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AlteredmicroRNA (miRNA) expression is a hallmark of many cancer types.The combined analysis of miRNA andmessenger RNA
(mRNA) expression profiles is crucial to identifying links between deregulated miRNAs and oncogenic pathways. Therefore, we
investigated the small non-coding (snc) transcriptomes of nine clear cell renal cell carcinomas (ccRCCs) and adjacent normal tissues
for alterations in miRNA expression using a publicly available small RNA-Sequencing (sRNA-Seq) raw-dataset. We constructed a
network of deregulated miRNAs and a set of differentially expressed genes publicly available from an independent study to in
silico determine miRNAs that contribute to clear cell renal cell carcinogenesis. From a total of 1,672 sncRNAs, 61 were differentially
expressed across all ccRCC tissue samples. Several with known implications in ccRCC development, like the upregulated miR-21-
5p, miR-142-5p, as well as the downregulatedmiR-106a-5p, miR-135a-5p, or miR-206. Additionally, novel promising candidates like
miR-3065, which i.a. targets NRP2 and FLT1, were detected in this study. Interaction network analysis revealed pivotal roles for
miR-106a-5p, whose loss might contribute to the upregulation of 49 target mRNAs, miR-135a-5p (32 targets), miR-206 (28 targets),
miR-363-3p (22 targets), and miR-216b (13 targets). Among these targets are the angiogenesis, metastasis, and motility promoting
oncogenes c-MET, VEGFA, NRP2, and FLT1, the latter two coding for VEGFA receptors.

1. Introduction

Approximately 3% of all cancers in adults occur in the
kidney; therefore kidney cancer is one of the ten most
frequently occurring cancers in western communities [1].
The primary histomorphologic type is clear cell renal cell
carcinoma (ccRCC), which accounts for 80–85% of all kidney
cancers followed by papillary renal cell carcinoma (pRCC)
representing approximately 10% of renal cancers [2]. The
gender and age distributions are similar between ccRCC and
pRCC; however ccRCC has a worse prognosis with a 5-year
survival of 77% [3, 4]. This is attributed to an advanced
tumor stage (38.1%) and visceral metastasis at diagnosis
(14.5%) [5].

MicroRNAs (miRNAs) are a class of small non-coding
RNAs (sncRNAs) that can repress gene expression through
translational repression or messenger RNA (mRNA) dead-
enylation and decay by base pairing to partially complemen-
tary sites [6]. Deregulated miRNAs have i.a. been associ-
ated with formation of metastases, tumor progression, and
tumor growth in ccRCC and anti-miRs were suggested as
novel therapeutic strategies in the treatment of the disease
[7–9].

Next-generation small RNA-Sequencing (sRNA-Seq)
allows for unbiased quantitative and qualitative sncRNA
profiling.When compared tomiRNA array platforms, sRNA-
Seq additionally enables the discovery of novel miRNAs
as well as the detection of other differentially expressed
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sncRNAs like small nucleolar RNAs (snoRNAs) and transfer
RNA (tRNA)-derived fragments that can mimic miRNA
function [10].

Several microarray based studies have demonstrated 21
to 34 differentially expressed miRNAs between ccRCC and
normal kidney tissue [11]. SRNA-Seq studies reported more
than 100 differentially regulated miRNAs, some of which
might serve as diagnostic and prognostic markers [12, 13].
Nevertheless, these studies lack detailed information about
miRNA targets and bioinformatical analysis is often only
focused on miRNAs currently known to miRbase.

Here we used omiRas [14] to analyze a publicly available
dataset (GEO: GSE24457) published by Zhou et al. [13],
comprising twenty sRNA-Seq libraries of ten ccRCCs and
ten adjacent control tissues from the same patient in order
to identify sncRNAs with deregualted expression across
all cases. After outlier detection with principle component
analysis (PCA) samples of nine patients were used for
downstream analysis.

