in part driven by
differences in the submodality composition of their input (SA1,
RA, and PC). We then discovered the downstream recipients of
the spatial and temporal codes observed at the periphery: A
subpopulation of cortical neurons receives strong input from
SA1 fibers and preferentially encodes coarse textural features,
whereas another population of neurons receives strong input
from PC fibers and preferentially encodes fine surface features.
Finally, we showed that the responses of somatosensory neurons
account for psychophysical reports of texture obtained from
human observers.

Results
We recorded the activity evoked in 141 neurons in somatosen-
sory cortex (35 from area 3b, 81 from area 1, and 25 from area 2)
from three rhesus macaques with receptive fields on the distal
fingertip, as each of 59 textured surfaces (SI Appendix, Table S1)
was scanned across the skin by using a rotating drum stimulator,
which allowed for precise control of scanning speed and in-
dentation depth (Fig. 1 A and B). These surfaces were chosen to
vary widely in microstructure and material properties in an at-
tempt to explore as fully as possible the range of everyday tex-
tures. The objective of the study was to determine the degree to
which texture information is encoded in cortex, examine the
nature of this representation, and assess the degree to which this
representation can account for perception.

Significance

The sense of touch affords a remarkable sensitivity to the mi-
crostructure of surfaces, affording us the ability to sense ele-
ments ranging in size from tens of nanometers to tens of
millimeters. The hand sends signals about texture to the brain
using three classes of nerve fibers through two neural codes:
coarse features in spatial patterns of activation and fine fea-
tures in precise temporal spiking patterns. In this study, we
show that these nerve signals culminate in a complex, high-
dimensional representation of texture in somatosensory cor-
tex, whose structure can account for the structure of texture
perception. This complexity arises from the neurons that act as
idiosyncratic detectors of spatial and/or temporal motifs in the
afferent input.

Author contributions: J.D.L. and S.J.B. designed research; J.D.L. performed research; J.D.L.
analyzed data; and J.D.L. and S.J.B. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).
1To whom correspondence should be addressed. Email: sliman@uchicago.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1818501116/-/DCSupplemental.

Published online February 4, 2019.

3268–3277 | PNAS | February 19, 2019 | vol. 116 | no. 8 www.pnas.org/cgi/doi/10.1073/pnas.1818501116

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818501116/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1818501116&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:sliman@uchicago.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818501116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818501116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1818501116


Neurons in Somatosensory Cortex Encode Texture. First, we exam-
ined the degree to which the responses of individual somato-
sensory neurons were modulated by texture (Fig. 1C). We found
that nearly every neuron responded to at least one texture
(140 of 141 neurons modulated above baseline firing rate; P <
0.05, permutation test with Bonferroni correction) and that each
texture significantly modulated the response of at least 20% of
the neurons (0.23–0.72–92, minimum–median–maximum pro-
portion of textures across cells, permutation test). To test
whether these neurons carry texture-specific information, we
built a simple linear classifier based on single-trial spike counts.
Nearly all neurons yielded classification performance that was
significantly above chance (mean ± SD of performance: 6.7 ±
3.7%, chance performance: 1.7%, 95% of neurons > chance),
and neurons that yielded better than chance performance were
approximately equally prevalent in areas 3b, 1, and 2 (97%, 96%,
and 88%, respectively; SI Appendix, Fig. S1A).

Next, we examined the degree to which texture identity is
encoded in the responses of populations of somatosensory neu-
rons (Fig. 2A). To this end, we implemented the texture classifier
using the responses of groups of neurons of varying size. We
found that high-classification performance could be achieved
with a small population of somatosensory neurons (as few as
83 neurons yielded 97% performance) and that the full pop-
ulation yielded nearly perfect performance (Fig. 2B). Classifi-
cation performance was largely comparable across cortical
modules (an average of 73%, 72%, and 62% for groups of
25 neurons in areas 3b, 1, and 2, respectively; SI Appendix, Fig.
S1B) and was robust to (simulated) noise correlations (SI Ap-
pendix, Fig. S2A). In summary, small populations of somato-
sensory neurons convey sufficient information to support texture
identification for a large and diverse texture set.

The Cortical Representation of Texture Is High-Dimensional. Two
factors drive the ability of neural populations to classify stimuli
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Fig. 1. Experimental apparatus and sample texture responses. (A) Textures were passively presented to the distal finger pads of awake macaques. (B) The
rotating drum stimulator—on which the 59 textures were mounted—allows a surface to be scanned across the fingertip at a precise and repeatable speed and
depth of indentation into the skin. (C) Sample spiking responses of five neurons each in areas 3b, 1, and 2 to five repetitions of eight textured surfaces.
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more accurately than do individual cells. First, as more neurons
are included, the trial-to-trial variation in response is averaged
out. Second, increasing the variety in tuning properties in the
neural population can more effectively represent the high-
dimensional character of a complex stimulus, and thus increase
the effective dimensionality of the resulting neural representa-
tion. That is, insofar as different neurons respond to different
aspects of a surface, these idiosyncratic responses will provide
information beyond that available from simply averaging re-
sponses across cells.
We examined the dimensionality of texture responses—the

degree to which somatosensory neurons respond heterogeneously
to texture—by performing a principal components analysis (PCA)
on the population response. That is, we first characterized the
correlational structure in texture responses across neurons in so-
matosensory cortex and then assessed the degree to which re-
sponses could be reduced to a smaller set of nonredundant signals.
We found that most of the variance in neuronal responses was
explained by the first principal component (Fig. 3A) (65% pro-
portion of variance explained from the first component, essentially
the mean population firing rate; R2 = 0.99), a signal that was
strongly preserved across all three cortical areas [with intercor-
relations of first principal components across pairs of areas
all >0.95 (SI Appendix, Fig. S1C)]. As discussed below, this
prominent neuronal dimension has a clear perceptual correlate.
We sought to characterize whether heterogeneity in texture

responses across neurons provides texture-specific information
beyond that found in the mean population response. To this end,
we again implemented the texture classifier, this time using only
a subset of the principal components of the neural response.
When the population response was collapsed onto a single di-
mension—the first principal component—classification perfor-
mance dropped to 41%, compared with 99.4% when the entire
response was used. Conversely, if we removed only the first
principal component from the population response and pre-
served all other components, we achieved 92% classification
accuracy with as few as 83 cells and 97% accuracy with the full
population of 141 cells (Fig. 3B). In other words, the heteroge-

