
RESEARCH ARTICLE

Reproducibility of pharmacogenetics findings

for paclitaxel in a heterogeneous population

of patients with lung cancer

Tristan M. Sissung1, Arun Rajan2, Gideon M. Blumenthal2, David J. Liewehr3, Seth

M. SteinbergID
3, Arlene Berman4, Giuseppe Giaccone5, William D. Figg1*

1 Clinical Pharmacology Program, Office of the Clinical Director, National Cancer Institute, Bethesda,

Maryland, United States of America, 2 Thoracic and Gastrointestinal Oncology Branch, Office of the Clinical

Director, National Cancer Institute, Bethesda, Maryland, United States of America, 3 Biostatistics and Data

Management Section, Office of the Clinical Director, National Cancer Institute, Bethesda, Maryland, United

States of America, 4 Office of Research Nursing in the Office of the Clinical Director, Office of the Clinical

Director, National Cancer Institute, Bethesda, MD, United States of America, 5 Department of Oncology,

Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of

America

* FiggW@mail.nih.gov

Abstract

Pharmacogenetics studies have identified several allelic variants with the potential to reduce

toxicity and improve treatment outcome. The present study was designed to determine if

such findings are reproducible in a heterogenous population of patients with lung cancer

undergoing therapy with paclitaxel. We designed a prospective multi-institutional study that

recruited n = 103 patients receiving paclitaxel therapy with a 5-year follow up. All patients

were genotyped using the Drug Metabolizing Enzymes and Transporters (DMET) platform,

which ascertains 1931 genotypes in 235 genes. Progression-free survival (PFS) of pacli-

taxel therapy and clinically-significant paclitaxel toxicities were classified and compared

according to genotype. Initial screening revealed eleven variants that are associated with

PFS. Of these, seven variants in ABCB11 (rs4148768), ABCC3 (rs1051640), ABCG1

(rs1541290), CYP8B1 (rs735320), NR3C1 (rs6169), FMO6P (rs7889839), and GSTM3

(rs7483) were associated with paclitaxel PFS in a multivariate analysis accounting for

clinical covariates. Multivariate analysis revealed four SNPs in VKORC1 (rs2884737),

SLC22A14 (rs4679028), GSTA2 (rs6577), and DCK (rs4643786) were associated with pac-

litaxel toxicities. With the exception of a variant in VKORC1, the present study did not find

the same genetic outcome associations of other published research on pharmacogenetics

variants that affect paclitaxel outcomes. This finding suggests that prior pharmacogenomics

research findings may not be reproduced in the most frequently-diagnosed malignancy,

lung cancer.
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Introduction

Heritable variants in genes that affect drug absorption, distribution, metabolism, transport,

and activation (ADME-A) may partly explain inter-individual differences in susceptibility to

drug inefficacy or toxicity in lung cancer.[1–6] Such variants also play a role in the exposure to

nicotine and nicotine dependence[7] and changes in drug metabolism that are induced by

smoking. [8, 9]

Paclitaxel is approved as first-line therapy for patients with lung cancer. Hepatic uptake of

paclitaxel is primarily regulated by the transporter OATP1B3 (encoded by SLCO1B3),[10]

metabolized by several enzymes (e.g., CYP2C8 and CYP3A4),[11] and effluxed by ABCB1 (P-

glycoprotein) and the bile acid transporters, ABCB4, and ABCB11.[12–14] Although contro-

versial, several studies suggest some polymorphisms in these ADME genes are related to pacli-

taxel outcomes and toxicity.[15] Two studies have examined paclitaxel disposition and

paclitaxel-induced neutropenia in a Dutch population (N = 279) using the DMET array–a plat-

form that tests 1931 variants in 235 pharmacogenes.[2, 4] Yet, these studies did not find allelic

variation in these genes was related to paclitaxel pharmacokinetics or toxicity, except for

ABCB11.