We detected 61 sncRNAs as differentially expressed
between the groups. Among these were several miRNAs
without previous implication in kidney cancer development,
like miR-3065-5p. Additionally, we detected seven snoRNAs
and two tRNA derived fragments as differentially expressed
between ccRCC and control tissues.We connected the dereg-
ulated miRNAs to biological pathways composed of differ-
entially expressed genes under potential post-transcriptional
control of these miRNAs. To do so, we utilized another
publicly availablemRNA-Sequencing (RNA-Seq) dataset (see
methods). The “interaction network tool” of omiRas allows
for the construction of interaction networks of miRNAs
and mRNAs, interrogating the information from several
miRNA-mRNA interaction databases. Therefore, we in sil-
ico assigned functions to significantly deregulated miRNAs
and defined miRNAs implicated in the carciogenesis of
ccRCC.

Among these is miR-206, which is significantly downreg-
ulated in ccRCC. Loss of miR-206 has been associated with
hypoxia and under insufficient oxygen supply, angiogenesis is
stimulated through upregulation of VEGF [15]. Our analysis
revealed that miR-206 can regulate the expression of VEGF
and several other genes involved in invasion, metastasis, and
angiogenesis (MET, FN1, NRP1, ELMO1, and TAGLN2). This
underlines that hypoxia induced loss of miR-206 expression
is a critical process in clear cell renal cell carcinogenesis and
maintenance.

Overall, our study demonstrates a promising strategy
to identify driver miRNAs in cancer development that can
afterwards undergo further functional testing.

2. Methods

2.1. Dataset Collection. A publicly available sRNA-Seq
expression dataset of ten ccRCC and matching normal
renal tissue was downloaded from the Gene Expression
Omnibus (GEO: GSE24457) database in SRA format. A list
of 1,299 significantly upregulated and 1,194 downregulated
genes identified in mRNA-Seq data of 65 ccRCC cases from

the Cancer Genome Atlas (TCGA) by Wozniak et al. [16]
was retrieved in XLS format.

2.2. Data Preprocessing. Raw sequencing files were converted
to FASTQ format and the 3 sequencing adapter (TCGTAT-
GCCGTCTTCTGCTTGAAA) was removed from the reads
with cutadapt [17]. Subsequently, low quality stretches below
a SANGER quality score of 20 were additionally trimmed
from each end of the reads (-q 20). Only reads with a
minimum length of 15 bps after clipping were used for further
analysis (-m 15).

2.3. Data Analysis

2.3.1. MiRNA Quantification, Outlier Detection, and Differen-
tial ExpressionAnalysis. Preprocessed FASTQ-files were sub-
mitted to omiRas. Briefly, in omiRas, reads are summarized
to UniTags. Singletons are removed from the data set and
the remaining tags are mapped to the human genome (hg19)
with bowtie [18] allowing atmost twomismatches (controlled
by option -v 2). Only the alignments in the best stratum
are reported (if a read matches to six different genomic
loci, two loci with no mismatch, and four loci with one
mismatch, only the two alignments are reported) controlled
with --strata and --best. Alignments for reads with more than
50mapping locations are suppressed (-k 50).Themapped tags
are annotated with the help of various models of coding and
non-coding RNAs retrieved from the UCSC table browser
[19]. Tags mapping to exonic regions of coding genes are
excluded from further analysis. NcRNAs are quantified for
each library independently. For tags mapping to multiple
genomic loci the number of reads corresponding to the tag
is divided by the number of mapping loci. To account for
differences in sequencing depth, tag-counts are normalized
(NEV, normalized expression value). Differential expression
(corrected 𝑃 value (FDR) < 0.1) is detected with the DESeq
bioconductor package [20] that takes biological and technical
variance into account.

To reduce noise we introduced an outlier detection prior
to differential expression analysis into the omiRas pipeline.
The normalized counts are evaluated by PCA with R 3.0.2.
The samples identified to be four or more standard devia-
tions away from the mean on the first or second principal
component are considered outliers and are removed from
analysis.

2.3.2. Identification of miRNA Targets in ccRCC. MRNA
targets (as given in the XLS file of Wozniak et al. [16])
of differentially expressed miRNAs were identified with the
“interactive network tool” of omiRas. An interaction between
an miRNA and a coding gene is assumed to be valid if the
following two criteria apply.