neity of neural responses to texture is a major contributor to the
texture signal in cortex.
Given the importance of low-variance dimensions to classifi-

cation performance, we sought to assess how many of these di-
mensions are reliably informative about texture identity. To this
end, we first quantified how many dimensions identified through
PCA reliably carried texture information. We found that the first
30 dimensions carried sufficient texture information to distin-
guish pairs of textures (Fig. 3C; 95% of trial shuffles yielded
above chance performance). We then examined the degree to
which the response retained information about texture when
multiple principal components were cumulatively removed (Fig.
3D). We found classification performance to be well above
chance, even after removing 33 principal components (95% of
trial shuffles yielded above-chance performance). Because the
outcome of these analyses may depend on the structure of
the trial-to-trial variability in the response, we verified that the
measured dimensionality was robust to (simulated) noise corre-
lations (SI Appendix, Fig. S2 B–D).
Finally, because PCA does not necessarily identify the most

informative dimensions of response, we implemented a recently
developed measure of dimensionality which is not based on
explained variance (like PCA) but, rather, gauges the ability of the
response to reliably divide up the stimulus space [cf. Rigotti et al.
(17); Materials and Methods]. Using this method, we found that
the cortical response to texture can consistently classify split
groups of up to 22 textures, suggesting that the texture repre-
sentation in somatosensory cortex is at least 21-dimensional (SI
Appendix, Fig. S2 E–I). Furthermore, this measurement of 21 re-
sponse dimensions is likely an underestimate: Our classifier-based
estimate of dimensionality is not only capped by the dimension-
ality of the neuronal representation, but also by the size of the
stimulus set and of the recorded neuronal population (17). In-
deed, we find that the dimensionality is still rapidly increasing as a
function of neuronal group size for 141 cells (SI Appendix, Fig.
S2F), so more neurons would likely yield an even higher-
dimensional representation in response to our texture set. In to-
tal, these classification results suggest that the dimensionality of
the neural representation is driven by a large number (dozens) of
components which, while often only accounting individually for a
small fraction of the overall response variance, nonetheless carry
significant texture information.

Some Heterogeneity in Cortical Responses Can Be Attributed to
Differences in Submodality Input. Next, we examined the degree
to which the cortical response inherits its structure from the
periphery, where texture signals are carried by three classes of
low-threshold tactile nerve fibers. To this end, we leveraged
previously obtained recordings of afferent responses (from 17
SA1, 15 RA, and 7 PC fibers) to a subset of 24 textures also used
in the present study (10). We then evaluated, using multiple
regression, the extent to which the mean population firing rate of
SA1, RA, and PC afferents evoked by these 24 common textures
could account for the firing rates of individual cortical cells,
using the resulting standardized regression coefficients as a
gauge of the relative similarity of each tactile submodality to
each cortical neuron.
First, we found that the different cortical neurons received

their strongest input from different classes of tactile nerve fibers
(44.7%, 37.6%, and 17.7% of neurons showed maximum re-
gression coefficients from SA1, RA, and PC afferents, re-
spectively). Second, the responses of individual somatosensory
neurons implied submodality convergence, as reflected by the
fact that many cortical neurons were significantly better
explained by a combination of multiple afferents than they were
by any single afferent (F test: 28% of cells better explained by all
three coefficients than any single coefficient, P < 0.05). Because
this test has low statistical power given the small number of
common stimuli between the peripheral and cortical datasets, we
also examined the adaptation properties of cortical neurons [that
is, the dynamics of their responses to trapezoidal skin indentation
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Fig. 2. Neurons in somatosensory cortex encode texture. (A) The mean firing
rate (across repetitions) evoked by each of 59 textures (columns) in somato-
sensory neurons, split by cortical field. Firing rates are normalized within
neurons for display purposes, ranging from low (blue) to high (yellow). Tex-
tures are sorted according to the first principal component of the population
response from lowest to highest. Cells are ordered first by area, then by
variance of their firing rates across textures. Somatosensory neurons exhibit
heterogeneous responses to textures. (B) Texture-classification performance
of groups of cortical neurons vs. the size of the neuron group. As expected,
classification performance improves as more cells are included. Gray dots
denote the performance of individual neuronal groups, and the black trace
denotes the mean as a function of group size. Groups of 66 cells, marked by
the gray dashed line, yield a near-asymptotic performance of 97%.
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(19)]. We found that many neurons (69%) showed both significant
responses during the sustained portion of the indentation, in-
dicative of SA1 input, as well as significant responses upon the
removal of the probe, indicative of RA or PC input (SI Appendix,
Fig. S3 A–D). Overall, 80% of neurons displayed submodality
convergence by one or both of these measures. Thus, even at the
single-neuron level, the texture representation in somatosensory
cortex is built from signals integrated across tactile submodalities.
Next, we examined what aspects of the high-dimensional tex-

ture representation in somatosensory cortex were inherited from
structure in its peripheral inputs. To this end, we recalculated
our PCA on both the peripheral and cortical population re-
sponses to their shared set of 24 textures. Using canonical cor-
relation analysis (Materials and Methods), we found that the first
three dimensions of the peripheral firing rates were significantly
predictive of their cortical counterparts, but dimensions beyond
these three did not yield better predictions (Fig. 4A). Within this
shared space, the first principal axis in the cortex was highly
correlated with its peripheral counterpart (r = 0.93). The second
principal axis in the cortex was also correlated with its counter-
part in the periphery (r = 0.89), and this axis separated neurons
with strong SA1 input (and, to a lesser extent, RA input) from
those with strong PC input. Indeed, the correlation between the
weight of the second principal axis in the cortex and the SA1,

RA, and PC regression coefficient was −0.43, −0.16, and 0.76,
respectively. Furthermore, neurons that received strong PC input
tended to produce texture responses that were correlated with
each other but uncorrelated with the responses of neurons driven
primarily by SA1 or RA responses (Fig. 4B), reflecting the stark
difference in response properties of these two sources of input.
Interestingly, the most strongly PC-like cells were predominantly
located in area 1 (10 of 12 of cells with normalized PC weight
> 0.8; the other 2 were in area 2; SI Appendix, Fig. S1D). Thus,
the second dimension of variance in the cortical response has, at
one extreme, SA1-like neurons and, at the other extreme, PC-
like ones. The third principal axis in the cortex also showed
correlation with its peripheral counterpart (r = 0.82), but its
meaning is unclear. Although the first few principal axes of the
texture representation in the cortex are inherited from the pe-
riphery, much of the structure in the cortical representation
beyond these axes cannot be explained straightforwardly from
the relative strengths of SA1, RA, and PC input.