The present study was designed to explore associations between ADME genes and pacli-

taxel outcome in patients undergoing various treatments in a multi-institutional setting, spe-

cifically focusing on whether previous pharmacogenomics findings would be validated in a

clinically representative and non-uniform cohort taking taxanes as single agents and in combi-

nation with other therapies.

Results

Patients and treatment

Patient characteristics including age, race, gender, smoking history, and various chemotherapy

treatment combinations are shown in Table 1. Most patients (N = 103) received either pacli-

taxel in combination with carboplatin (59%, N = 61), or paclitaxel and carboplatin in combina-

tion with other agents (33%, N = 34), with few receiving either paclitaxel alone (5.8%, N = 6),

or paclitaxel combined with cisplatin (1.9%, N = 2). Clinical outcome measures included toxic-

ities and progression-free survival (PFS). Given that hematological toxicity and neuropathy (N
= 14) were the most frequently observed clinically significant toxicities, we chose to evaluate

these outcomes. Other� grade 3 toxicities were too infrequent (N� 2) to evaluate associations

with genotype. Overall, a total of n = 16 patients stopped paclitaxel therapy due to toxicity.

Genotype versus progression-free survival (PFS)

There were 72 variants for which the univariate Cox regression identified as P<0.05 whereas

44 variants were found potentially important after an exact trend test was applied S1 Table.

Only eleven variants were considered for further consideration, having P<0.01 after combin-

ing into two categories (see last column in S1 Table). We also analyzed a set of potential covari-

ates (race, histology/disease type, metastatic status, second hand tobacco, number of prior

therapies, age, and cigarette pack-years, Table 1. Initial Cox proportional hazards regression

results indicated that metastatic status was weakly associated with PFS and was excluded from

further analyses (N = 94; OR (95% CI): 2.27 (0.711, 7.25)). Both stepwise and backward selec-

tion methods indicated that the number of prior therapies (0 vs. 1 vs. 2+; N = 73, 17, 13,

respectively) was associated with PFS such that patients with one prior therapy are at less, or

the same, risk of progression (HR (95%CI): 0.845 (0.281, 2.54)) as patients with no prior ther-

apy; patients with two or more prior therapies are at more risk of progression (HR (95%CI):
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Table 1. Patient demographics, baseline disease characteristics, and treatment (safety analysis population).

Carboplatin + Paclitaxel

(N = 61)

Carboplatin + Paclitaxel and other

agents (N = 34)

Cisplatin + Paclitaxel

(N = 2)

Paclitaxel

(N = 6)

Overall Total

(N = 103)

Age, y

Median 66.4 63.5 59.2 70.6 66.3

Minimum-Maximum 49.9–85.3 34.8–91.3 57.4–60.9 58.5–83.6 34.8–91.3

Sex, N (%)

Male 43 (70) 14 (41) 1 (50) 2 (33) 60 (58)

Female 18 (30) 20 (59) 1 (50) 4 (67) 43 (42)

Race, N (%)

White 36 (59) 24 (71) 2 (100) 6 (100) 68 (66)

Black 18 (30) 4 (12) 0 (0) 0 (0) 22 (21)

Asian 3 (4.9) 4 (12) 0 (0) 0 (0) 7 (6.8)

Hawaiian or Pacific Islander 1 (1.6) 0 (0) 0 (0) 0 (0) 1 (0.97)

Other 1 (1.6) 0 (0) 0 (0) 0 (0) 1 (0.97)

Not Specified 2 (3.3) 2 (5.9) 0 (0) 0 (0) 4 (3.9)

Smoking classification, N (%); N missing = 1

Never smoked 10 (16) 8 (24) 0 (0) 0 (0) 18 (17)

Current smoker 6 (10) 2 (5.9) 0 (0) 0 (0) 8 (7.8)

Former smoker 44 (72) 24 (71) 2 (100) 6 (100) 76 (74)

Non-metastatic vs metastatic, N (%)