(a) Three or more of seven miRNA-mRNA interaction
databases support the interaction.

(b) The expression of the miRNA/mRNA pair is inverse.
The miRNA is significantly downregulated and the
mRNA is upregulated or vice versa.
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Table 1: Overview of reads analyzed across nine samples of normal control (N) and ccRCC (C) tissues.

Library Raw sequencing reads After adapter and quality trimming sncRNA miRNA
N1 14,443,742 12,906,724 8,495,200 6,252,360
N2 14,307,074 13,331,072 10,356,100 6,854,590
N3 17,936,606 15,100,756 9,130,100 3,679,540
N4 17,343,176 16,241,449 10,934,800 5,447,920
N5 14,684,860 13,072,885 9,206,400 4,592,420
N6 18,696,751 17,718,335 13,328,400 8,738,310
N7 19,096,243 17,625,538 12,940,500 7,637,660
N8 18,754,729 17,405,763 12,780,900 5,327,410
N9 18,663,047 17,516,415 13,242,400 8,099,360
C1 14,324,200 13,188,486 10,027,000 7,155,830
C2 14,931,770 13,695,844 10,906,400 7,390,700
C3 17,643,505 16,762,300 13,248,300 8,391,030
C4 15,083,510 14,082,747 10,114,800 4,218,080
C5 14,057,127 13,045,222 9,260,080 4,099,150
C6 19,244,097 18,285,475 13,897,300 8,193,160
C7 18,889,231 17,589,421 13,477,500 7,093,640
C8 19,554,654 18,365,512 13,127,700 4,896,510
C9 19,304,096 18,173,426 13,676,700 6,011,960
Average 17,053,245.4 15,783,742.8 11,563,921.1 6,337,757.2

2.3.3. Identification of miRNAs Involved in the Deregulation
of Genes from the Same Functional Category. Up- and down-
regulated genes in ccRCC were mapped to functional Gene
Ontology (GO) categories using DAVID Bioinformatics
Resources 6.7 [21]. Genes within enriched (FDR < 0.05)
categories were committed to the STRING database [22] to
determine protein-protein interactions of their gene prod-
ucts. Additionally, miRNAs that might be causative for the
deregulation of genes within the category were detected as
described above.

2.3.4. Visualization. PCA and hierarchical clustering of the
differentially expressed miRNAs were performed and visu-
alized with R 3.0.2. Networks of genes from the same GO
category were visualized with Cytoscape [23]. Visualizations
of annotation statistics for each library were taken from
omiRas.

3. Results

The samples of patient P 10 were identified as outliers (see
methods) and consequently tissues from the patient were not
considered for downstream analysis.Therefore, differences in
the sncRNAs between 9 patients’ kidney tumors and adjacent
normal renal tissue have been assessed.

Overall, 306,958,418 sequences were processed. On aver-
age, 7.5% of reads were discarded during adapter clip-
ping and quality trimming. The proportion of sncRNAs in
the libraries ranged from 63% to 75%, whereas miRNAs
accounted for 37–74% of sncRNAs (see Table 1). The length
distribution after adapter clipping revealed a clear peak
at 22 base pairs (bps) across all samples (Figure 1(b) (see

Figure S1 in Supplementary Material available online at
http://dx.doi.org/10.1155/2014/948408)), which is typical of
mammalian miRNAs [24]. Besides ncRNA encoding loci
reads were annotated to intergenic regions (Figure 1(c), S1)
that may harbor novel miRNAs. The difference in miRNA
proportions between libraries was attributed to varying
degrees of snoRNAs, as well as tRNA derived fragments
(Figure 1(d), S1). 1,672 sncRNAs were expressed in at least
one library (Supplementary Table T1); 41 of these were sig-
nificantly downregulated and 20 were upregulated in ccRCC
tissues. The most differentially up-/downregulated miRNAs
are listed in Table 2. The PCA of the normalized expression
values of these miRNAs indicated a clear separation of
normal and cancer tissue samples via the first two principle
components (Figure 2(a)).