Neurons in Somatosensory Cortex Encode Textural Features at
Different Spatial Scales. At the periphery, texture-specific surface
features are encoded through multiple mechanisms. Coarse
surface features—measured in millimeters—are primarily encoded
in the spatial pattern of activation across of SA1 fibers (20)
[and perhaps RA fibers as well (11)]. In contrast, fine surface
features—typically measured in the tens or hundreds of micro-
meters—drive characteristic vibrations in the skin during texture
scanning (9, 21, 22). These vibrations (and, by extension, textural
features) are encoded in precisely timed, texture-specific tempo-
ral patterns in RA and PC fibers (10). Next, then, we sought to
examine how these peripheral codes for texture were reflected in
cortical responses.
First, we tested the hypothesis that a subpopulation of so-

matosensory neurons act as spatial filters, well suited to extract
information about coarse textural features, as has been proposed
(12, 23). We also wished to assess the spatial scale over which
such a mechanism might operate. To this end, we first charac-
terized the spatial receptive fields of somatosensory neurons
using well-established techniques (SI Appendix, Fig. S4 A–C). By
using this approach, neurons have been shown to encode spatial
features with excitatory subfields flanked by inhibitory ones (12),
analogous to simple cells in the primary visual cortex (24).
Consistent with previous reports, the measured receptive fields
exhibited well-defined excitatory subfields (average 12.7 mm2,
range 3.1–37.4 mm2) and inhibitory subfields (average 12.8 mm2,
range 0–42.6 mm2). Inhibitory subfields tended to lag behind
excitatory subfields along the scanning direction (62 of 67, or
93%, average 2.5 mm lag) (SI Appendix, Fig. S4D). Importantly,
the spatial period of the subfield—that is, the distance between
the excitatory and inhibitory subfields—spanned a range from
2 to 4 mm (SI Appendix, Fig. S4E). Thus, the spatial structure of
cortical receptive fields is well suited to extract information
about coarse features, but not fine ones. Note that this receptive
field structure is ideal for computing the spatial derivative of the
neural image, which has been shown to drive perceived rough-
ness of coarsely textured surfaces (11, 18, 20). Counterintuitively,
while PC fibers have substantially larger receptive fields than do
SA1 or RA fibers, this tendency was not reflected in their cortical
targets. Indeed, the receptive fields of PC-like neurons were of
similar size as their SA1- or RA-like counterparts (excitatory
subfield size: average 12.1 mm2; inhibitory subfield size: average
13.1 mm2; average 2.3 mm lag at 80 mm/s; SI Appendix, Fig. S4 F
and G).
Next, we examined the cortical manifestation of the temporal

code for fine textural features carried at the periphery by RA and
PC fibers. A characteristic feature of PC (and to some extent
RA) responses to texture is the elicitation of high-frequency
spiking patterns (>50 Hz) that are highly informative about
texture identity, as these patterns reflect the succession of fine
textural elements moving across their receptive fields (10). To
explore the presence of such timing signals in the responses of
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Fig. 3. The cortical representation of texture is high-dimensional. (A) Cu-
mulative scree plot (proportion of variance explained) for the PCA on the
population response to texture. The bulk of the response variance is carried
by the first few components. (B) Texture classification (as in Fig. 2) using the
cortical population response with the full population response (gray line) and
with the first principal component removed (black line). The red dotted line de-
notes chance performance. Classification performance is only slightly reduced
when this first component is removed. (C) Average classification perfor-
mance of each individual principal component when distinguishing between
pairs of textures. Responses were above chance, even for components that
explained only a small proportion of the total variance. Error bars represent the
SD across texture pairs and shuffles of the training and test sets. (D) Classifi-
cation performance based on firing rates projected onto a subset of principal
components, built by excluding the n principal components in decreasing order
of their eigenvalues (i.e., removing the largest components first). Error bars
denote the SD across shuffles of the training and testing sets. Even when
dozens of the high-variance principal components are removed from the
response, texture classification is still above chance.
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somatosensory neurons, we designed two finely textured 3D
patterns—gratings with spatial periods of 0.5 and 1 mm—to elicit
skin vibrations at 160 and 80 Hz, respectively (given a scanning
speed of 80 mm/s). We anticipated that these highly periodic
components would be readily identifiable in the cortical re-
sponses and might encode fine textural features. We found that a
subpopulation of somatosensory neurons produced phase-locked
responses to these and other fine textures (SI Appendix, Fig.
S3E), providing a strong analog to the temporal code observed at
the periphery. As expected, phase-locked responses were stron-
ger among somatosensory neurons with PC-like responses than
among their SA1-like counterparts (Fig. 5B and SI Appendix, Fig.
S3E). Indeed, while the spiking patterns of both sets of neurons
consistently reflected the periodic structure of coarse features,
PC-like responses much more reliably reflected the periodic
structure of fine features, even if these were embedded among
coarse features. Neurons with PC input are thus well suited to
convey information about fine textural features.
In light of these observations, we wished to assess the re-

spective abilities of these two subpopulations of neurons—SA1-
and PC-like—to convey information about fine and coarse fea-
tures. To this end, we examined the responses of these two
neuronal populations to nine 3D-printed surfaces (SI Appendix,
Fig. S5) in which coarse and fine features were parametrically
combined (Fig. 5 A and B). We found that SA1-like neurons
responded significantly more strongly to textures with coarse
features than without, exhibiting only weak firing-rate modula-
tion to the presence of fine features (20.7 vs. 2.40 spikes per s for
coarse vs. fine, respectively; P < 0.001, paired t test). Conversely,
PC-like neurons responded more strongly to textures with fine
features than to those without (15.9 vs. 2.0 spikes per s, for fine
vs. coarse, respectively; P < 0.01), and their rates were nearly
independent of the presence or absence of coarse features. As
might be expected, these differences in sensitivity to coarse and
fine textures led to corresponding differences in the ability of
individual cortical neurons to discriminate pairs of textures
(measured by using a standard sensitivity index, d′). SA1-like
responses were significantly better at discriminating coarse fea-
tures—independent of fine features—than were their PC-like
counterparts (P < 0.05, permutation test), and PC-like neurons were

significantly better at discriminating fine features—independently of
the coarse features—than were SA1-like neurons (P < 10−4, per-
mutation test) (Fig. 5C). In conclusion, then, different subpopula-
tions of somatosensory neurons preferentially encode textural
features at different spatial scales.