Non-metastatic 37 (61) 10 (29) 0 (0) 0 (0) 47 (46)

Metastatic 22 (36) 21 (62) 2 (100) 2 (33) 47 (46)

N/A (Small Cell) 2 (3.3) 3 (8.8) 0 (0) 4 (67) 9 (8.7)

Histology, N (%)

Adenocarcinoma 31 (51) 22 (65) 1 (50) 2 (33) 56 (54)

Bronchoalaveolar carcinoma 2 (3.3) 1 (2.9) 0 (0) 0 (0) 3 (2.9)

Squamous cell carcinoma 19 (31) 6 (18) 1 (50) 0 (0) 26 (25)

Small cell 2 (3.3) 3 (8.8) 0 (0) 4 (67) 9 (8.7)

Large cell carcinoma 1 (1.6) 1 (2.9) 0 (0) 0 (0) 2 (1.9)

Unclassified 6 (9.8) 1 (2.9) 0 (0) 0 (0) 7 (6.8)

No. prior systemic therapy regimens, N (%)

0 48 (79) 22 (65) 2 (100) 1 (17) 73 (71)

1 9 (15) 7 (21) 0 (0) 1 (17) 17 (17)

2 2 (3.3) 4 (12) 0 (0) 1 (17) 7 (6.8)

3 0 (0) 0 (0) 0 (0) 1 (17) 1 (0.97)

4 0 (0) 1 (2.9) 0 (0) 2 (33) 3 (2.9)

5 2 (3.3) 0 (0) 0 (0) 0 (0) 2 (1.9)

Other therapy in combination with paclitaxel, N (%)

Bevacizumab 17 (50)

YM 155 8 (23.5)

Cetuximab 2 (5.9)

Irinotecan 2 (5.9)

Gemcitabine 1 (2.9)

Radiation 1 (2.9)

Etoposide 1 (2.9)

Bevacizumab + SSIP (i.e.,

antimesothelin)

1 (2.9)

Cetuximab + Bevacizumab 1 (2.9)

Pack-years smoked, N missing = 4

(Continued)
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2.43 (1.03, 5.72)) than those with no prior therapy Table 2. All other clinical and demographic

parameters (i.e., race, histology, disease type, second hand smoke, age, and cigarette pack-

years) were found to not be associated with PFS in univariate analyses and were not considered

further. Thus, despite the heterogeneity of the patients included in the study, only the number

of prior therapies would be worthy of consideration in a multivariable analysis of factors asso-

ciated with PFS and in the interpretation of results

Initial screening of the 12 SNPs using both backward and stepwise selection processes

resulted in 7 SNPs in the final Cox model (both backward and stepwise selection processes

agreed; see multivariable results including the 7 SNPs as well as number of prior therapies in

Table 2. Remarkably, 5 of 7 potentially important genes identified in this study encode multi-

ple enzymes and transporters involved in bile acid synthesis, canalicular transport of bile, and

sterol clearance: ABCB11 (Bile Salt Export Pump; BSEP), ABCC3 (Canalicular Multispecific

Organic Anion Transporter 2; CMOAT2), ABCG1 (ATP-Binding Cassette Transporter G1),

CYP8B1 (Sterol 12-Alpha-Hydroxylase), and NR3C1 (Glucocorticoid Receptor; GR). Other

genes include a pseudogene, FMO6P (Flavin Containing Monooxygenase 6 Pseudogene), and

the detoxification of electrophilic compounds, GSTM3 (Glutathione S-Transferase, Mu-3).

Median PFS and their 95% confidence intervals are provided in Table 3 and Kaplan-Meier

plots are included in Fig 1.