Similarly, an unsupervised two-dimensional hierarchical
clustering of differentially expressed miRNAs clearly sep-
arated control and cancer samples (Figure 2(c)). An MA-
plot (Figure 2(d)) shows the mean expression across libraries
compared to the log2 fold change between conditions for
all mature miRNAs. Significantly deregulated miRNAs are
indicated in red. MiRNAs with high fold changes that are not
differentially expressed exhibit a too high biological variance
within the groups to reach the significance threshold. Many
of the significantly deregulated miRNAs have already been
implicated in ccRCC development, like the upregulated miR-
106b-3p, 142-5p, 21-5p, 210, 361-3p, andmiR-590 as well as the
downregulated miR-10b-3p, 99a, 106a-5p, 135a-5p, 206, 363-
3p, 500-3p, 508-5p, or miR-509-5p [25–28].

Other miRNAs and snoRNAs (downregulated, e.g.: miR-
3065-5p, 660-5p, sno-HBII-85-25, upregulated: sno-ACA61,
sno-ACA44, and miR-24) have not been discovered in this
type of cancer until now. The expression of all significantly
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Figure 1: Annotation statistics for the control tissue of patient 1. (a) Statistics for the mapping of reads to the human genome. (b) Sequence
length distribution after adapter clipping. (c) Mapping distribution for genomic regions. (d) Distribution of ncRNAs.

regulated miRNAs between normal and ccRCC tissues is
given in Figure 3.

3.1. Detection of miRNA Targets and Functional Enrich-
ment. To assert the influence of miRNAs on the gene
expression pattern in ccRCC, we detected differentially
expressed mRNAs with conserved seed sequences of inverse-
ly expressed miRNAs in their 3UTR, supported by at least

three miRNA-mRNA interaction databases. The network
of upregulated genes and the 15 most significantly down-
regulated miRNAs is given in Figure 4. It is composed of
13 miRNAs and 144 mRNAs, where nine mRNAs (NRP2,
KCNMA1, FLT1, CREB5, EGLN3, ADAM19, ABAC1, MAR-
CKS, and GJA1) are under post-transcriptional control of
three deregulated miRNAs. The miRNA with the largest
number of targets in the network ismiR-106a-5p that has seed
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Table 2: Top 15 down-/upregulated sncRNAs in ccRCC tissues.

ncRNA Control NEV Cancer NEV log2 Fold change FDR
hsa-miR-363-3p 5,076.33 645,08 −2,98 1,2081𝐸 − 21
hsa-miR-500a-3p 1,289.69 221,65 −2,54 4,1147𝐸 − 19
hsa-miR-206 291,35 14,45 −4,33 6,3156𝐸 − 08
hsa-miR-10b-3p 153,08 34,08 −2,17 8,2369𝐸 − 08
hsa-miR-106a-5p 396,71 64,42 −2,62 2,8155𝐸 − 07
hsa-miR-135a-5p 1,127.62 82,86 −3,77 5,4484𝐸 − 07
hsa-miR-660-5p 981,73 158,15 −2,63 1,5614𝐸 − 06
hsa-miR-3065-5p 77,52 10,24 −2,92 3,8416𝐸 − 05
hsa-miR-30c-2-3p 12,274.78 4,399.26 −1,48 5,7416𝐸 − 05
hsa-miR-335-5p 781,07 258,25 −1,60 6,2893𝐸 − 05
hsa-miR-514a-5p 66,83 0,26 −8,01 6,3893𝐸 − 05
hsa-miR-129-1-3p 45,12 0,11 −8,64 0,00011999
hsa-miR-216b 402,11 17,60 −4,51 0,00012813
hsa-miR-188-5p 80,69 15,72 −2,36 0,0005944
hsa-miR-362-5p 302,80 62,05 −2,29 0,00087791
ncRNA Control NEV Cancer NEV log2 Fold change FDR
hsa-miR-584-5p 7,40 37,24 2,33 0,00060831
hsa-miR-590-3p 33,82 158,08 2,22 0,00074439
hsa-sno-ACA61 180,29 693,03 1,94 0,00115355
hsa-miR-142-5p 501,18 1,769.88 1,82 0,00136324
hsa-sno-mgh18S-121 47,08 111,93 1,25 0,00687682
hsa-miR-34a-5p 76,09 383,47 2,33 0,00921823
hsa-sno-ACA52 9,77 28,35 1,54 0,01048507
hsa-miR-106b-3p 294,41 680,87 1,21 0,02347042
hsa-miR-3182 4,33 26,20 2,60 0,03703154
hsa-sno-ACA44 54,31 201,32 1,89 0,05439511
hsa-miR-24-2-5p 127,79 292,76 1,20 0,06507243
hsa-miR-7-5p 439,97 3,243.48 2,88 0,06507243
hsa-miR-210 1,062.71 7,973.01 2,91 0,06507243
hsa-miR-16-2-3p 35,85 123,42 1,78 0,06507243
NEV: normalized expression value; Log2 Fold change: log2[cancer/control ratio]; FDR: corrected 𝑃 value.