Neuronal Responses Account for Perceptual Judgments of Texture.
Next, we examined how these different populations of neurons
might account for the perception of texture, an important step in
establishing a neural code (20, 25, 26). To this end, we first in-
vestigated whether the responses of neurons in somatosensory
cortex could account for judgments of surface roughness. Human
subjects were presented with textured surfaces in an identical
setup as the neurophysiological experiments and freely rated the
roughness of each surface (n = 6 subjects, subject correlation to
the mean: r = 0.87 ± 0.079, mean ± SD). We found that the firing
rates of most somatosensory neurons (92%) were significantly
positively correlated with roughness judgments (r = 0.59 ± 0.27,
mean + SD for individual cells, 130 of 141 cells with significantly
positive correlation at P < 0.05, permutation test) and that the
first principal component of the population response was a good
predictor of roughness (Fig. 6A; r = 0.88), a consistent effect
across all three cortical fields (all r > 0.85; SI Appendix, Fig. S1 E
and F).
Although roughness is the dominant sensory dimension of

texture, the perceptual space of texture also comprises other
well-established sensory continua, such as hardness/softness,
stickiness/slipperiness, and warmth/coolness (27). Together,
these continua combine to account for some, but not all, aspects
of the multidimensional sensory experience of texture (27–29).
To assess the degree to which the cortical representation can
account for the perceptual space, we examined the degree to
which neuronal responses could account for judgments of texture
dissimilarity. As with the roughness experiment, human subjects
freely rated the perceived dissimilarity of pairs of textures (n =
10 subjects). For this analysis, we determined the degree to
which judgments of dissimilarity mirrored differences in the
evoked neuronal responses (Materials and Methods). We carried
out this analysis on data obtained from two sets of texture pairs:
one in which textures differed in their coarse spatial features
(coarse group: three fabrics and two dot patterns, yielding
10 pairs, subject correlation to the mean, r = 0.88 ± 0.10, mean ±
SD) and one that comprised textures mostly lacking coarse spatial
features (fine group: 13 fabrics, 78 pairs, subject correlation to
the mean, r = 0.65 ± 0.12, mean ± SD). First, we examined the
ability of afferent responses to predict perceived dissimilarity.
We found that SA1-afferent responses best accounted for the
dissimilarity of textures with different coarse spatial features
(coarse group: correlation between firing rates and perceived
dissimilarity = 0.78, 0.41, and 0.17 for groups of seven SA1, RA,
and PC fibers, respectively), and PC-afferent responses best
accounted for the perceived dissimilarity of finely textured fab-
rics (fine group: r = 0.37, 0.39, and 0.56 for groups of seven SA1,
RA, and PC fibers). When we carried out the same analysis
based on cortical responses (Fig. 6B), we found that the re-
sponses of SA1-like neurons best accounted for the perceived
dissimilarity of coarse-group pairs (r = 0.70, 0.24, and 0.26 for
groups of seven SA1-, RA-, and PC-like neurons, respectively),
and the responses of PC-like neurons best accounted for that of
fine-group pairs (r = 0.31, 0.26, and 0.67 for groups of seven SA1-,
RA-, and PC-like neurons, respectively). Results from this analysis
further support the hypothesis that different subpopulations of
neurons encode textures at different spatial scales: SA1-like neu-
rons are specialists for coarse textural features, and PC-like neu-
rons are specialists for fine ones.

Discussion
The Neural Mechanisms That Give Rise to a High-Dimensional
Representation of Texture in Cortex. While texture responses in
cortex are dominated by a common signal that encodes roughness,
the heterogeneity of responses across individual somatosensory
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Fig. 4. Some heterogeneity in cortical responses can be attributed to dif-
ferences in submodality input. (A) Strength of the prediction of cortical re-
sponses from the first n principal components of the peripheral texture
response (implemented by using canonical correlation analysis; Materials
and Methods). Beyond the first three principal components, performance
declines due to overfitting. (B) Correlation matrix of texture-elicited firing
rates with each row and column corresponding to a different neuron (cells
with mean texture response > 40 Hz, n = 74). Cells are ordered by their PC
regression weight, from least PC-like (lower left) to most PC-like (upper
right). The red line divides neurons with PC regression weights greater than
or less than 0.5. The most PC-like cells in somatosensory cortex tend to
cluster because their texture-evoked firing rates are distinct from those of
other neurons.
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neurons carries considerable information about texture identity.
One identifiable way in which neurons differ is in the degree to
which their responses reflect SA1-afferent input vs. PC-afferent
input, a continuum rather than a dichotomy, as evidenced by the
continuous distribution of regression coefficients (SI Appendix,
Fig. S1D). However, cortical responses to texture are not simply
a linear combination of afferent firing rates. Indeed, while we
found three shared dimensions between the peripheral and cor-
tical representations of texture, our binary classification analysis
showed that the effective number of dimensions is much higher
than three (Fig. 3B).
The observed increase in dimensionality from periphery to

cortex is supported by an amplification of the somatosensory
representation: The fingertip region of area 3b contains ∼250 cells
for every corresponding peripheral afferent (5, 30, 31). This ex-
pansion does not simply involve the establishment of redundancy
in the cortex, giving rise to populations of similarly tuned neurons.
Rather, cortical neurons exhibit heterogeneous tuning: Each cor-
tical neuron signals the presence of a specific spatial pattern of
afferent activity within a range of spatial scales (from ∼1 to 10 mm)
(12, 13) and/or a specific temporal pattern of afferent activity
within a range of time scales (from ∼1 to 100 ms) (32). While these
spatial and temporal filters are often estimated by using linear
models, this integration of peripheral input is subject to the non-

linear motifs of neural processing, including thresholding (12, 32,
33), synaptic depression (33–35), and divisive normalization (36–
39). This feature extraction and the associated nonlinear trans-
formations result in a high-dimensional representation of texture,
a process that is not unique to the somatosensory system. Indeed,
high-dimensional representations have been observed in the visual
(40–43) and olfactory (44) systems, cerebellum (45), hippocampus
(46), and prefrontal cortex (17), to name a few.