Genotype versus toxicity

Univariate screening of the 1931 SNPs indicated that only 46 had P<0.05 (S2 Table; both 2 x 2

and 2 x 3 cross-tabs) but only one of the seven 2 x 2 tables had P<0.01 (rs4679028; P = 0.004;

OR (95% CI): 9.43 (1.68, 53.5)). Of the remaining 39 2 x 3 cross-tabs only 27 had sufficient

observations for testing for a trend; the balance (12) were further analyzed after combining

groups (see below). Of the 27 2 x 3 cross-tabs with sufficient data, only 5 had P<0.01

Table 1. (Continued)

Carboplatin + Paclitaxel

(N = 61)

Carboplatin + Paclitaxel and other

agents (N = 34)

Cisplatin + Paclitaxel

(N = 2)

Paclitaxel

(N = 6)

Overall Total

(N = 103)

Median 36.0 (N = 59) 20.5 (N = 32) 30.8 56.3 32.8 (N = 99)

Upper, lower quartile 15.0, 58.5 1.0, 45.6 Insuf. Data Insuf. Data 8.0, 57.0

Second-hand smoke, N (%), N missing = 1

Yes 52 (87) 27 (79) 2 (100) 5 (83) 86 (84)

No 8 (13) 7 (21) 0 (0) 1 (17) 16 (16)

https://doi.org/10.1371/journal.pone.0212097.t001

Table 2. Proportional hazards analysis of PFS (N = 99).

Variable Type Parameter Gene Allele Parameter Estimate SE Pr > ChiSq HR 95% Hazard Ratio

Confidence Limits

SNP rs4148768 ABCB11 C>T 1.673 0.539 0.002 5.33 1.85 15.3

rs1051640 ABCC3 A>G 1.385 0.490 0.005 3.99 1.53 10.4

rs1541290 ABCG1 G>A -0.955 0.461 0.038 0.385 0.156 0.949

rs735320 CYP8B1 G>A 1.797 0.480 0.0002 6.03 2.36 15.5

rs7889839 FMO6P A>G 1.244 0.438 0.005 3.47 1.47 8.19

rs7483 GSTM3 G>A -1.463 0.564 0.009 0.232 0.077 0.699

rs6196 NR3C1 T>C 1.076 0.468 0.021 2.93 1.17 7.33

Covar. Prior therapies: 0 vs. 1 -0.168 0.562 0.76 0.845 0.281 2.54

Prior therapies: 0 vs. 2+ 0.889 0.436 0.041 2.43 1.03 5.72

https://doi.org/10.1371/journal.pone.0212097.t002
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(rs4643786, rs910795, rs6811453, rs6577, rs1056836); Somers’ D indicates that the associations

are most likely weak. Of the remaining 12 SNPs, only two had P<0.01 (rs3093105 (N = 85),

rs2884737).

None of the covariates evaluated were considered in the multiple logistic regression analysis

as they were found to be weakly associated with toxicity in the univariate analyses (race, histol-

ogy/disease type, metastatic status, second hand tobacco, number of prior therapies, age, and

cigarette pack-years (S3 Table). An initial analysis indicated that the variant corresponding to

rs3093105 was not an important predictor of toxicity, so it was dropped from further consider-

ation in analyses. Two similar, but competing, models were identified. In both models, variants

in the vitamin K epoxide reductase complex (VKORC1; rs2884737) and the organic-cation

transporter-like 4 (OCTL4, SLC22A14; rs4679028) were included. The odds ratios (OR; 95%

CI) were 0.092 (0.002, 0.807) and 9.77 (1.65, 63.8), respectively for VKORC1 and SLC22A14 in

Model 1, while they were 0.097 (0.002, 0.909) and 5.60 (0.992, 33.1) in Model 2; Table 4). Two

other variants only appeared in one model each. Variants in the glutathione S-transferase

alpha-2 (GSTA2; rs6577) were only found in model 1 (OR (95%CI) = 6.03 (1.42, 28.9) and

those in the deoxycytidine kinase (DCK; rs4643786) were found in model 2 OR (95% CI) =

0.111 (0.009, 0.899), respectively). Model 1 correctly predicted 72/86 (83.7%) of those without

toxicity and 11/16 (68.8%) of those with toxicity, and Model 2 correctly predicted 82/87

(94.3%) of those without toxicity and 8/16 (50.0%) of those with toxicity. The former model

provided a more balanced set of classification probabilities, and is considered preferable for

that reason. Different associations were found when hematological toxicities were considered

as a group, and neutropenia and thrombocytopenia were considered as individual categories

(S4 Table).

Conclusions

The present study identified 7 genetic variants that were associated with paclitaxel PFS and 3

variants associated with major paclitaxel-induced dose-limiting toxicities in patients with lung

cancer treated with paclitaxel. Findings included few genes that have been previously associ-

ated with paclitaxel outcomes and/or lung cancer progression. Other genes represent novel

associations as are summarized below. The present data suggest that pharmacogenomics asso-

ciations demonstrated in previous studies are not replicated in a clinically representative

cohort of patients with lung cancer who have undergone paclitaxel therapy.

A previous study by de Graan et al. discovered that a set of four linked polymorphisms in

VKORC1 was related to low paclitaxel clearance in a cohort of individuals with a variety of can-

cers.[2] In the present study, the VKORC1 SNP associated with a higher probability of toxicity,

rs2884737 (T/T), is in strong linkage disequilibrium with the same allele (T/T) in rs9934438

Table 3. Median progression-free survival.

Gene Variant Stratum 1 (months) Stratum 2 (months)

ABCB11 rs4148768 7.83 (5.00, NR�) 7.36 (1.31, 7.36)

ABCC3 rs1051640 7.83 (6.28, NR) 3.81 (2.99, 4.83)

ABCG1 rs1541290 4.83 (3.03, 11.08) 7.83 (6.28, NR)

CYP8B1 rs735320 7.83 (6.54, NR) 5.00 (2.01, NR)

FMO6P rs7889839 7.36 (6.28, NR) 5.00 (2.14, 12.85)

GSTM3 rs7483 5.00 (3.03, 6.54) 12.85 (11.08, NR)

NR3C1 rs6196 7.83 (6.28, NR) 3.03 (1.61, 7.36)

� Not reached (NR)

https://doi.org/10.1371/journal.pone.0212097.t003
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that was associated with low clearance S1 Fig. Taken together with the findings of de Graan

et al., our data suggest that this haploblock is associated with low clearance, and therefore a

Fig 1. Kaplan-Meier plots of potentially important associations following Cox regression analyses. Paclitaxel PFS was related to genetic variants in seven genes: A)

ABCB11 rs4148768, B) ABCC3 rs1051640, C) ABCG1 rs1541290, CYP8B1 rs735320, FMO6P rs7889839, GSTM3 rs7483, and NR3C1 rs6196.

https://doi.org/10.1371/journal.pone.0212097.g001

Table 4. Logistic regression models of toxicity.

Gene Genotype with Higher Risk Parameter Parameter Estimate SE OR 95% Odds Ratio

Confidence Limits

P (Exact)

Model 1 (N = 102)

Intercept -2.288 0.491

VKORC1 T/T rs2884737 -2.49 1.171 0.092 0.002 0.807 0.024

GSTA2 A/C, C/C rs6577 1.864 0.673 6.03 1.42 28.9 0.012

SLC22A14 A/A rs4679028 2.425 0.817 9.77 1.65 63.8 0.010

Model 2 (N = 103)

Intercept 0.592 0.949

VKORC1 T/T rs2884737 -2.414 1.235 0.097 0.002 0.909 0.037

DCK C/C rs4643786 -2.394 0.975 0.111 0.009 0.899 0.038

SLC22A14 A/A rs4679028 1.845 0.781 5.60 0.992 33.1 0.051

https://doi.org/10.1371/journal.pone.0212097.t004
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high probability of paclitaxel toxicity. However, the mechanism underlying the relationship

between these SNPs and clearance/toxicity is currently unclear since, to our knowledge,

VKORC1 activity regulates the oxidation state of vitamin K and clotting factors, which appears

to have little relationship with drug metabolism or activity.