The Perceptual Space of Texture Is also High-Dimensional. The
multidimensional nature of the texture representation in so-
matosensory cortex reflects the complexity of the space in which
surface materials and microstructures reside and the resulting
perceptual space of textures. While some aspects of this space can
be captured by a small number of commonly identified sensory
dimensions—roughness, hardness, stickiness, and warmth (27)—
many others cannot. That is, the roughness, hardness, stickiness,
and warmth of a textured surface define it only partially. Many
adjectives to describe texture—fuzzy, bumpy, and silky, to name
just a few—evoke additional textural features not captured in low-
dimensional descriptions. Further dimensions may not be simply
captured by such intuitive descriptors—one can imagine fields of
repeating elements arranged in different configurations that are
discriminable in a way that is difficult or impossible to articulate.
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Fig. 5. Neurons in somatosensory cortex encode textural features at different spatial scales. (A) Spiking responses of seven SA1-like neurons (green; cells with
SA1 regression coefficient > 0.5, n = 53) and seven PC-like neurons (orange; cells with PC regression coefficient > 0.5, n = 23) in response to five repeated
presentations of three different textures: dots spaced 7.7 mm apart, a 1-mm-period grating, and a superposition of the dots with the grating. SA1-like re-
sponses exhibit strong entrainment to the coarse component of the texture (dot pattern). PC-like cells are more strongly driven by the fine component of the
texture (grating). (B) Mean amplitude spectrum of the spiking responses of SA1-like (green) and PC-like (orange) cells to the same three textures as in A. PC-
like cells exhibit high-frequency phase-locking to the temporal period of the grating (80 Hz), even when the dots are present, whereas SA1-like cells do not.
(C) Discriminability (d′) of nine 3D-printed textures based on the firing rates they evoke in SA1- and PC-like neurons (green and orange, respectively). Error
bars denote the bootstrapped SEMs across cells and texture pairs. While PC-like cells are sensitive to both coarse and fine features, SA1-like cells are sensitive
only to coarse ones.

Lieber and Bensmaia PNAS | February 19, 2019 | vol. 116 | no. 8 | 3273

N
EU

RO
SC

IE
N
CE

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818501116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1818501116/-/DCSupplemental


Thus, in a manner broadly analogous to the space of visual shape
(42, 47) and visual texture (48, 49), the complex neural space of
tactile texture is reflected in a complex perceptual space.

Texture Representations in Cortex Fall on a Continuum of Spatial
Scales. As described above, somatosensory neurons fall along a
continuum—captured in the second principal component of their
responses—that seems to be determined by their peripheral in-
puts. The position of a neuron along this axis relates to the spatial
scale of the textures it is best suited to encode. At one end of the
continuum, SA1-like neurons encode coarse textural elements; at
the other end, PC-like neurons encode fine features. This differ-
ential spatial sensitivity is reflected in the ability of neurons to
convey information about texture: SA1-like responses best dis-
tinguish textures with different coarse features, while PC-like re-
sponses best distinguish textures with different fine features.
These differences are also reflected in the ability of neuronal
populations to predict perceptual judgments of texture: SA1-like
neurons account for the perception of coarse features; PC-like
neurons account for the perception of fine features.
In the peripheral nerve, coarse and fine textures are encoded

through two mechanisms, a spatial code and a temporal one,
respectively. Somatosensory neurons are well suited to extract
coarse textural features measured in millimeters as evidenced by
the spatial dimensions of their receptive fields (SI Appendix, Fig.
S4 E and F) (12, 24). As discussed above, the idiosyncratic re-
ceptive field structure of individual neurons (SI Appendix, Fig.
S4C) confers to them idiosyncratic preferences for coarse textural
features and likely drives, in part, the heterogeneity of texture
responses. Furthermore, the computation that such receptive
fields imply—of spatial variation—has been shown to determine
perceived roughness (10, 11, 18, 25). Thus, whereas spatial vari-
ation in afferent responses predicts roughness judgments, cortical
firing rates predict roughness judgments (50–52) because they
reflect the output of this differentiation computation.
At the periphery, however, the spatial mechanism cannot ac-

count for the perception of fine features due to limitations of the
skin to transmit those features to the receptors (2, 53, 54) and
limitations set by the cutaneous innervation density (4, 5). When
the finger slides across a textured surface, vibrations are elicited
in the skin. These vibrations are highly texture-specific (8, 9,
21, 22, 55) and, in turn, drive precise temporal spiking patterns
in RA and particularly PC fibers (10). Somatosensory neurons
implement temporal variation computations (32), which amount
to extracting features in the temporal spiking patterns and con-
verting them into rate-based signals. The nature and time scale
of these temporal variation computations vary from neuron to
neuron, and this heterogeneity contributes to the observed het-

erogeneity in texture responses. This transformation allows for
the possibility, in principle, that all of the relevant texture in-
formation in spike timing has been converted to a rate code
in cortex.

Is Spike Timing Relevant to Texture Coding in the Cortex? A sub-
population of neurons in somatosensory cortex exhibits precise,
phase-locked spiking responses to a wide range of textures (Fig.
5B and SI Appendix, Fig. S3E). The main inference we draw from
this temporal patterning is that this subpopulation receives input
from PC fibers, because these afferents are far more susceptible
to produce phase-locked responses to high-frequency stimuli
(>50 Hz) than are their SA1 or RA counterparts (56, 57). This
inference is further corroborated by the fact that phase-locked
cortical neurons are strongly driven by the surfaces that also
strongly drive PC fibers.
The question remains, however, of whether this temporal

patterning plays a role in texture coding. In the somatosensory
nerves, the precise timing of afferent responses—at a millisecond
resolution—conveys information about the frequency composi-
tion of skin vibrations (58, 59) and about fine texture (10). In
somatosensory cortex, temporal patterning in the responses of a
subpopulation of neurons encodes the spectral composition of
skin vibrations at frequencies above ∼50 Hz, a range over which
cortical firing rates are frequency-independent (60). Given these
previous results, one might surmise that the temporal patterning
observed in cortical responses to texture may play a role in
texture coding. Unfortunately, the texture set in the present
study is ill-suited to address this question. Indeed, cortical firing
rates carry enough information about the textures in this set to
yield near-perfect classification performance. Any additional
contribution of temporal patterning is thus obscured. To estab-
lish a role of spike timing in texture coding in cortex will require
measuring responses to textured surfaces that evoke similar fir-
ing rates but different firing patterns.