Four of seven (57.1%) variants identified in association with PFS were associated with bile

synthesizing and transporting proteins (ABCB11, ABCC3, ABCG1, and CYP8B1). Bile acid

enzymes and transporters have been previously associated with paclitaxel and docetaxel neu-

tropenia,[4, 16] and, as explained above, some of these genes have previously been associated

with paclitaxel outcomes for other reasons. For instance, ABCB11 transfection confers a low

level of paclitaxel resistance in ovarian carcinoma cells, and is likely involved in hepatobiliary

paclitaxel elimination,[12] and paclitaxel is an inhibitor of the BSEP.[17] However, ABCB11
rs2287622 identified in Nieuweboer et al. (4 or 31) is not in linkage with the presently associ-

ated polymorphism, rs4148768. We propose that bile disposition is responsible for changing

the expression of various drug metabolizing enzymes and transporters that are controlled by

bile-responsive nuclear receptors,[18] and this possibility has been very poorly explored in the

literature. For example, cholic acid induces ABCC3 expression, which provides a hepatopro-

tective effect during cholestasis,[19] but the promotion of ABCC3 expression would also be

expected to have significant consequences on paclitaxel and platinum disposition.[20–28]

Other findings are potentially related to the combination of multiple therapeutics. ABCC3

was identified as one of the most up-regulated genes in in chemotherapy-resistant lung cancer

[28] and taxane-resistant breast cancer[22]. In lung cancer, carboplatin is responsible for

increasing the expression of MRP3,[23] and acquired paclitaxel resistance during carboplatin

cotherapy often appears to be a function of MRP3.[21] Many cisplatin-treated cells also upre-

gulate MRP3,[20] and platinum resistance is associated with MRP3 in lung cancer.[26, 27] The

polymorphism identified in the present study (rs1051640; E1503E) has also been observed in

relation to cisplatin-induced ototoxicity;[24, 25] however, no study has yet characterized the

functional effects of E1503E to our knowledge. DCK typically catalyzes the rate-limiting step

of the formation of deoxynucleoside triphosphates, and the present SNP (rs4643786, 948T>C)

is related to lower DCK expression in lymphocytes.[29] Consistent with this finding, 948C car-

riers with AML receiving topoisomerase inhibitors had superior response than those who car-

ried 948TT [30]. DCK also phosphorylates gemcitabine, promoting its incorporation into

DNA. Paclitaxel increases expression of dCK in NSCLC cell lines.[31] Our observations indi-

cate that paclitaxel caused greater toxicity in patients carrying the low-DCK expressing geno-

type. This polymorphism should be studied further in this context.

Still other findings could be related to tumor progression. ABCG1 effluxes intracellular cho-

lesterol to high-density lipoprotein particles that undergo reverse cholesterol transport from

the periphery to the liver. Macrophages with ABCG1 expression undertake a tumor promoting

phenotype, M2, and have been associated with tumor growth and antiapoptosis.[32] ABCG1

expression in macrophages is also associated with poor survival outcomes in patients with

lung cancer.[33, 34] Accordingly, a polymorphism in ABCG1 that was related to higher

ABCG1 expression (rs225388) was associated with poor survival in patients with lung cancer.

[35] Another SNP (rs492338) was strongly associated with paclitaxel-induced neuropathy,[36]

but this SNP was not associated with outcome in our study. Interestingly, the currently associ-

ated SNP (rs1541290 G/G) was previously related to low docetaxel clearance; which counterin-

tuitively suggests that those carrying low clearance alleles had shorter PFS.[37] Therefore, it is

unclear whether this polymorphism is predictive or prognostic, and could be both.

A polymorphism in the glucocorticoid receptor (GR; NR3C1) was also associated with poor

PFS. Basal expression of CYP2C8 is regulated by the glucocorticoid receptor, and dexametha-

sone induces CYP2C8.[38, 39] Glucocorticoids reduce paclitaxel efficacy because GCs reduce

Reproducibility of pharmacogenetics findings for paclitaxel
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paclitaxel-induced apoptosis, and blocking GR restores paclitaxel sensitivity.[40–43] High GR

expression is related to LC cell survival[44] and corticosteroid co-therapy typically results in

therapeutic resistance in lung cancer.[45] The N766N (rs6196 T>C) polymorphism in the glu-

cocorticoid receptor is present in exon 9α, which comprises the ligand binding,[46] AP-1/NF-

κB/dimerization/nuclear translocation domains of the GR and was associated with corticoste-

roid resistance in Crohn’s disease [47] although this finding is controversial.[48] Therefore,

the glucocorticoid receptor could both affect paclitaxel metabolism and promote growth and

prevent death signaling in lung cancers, and the mechanism behind the association of this

polymorphism and poor paclitaxel PFS remains unclear.

Other findings include variants in GSTA2, GSTM3, FMO6P, and SLC22A14. GSTM3 is

broadly distributed in the airway epithelium and smooth muscle of the lung and is expressed

at higher levels in smokers than in ex-smokers.[49] Several GSTs have also been related to out-

comes and clearance of paclitaxel.[2, 4] SNPs in GSTM3 and GSTA2 have not yet been

explored in relation to paclitaxel outcomes in the literature.

With the exception of variants in VKORC1, most previously-studied genetic variants that

are often related to paclitaxel pharmacokinetics and outcome were not reproducible in this

study.[2, 4, 10–15] We suggest that such a finding would be expected since pharmacogenetics

research is typically conducted retrospectively on clinical trials that select rather homogeneous

populations of individuals in a controlled setting. By contrast, paclitaxel is most-often com-

bined with a wide variety of agents in heterogenous populations with numerous different dis-

eases in the community setting, Thus, prior pharmacogenomics findings are not reproducible

in a prospectively recruited, clinically representative, and non-uniform cohort taking taxanes

as single agents or in combination with other therapies. Such a finding is unfortunate for those

undergoing paclitaxel therapy for the most frequently diagnosed malignancy, lung cancer.

This study is based on a heterogeneous population and because of the limited number of

patients which would be present in each population subgroup, it was not practical to further

explore the associations of SNPs and outcomes in the subgroups. Except possibly for the num-

ber of previous systemic treatments, with the marginal association with PFS of the few patients

with 2 or more prior treatments vs. those without any prior treatments, this was not likely to

result in substantially different findings given that the various subgroups themselves were not

found to differ in prognosis. However, it would be worthwhile if future evaluations on larger,

possibly more homogeneous populations of patients could be undertaken to more definitively

confirm the findings of the present study.

Materials and methods

Patients and treatment

A total of 546 patients with histologic diagnosis of primary lung carcinoma were enrolled in

this study (NCT#00923884) between 2009 and 2012. Patients were treated at the National Can-

cer Institute (N = 441) and the Washington D.C. Veteran’s Affairs Medical Center (N = 105),

and the present analysis focuses on those treated with paclitaxel. Of these 546 patients, 103

patients who received paclitaxel, either alone (N = 6) or in combination (N = 97), were success-

fully genotyped and had available smoking history, progression-free survival (PFS), and toxic-

ity data. The study enrolled individuals who were over the age of 18 with non-small cell or

small cell lung cancer who received any treatment (surgical resection, chemotherapy, radia-

tion, or molecularly targeted therapy), had ECOG performance status of 0–3, and normal or

impaired organ function. Those with a current diagnosis of or a prior history of other cancers

were also enrolled. The study was approved by the Institutional Review Board at the National

Cancer Institute (Bethesda) and the Veteran’s Affairs Medical Center (Washington D.C.). All
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patients provided written informed consent, and data for the present study are included on

https://www.ncbi.nlm.nih.gov/gap.