Conclusions
Texture representations in cortex involve the extraction of spatial
and temporal features from the patterns of activation across
tactile fibers. The resulting high-dimensional cortical representa-
tion of texture comprises dozens of nonredundant signals, many of
which account only for a small fraction of the overall neuronal
variance but are nonetheless informative about texture identity. A
prominent axis in the neuronal response forms a continuum of
spatial scales, with coarse-feature specialists at one extreme and
fine-feature specialists at the other, each population receiving
dominant input from a different class of tactile fibers. This
structure in the neuronal representation is reflected in perceptual
judgments of textures. While the principal neural axis predicts
perceived roughness, the code for texture identity seems to be
distributed along the neural continuum of spatial scales. That is,
coarse-feature specialists predict coarse-texture perception, and
fine-feature specialists predict fine-texture perception.

Materials and Methods
Experimental Methods.
Behavioral training. Before the beginning of recording sessions, all animals
were trained to sit in a primate chair with their heads fixed and arms re-
strained as they were habituated to the experimental apparatus. During the
task, the arm was stabilized in a supinated position with a custom-built cast
(Polycaprolactone; lined on the interior with foam padding for comfort). The
animal was trained to keep its hand still for the duration of the recording
protocols, and a protocol was restarted from the beginning if the finger
moved. Stability was further maintained by loosely taping the nonstimulated
fingers down and applying a small amount of glue to the fingernail of the
stimulated finger to keep it in stable contact with the hand holder.

To maintain alertness during recording, the animals performed a simple
visual brightness discrimination task (60). Briefly, the animals fixated on a
small square presented in the center of a monitor located in front of the
tactile stimulator. After ∼1–2 s of fixation, two circles of different luminance
appeared to the left and right of the fixation point. The animal was given a
liquid reward (juice or water, depending on the animal’s preference) for
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Fig. 6. Neuronal responses account for perceptual judgments of texture.
(A) Perceived roughness vs. the first principal component of the cortical
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making a saccade to the brighter target. The task was kept challenging by
adjusting the relative luminance of the targets and the fixation time. Eye
movements were tracked by using a camera-based eye tracker (ViewPoint
PC-60; Arrington Research), and visual stimuli were presented by using in-
house software based on the OpenGL library.
Surgery. Procedures were approved by the University of Chicago Institutional
Animal Care and Use Committee. First, a custom-built head-post was secured
to the skull and allowed to osseointegrate for 1.5 mo before the head was
first immobilized. Once the animals were sufficiently habituated to the test
apparatus and visual task, a recording chamber (22-mm internal diameter)
was attached to the skull by using bone cement such that it circumscribed the
hand representation in somatosensory cortex, and a craniotomy was made
over the internal diameter of the chamber. All surgical procedures were
performed under sterile conditions; anesthesia was induced with ketamine
and dexmedatomadine and maintained with a surgical plane of isofluorane
and occasional redosing of dexmedatomadine (61). Postsurgery, anesthesia
was reversed with atipamezole.
Neurophysiological procedures. Extracellular recordings were made in the
postcentral gyri of three hemispheres of three macaquemonkeys (male, 6–8 y
old, 8–11 kg) using described techniques (60). On each recording day, a
multielectrode microdrive (NAN Instruments) was loaded with three tung-
sten electrodes insulated with epoxylite (FHC Inc.), and electrodes were
lowered normal to the cortical surface, through a custom-designed 3D-
printed guide tube system that arranged the electrodes in a line 650 μm
apart tip-to-tip. The electrodes were then driven into the cortex until they
encountered neurons from areas 3b, 1, and 2 of somatosensory cortex with
receptive fields (RFs) on the distal finger pad.

The transition from area 1 to 3b exhibits a characteristic progression of RF
locations. As one descends from the cortical surface through area 1 into area 3b
near the central sulcus, the RFs progress from the medial and proximal finger
pads to the palmar whorls. As one enters area 3b, RFs proceed back up the
finger, transitioning from proximal, to medial, and ultimately to distal pads.
Because responses from the distal pad were never encountered in the more
superficial regions of 3b (where the palmar whorls or proximal pad typically
were most responsive), there was never any uncertainty about the anatomical
area from which area 3b recordings originated. The representation of the
digits in area 2 lies just caudal to, and mirrors that of area 1. Thus, as one
proceeds caudally, one first encounters the proximal, then medial, then distal
pads. As oneenters area2, RFs remainon thedistal pads and thenproceeddown
the finger as one further proceeds caudally. Themost salient feature identifying
area 2 is the presence of neurons with proprioceptive response properties; that
is, neurons that respond preferentially to movements of the joints. Because
the distal finger pad representations in areas 1 and 2 are adjacent, we used
the presence of proprioceptive responses to inform the areal classification.