Assessments

All patients were followed for disease recurrence and survival for up to a 5-year period follow-

ing enrollment. PFS was calculated by subtracting the date of initiation of a particular treat-

ment from the date of progression on that treatment (censored if the patient was alive and

remained on treatment as of the last follow-up). For the purposes of this analysis, only grade 3

or greater toxicities possibly, probably, or definitely related to the therapy were assessed. All

patients received a questionnaire ascertaining cigarette pack years and secondhand tobacco

exposure.

Sample handling

A whole blood sample was obtained from each patient in an EDTA (lavender) top tube. DNA

was extracted via ethanol precipitation, and samples were stored at -80˚C until genotyping was

conducted. Prior to genotyping, all samples underwent gDNA quantitation using the human

RNase P TaqMan Copy Number Reference Assay (Thermo Fisher Scientific, Waltham, MA,

USA) per the manufacturer’s instructions. Samples were diluted to 5ng/uL (150ng total) for

analysis by the Drug Metabolizing Enzymes and Transporters platform (DMET; Affymetrix,

Santa Clara, CA), which was also conducted using the manufacturer’s instructions. The

DMET array ascertains 1931 allelic variants in 235 pharmacogenes. Of these 21% SNPs had at

least one missing value, which is typically attributable to poor sample integrity or low DNA

concentration; albeit, many other reasons are possible. All genotype and phenotype data used

in this study are posted on dbGAP: http://www.ncbi.nlm.nih.gov/projects/gapprev/gap/cgi-

bin/preview1.cgi?GAP_phs_code=PJfddSlJgReHqFfc

Statistical considerations

Univariate genotype relationships with progression-free survival (PFS) were initially per-

formed using a univariate proportional hazards (Cox) regression analysis and the Chi-square

test to calculate the P-value as a screen. We next performed actuarial analysis on the PFS data

and used both a log-rank based trend test and log-rank test to calculate two-tailed P-values.

SNPs for which P<0.05 were noted for both Cox and actuarial analyses and were then further

analyzed via Kaplan-Meier plots. If there were two strata, then a log-rank test was performed

to compare stratum (exact tests were used if N<6 for either stratum). If there were three strata,

and at least one stratum had N<6, then an exact trend test and log-rank test was performed.

For those tests where P<0.05 Kaplan-Meier plots were produced and examined to determine

whether adjacent stratum could be combined (e.g., G/A+A/A, but not G/G+A/A). If any of the

strata were combined, then another log-rank test was performed. Finally, a multivariable Cox

proportional hazards analysis including the SNPs identified by the univariate analyses, as well

as any of the clinical or demographic factors identified to be potentially associated with PFS on

univariate analyses, was performed to demonstrate the joint impact of the SNPs and any clini-

cal or demographic factors on PFS.

Univariate genotype relationships with toxicity were first screened using Fisher’s exact test

(2 x 2 tables) or Mehta’s modification to Fisher’s Exact test (2 x 3 tables), as appropriate [50].

Second, when applicable, if the two-tailed P-value from the first test was below 0.05, an exact

Cochran-Armitage trend test was conducted. Finally, if a 2 x 3 table had small sample sizes

(N<6) in any of the levels, adjacent levels were combined (e.g., 1+2, or 2+3) and then a Fisher’s
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exact test was conducted on the newly-created 2 x 2 table. If the last P-value was�0.010, then

an odds ratio or Somers’ D was calculated (and 95% confidence intervals).

To further interpret the association between SNPs and toxicity, we also analyzed the SNPS

along with a set of potential covariates (race, histology/disease type, metastatic status, second

hand tobacco, number of prior therapies, age, and cigarette pack-years) in a multiple logistic

regression analysis, which consisted of both backward and stepwise selection processes.

Given that this study is subject to a high number of comparisons, a P-value<0.010 was con-

sidered potentially important whereas P�0.001 with sample sizes >30 in each group was con-

sidered to afford the most interpretive weight.
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