We recorded from neurons whose RFs were located on the distal pads of
digits 2–5. On roughly every second day of recording, the electrode array
was shifted 200 μm along the postcentral gyrus until the entire representation
of digits 2–5 had been covered. At the end of the recording day, the electrodes
were withdrawn, and the chamber was filled with sterile saline and sealed.
Recordings were obtained from neurons in areas 3b, 1, and 2 that met the
following criteria: (i) action potentials were well isolated from the background
noise; (ii) the RF included at least one of the distal finger pads on digits 2–5;
(iii) the finger could be positioned such that the textured surface impinged on
the center of the RF; and (iv) the neuron was clearly driven by light cuta-
neous touch. Isolations had to be maintained for at least 30 min to
complete five repetitions of the basic texture protocol. When held for
longer, additional protocols were run (see below).
Stimulus presentation. Textured surfaces were presented to the fingertips of
awake macaque monkeys by using a custom-built rotating drum stimulator
like those used in previous studies (10, 62), but larger and more precise. The
drum was attached to a rotation motor (SmartMotor SM23165D; Animatics)
via a 1:100 gearbox (Animatics), which provided precise control of rotational
position (±200 μm) and velocity (±1.1 mm/s). The motor was attached to a
vertical stage (IMS100V; Newport), which could control the depth of in-
dentation into the skin with a precision of 2 μm. The vertical stage was at-
tached to another horizontal stage (IMS400CCHA; Newport), allowing
smooth displacement over 40 cm at a precision of 4 μm. Thus, we achieved
precise horizontal, vertical, and rotational positioning of textures, allowing
60 different slots (12 rows, five textures per row) in which texture strips
(2.5 cm wide by 16 cm long) could be mounted to the drum (25.5 cm in
diameter and 30 cm in length). The interstimulus interval was at least 3 s
between stimulus presentations, to allow the drum to reposition and to
prevent neural adaptation.

One of the available slots was dedicated to a small load cell placed on the
surface of the drum (LSB200; Futek; 2 lb, 1-axis, parallel to indentation), whose

function was to ensure that a consistent level of pressure was exerted on the
finger across recording sessions. Each day, after the animal’s hand and finger
were stabilized in place, the drum was rotated and translated such that the
load cell was pressed lightly (to a force of 15 ± 3 g) into the animal’s fingertip.
This position was used as a reference point for all protocols, to ensure that
stimulation was consistent across days and across fingers.
Stimuli. Texture samples were mounted on individual strips of magnetic tape
(5 × 16 cm), which were then attached to a complementary sheet of magnetic
tape fixed to the surface of the drum. This allowed for simple removal and
replacement when textures were damaged or worn through use. In total,
59 different textures were mounted on the drum, including a wide array of
natural textures such as papers, fabrics, furs, and upholsteries with coarse
periodic structure, as well as tetragonal arrays of embossed dots (25) and 3D-
printed gratings and dots. Twenty-four of these textures were also used in a
previous experiment on peripheral afferents (10) (SI Appendix, Table S1).

Textures were presented at a speed of 80 mm/s and at a force of 15 g. To
find the displacement equivalent to this desired force, a set of calibration
readings were taken offline by using a second load cell mounted at the
location of the hand. First, a standard reference point was found by
indenting the drum-mounted load cell into the second load cell, to a force of
15 g. Then, individual textures were repeatedly indented into the second
load cell to find the displacement (relative to the calibration point) necessary
to achieve the calibration force (15 g). During recording, textures were
scanned over the finger according to these standard displacements relative
to the reference point, measured daily. See SI Appendix, SI Materials and
Methods for additional stimulus protocols.
Peripheral recordings.We have previously reported the responses of 35 afferent
fibers [15 SA1, 13 RA, and 7 PC, characterized by using standard criteria based
on their response properties (63)] to 55 different texture stimuli (see ref. 10 for
details). Briefly, we collected extracellular single-unit recordings from the
median and ulnar nerves of six anesthetized (isoflurane) rhesus macaques as
texture stimuli were presented to the distal digits of the hand at a speed of
80 mm/s. Each texture was presented to each fiber at least twice.
Magnitude estimation. All procedures were approved by the Institutional Re-
view Board of the University of Chicago, and all subjects provided informed
consent. Subjects sat with the right arm supinated and resting on a support
under the drum. Stimuli were presented to the right index finger pad of
each subject.

Roughness scaling (six subjects, 5 males, 1 female, ages 18–24). On each trial,
the subject was presented with one of 59 textures (80 mm/s, 25 ± 10 g) and
produced a rating proportional to its perceived roughness, where a rating of
zero denoted a perfectly smooth surface. If texture B was perceived to be
twice as rough as texture A, texture B was ascribed a number that was twice
as large as texture A. Subjects were encouraged to use fractions and deci-
mals if necessary. Each texture was presented once in each of six experi-
mental blocks; ratings were normalized by the mean of each block and
averaged, first within then across subjects. Roughness ratings were consis-
tent across subjects: Each subject’s mean ratings were compared with the
mean ratings averaged over the remaining subjects, yielding a subject cor-
relation to the mean of r = 0.87 ± 0.079 (mean ± SD).

Dissimilarity scaling (10 subjects, 10 female, ages 19–24). In these experiments,
two subsets of textures were used. The first comprised 5 textures (coarse
group: silk, microsuede, upholstery, 4-mm embossed dots, and 5-mm
embossed dots) and the second 13 textures [fine group: suede, chiffon, ny-
lon (200 denier), denim, hucktowel, silk, microsuede, wool, satin, metallic silk,
upholstery, thin corduroy, and thick corduroy]. On each trial, the subject was
presentedwith a pair of textures (for 1 s each, separated by a 1-s interstimulus
interval, 10 of 78 unique comparisons for each group, respectively, 80 mm/s,
25 ± 10 g) and produced a rating proportional to the perceived dissimilarity
of the pair, where 0 denoted (perceived) identicalness. Each pair of textures
was presented three times in pseudorandom order. Texture dissimilarity
ratings were correlated across subjects (subject correlation to the mean,
coarse group: r = 0.88 ± 0.10; fine group: 0.65 ± 0.12; mean ± SD).

Analysis.
Basic analyses of firing rate. Because the stimulus epoch over which a texture
was moved into the skin evoked a large phasic response that lasted ∼200 ms,
we excluded this response from our analysis. For each trial, the baseline
firing rate was measured in the 500-ms period before the drum’s initial
contact with the skin.

To test whether texture responses were significantly above baseline firing
rates, we first created a distribution of baseline responses for each cell. We
then measured how often each cell’s texture firing-rate response (averaged
across five repetitions) was greater than the average of five random draws
from the baseline distribution. We set significance at P < 0.05 for all
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textures, Bonferroni-corrected for 8,319 comparisons (141 × 59), yielding a
very conservative measure of significance and thus a lower bound on the
number of textures that drive any given neuron.
Principal components analysis (PCA). We applied a PCA to population responses
to determine their major axes of variation. Specifically, we treated each
cortical neuron as a signal and each texture response as an observation in 141-
dimensional space.

To compare the main axes of variation in the responses of tactile nerve
fibers and cortical neurons, we identified shared axes of variation using a
cross-validated canonical correlation analysis. First, we split the 24 textures
that were used in both the peripheral and cortical experiments into a
“training” set of 23 textures, leaving out 1 “test” texture. Second, we
recalculated the PCA to determine new axes of variation for the peripheral
(n = 39) and cortical (n = 141) responses. Third, we used canonical correlation
analysis [using the canoncorr() function in Matlab] to calculate the optimal
mapping of component scores from the peripheral to the cortical repre-
sentation. Fourth, we applied this mapping to the responses to the test
texture: Specifically, we obtained from the afferent population response a
prediction of the cortical population response. This procedure was repeated
24 times, each time leaving a different texture out of the training set, and
was repeated with different numbers of principal axes (between 1 and
22 principal components). Finally, for each set of principal axes, we com-
puted the coefficient of determination for this cross-validated procedure,
using a formula analogous to the traditional R2 value for linear regression:

R2 = 1−
P

cells

P
textures

�
rt,c − ft,c

�2
P

cells

P
textures

�
rt,c −�rc

�2 ,

where rt,c is the true firing rate of a cell c in response to the test texture t,
ft,c is the predicted firing rate of cell c in response to that texture, and �rc is
the mean firing rate of cell c averaged across the 24 textures.
Texture classification. To quantify the information about texture identity
carried in the neuronal responses, we assessed the degree to which we could
classify textures based on the responses they evoke. To this end, we imple-
mented a nearest-neighbor classifier. First, for each neuron, we averaged
four of the five responses evoked by each texture, leaving one repetition out,
yielding 59 vectors of mean responses and 59 vectors of single-trial responses.
Next, we computed the distance between each single-trial response and each
mean response. For each single-trial response, themean response yielding the
lowest distance was selected. If the selected mean responses and the single-
trial responses corresponded to the same texture, classification was correct.
Performance was averaged across all textures and then again across
100 shuffles, each with different repetitions left out. This procedure was
repeated for neuron groups of different sizes.

We wished to examine how well responses from the cortical population
could support texture classification using subsets of the full response space, as
defined by the axes of variation identified via PCA. To implement our clas-
sification analysis in these subspaces, we first recomputed the PCA using the
mean firing rates computed from only four repetitions (the training set), as
discussed above. Next, we projected the full response space (for the training
and test sets) onto the relevant subspace (either single dimensions, as in Fig.
3C and SI Appendix, Fig. S2C, or lower-dimensional subspaces, as in Fig. 3D
and SI Appendix, Fig. S2D). Finally, we performed the classification, as de-
scribed above, in this lower-dimensional subspace.

For one analysis, we performed a pairwise texture classification, rather
than the “1 in 59” classification described above (Fig. 3C and SI Appendix,
Fig. S2C). Classification in this case was performed exactly as described
above, but only comparing the responses to two textures at a time, rather
than comparing any one texture to the remaining full set of textures. Per-
formance was averaged over all possible pairs of textures, and then again
over all test repetitions.

Estimating submodality input. We wished to assess the relative contributions of
the three functionally defined populations of tactile fibers to the response of
each neuron in somatosensory cortex, having previously shown that a majority
of cortical neurons receive convergent input from multiple modalities, even in
area 3b (19, 32) (recognizing that afferent signals pass through at least two
intermediate synapses, one in the cuneate nucleus and one in the thalamus).
While afferent input is likely not integrated linearly, we estimated the relative
strength of that input using a linear model. Specifically, we used a multiple
regression to predict the standardized (z-scored) mean texture responses of
each cortical neuron to a set of 24 textures (see above) from the standardized
(z-scored) mean responses of SA1, RA, and PC afferents to those same textures.
We used these normalized regression weights as measures of the relative
strength of SA1, RA, and PC afferent input into each neuron.
Frequency analysis. Spiking responses in the nerve have been shown to phase-
lock at high frequencies to texture-elicited skin vibrations (10), and spiking
responses in somatosensory cortex have been shown to phase-lock to high-
frequency skin vibrations imposed by a vibrating probe (60). To reveal any
phase-locking in the cortical responses to texture, we first binned spike
trains into 0.3-ms bins. Next, we computed the fast Fourier transform of that
binned spike train and, from it, the amplitude spectrum. Finally, we com-
puted the mean amplitude spectrum across repeated presentations for each
texture and neuron.
Discriminability of 3D-printed textures. We wished to assess whether neurons in
somatosensory cortex aremore sensitive to differences in the coarse structure
or fine structure of a textured surface. To this end, we measured neuronal
responses to nine 3D-printed textures that parametrically combined three
coarse patterns (blank, 7.7-mm spaced dots, and 5-mm-period grating) and
three fine patterns (blank, 1-mm-period grating, and 500-μm-period grating).
We then measured the discriminability of pairs of textures from their re-
spective distributions of responses. Specifically, we sought to determine
whether two textures with identical fine structure, but different coarse
structure, could be discriminated from the responses of an individual
neuron. For each fine pattern, we had three different coarse patterns (and
vice versa for each coarse pattern), and thus three different pairwise
comparisons. To quantify the discriminability of each pair from each neuron’s
responses, we measured a sensitivity index (d′):

d’ =
jμ1 − μ2jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
σ21 + σ22

�q ,

where μ is the mean firing rate response to a texture and σ2 is the vari-
ance in firing rate across repeated presentations of that texture. These
values were averaged across conditions and subpopulations of cells (Fig. 5C).
To calculate the statistical significance of these differences across neural
subpopulations, we repeated this averaging on permutations of the same
dataset with responses shuffled (50,000 permutations). We calculated sig-
nificance as the proportion of times our measured difference was greater
than that computed from shuffled data.
Dissimilarity correlation.We sought to determinewhether we could account for
psychophysical judgments of texture dissimilarity obtained from human
observers to neuronal responses in somatosensory cortex. To this end, we
computed the Euclidean distance between the two population vectors for
each of the two textures, each element of which is the mean firing rate of
each neuron in the set. This distance was then compared with the psycho-
physical judgment of texture dissimilarity.
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