sequences in ∼1/3 of all mRNAs (49 targets). Other miRNAs
withmore than ten targets are miR-135a-5p (32 targets), miR-
206 (28 targets), miR-363-3p (22 targets), and miR-216b (13
targets). Some of the predicted interactions in the network
have recently been validated in different cell types, like the
upregulation of the c-Met oncogene (MET) [29], fibronectin
(FN1) [30], or vascular endothelial growth factor A (VEGFA)
[31] due to loss of miR-206 or the upregulation of E2F1 [32],
CCND1 [33], and CDKN1A [34] due to loss of miR-106a-5p.
A similar analysis was performed for upregulated miRNAs
and downregulated mRNAs and the interactions are given in
Supplementary Table T2.

In order to identify the influence of miRNAs on the
metastatic potential of ccRCCs, we examined a subset of
upregulated genes, enriched in GO category “cell motion”
(FDR = 0.0002), and detected interactions of their gene
products aswell as the influence ofmiRNAs on the expression
of the corresponding mRNAs. The interaction network is
given in Figure 5. It is comprised of 36mRNAs/gene products
and six miRNAs. The network is centered around 12 highly

connected gene/protein nodes, among these are transforming
growth factor beta 1 (TGFB1), the vascular cell adhesion
molecule-1 (VCAM1), the cell surface receptor CD44, and
the intercellular adhesion molecule (ICAM1). The NRP2 and
FLT1mRNAs, both coding forVEGFA receptors, are potential
targets of three and twomiRNAs, respectively. Other targeted
mRNAs from the network include cadherin 13 (CDH13),
integrin A4 and A5 (ITGA4, ITGA5), chemokine CCL5,
fibronectin (FN1), neuropilin-1 (NRP1), and the MET gene
coding for the hepatocyte growth factor receptor.

4. Discussion

Our study links coding- and non-coding transcriptome data
of normal and ccRCC tissue from two distinct studies. By the
use of several miRNA-mRNA interaction databases available
in omiRas we are able to provide new insights into the
influence of aberrant miRNA expression on hundreds of
deregulated genes.
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Figure 2: Potential ofmiRNAs to distinguish between normal and ccRCC tissue samples. (a) PCAof normalized expression values ofmiRNAs
differentially expressed between conditions. The first principal component is given on the 𝑋-axis and the second on the 𝑌-axis. (b) 𝑃 value
distribution of all miRNAs. (c) Unsupervised hierarchical cluster analysis of differentially expressed miRNAs. (d) AnMA plot that visualizes
the relation between log2 fold change between controls and cancer patients and the log2 average gene expression. MiRNAs with an FDR
adjusted 𝑃 value < 0.1 are indicated in red.

Hypoxic regions of tumors are often resistant to both
radiotherapy and chemotherapy [35] and under insufficient
oxygen supply angiogenesis is stimulated through upregu-
lation of VEGF. VEGF-mediated angiogenesis is thought to
play a critical role in tumor growth and metastasis [36].
We show that miR-206 is among the most significantly
downregulated miRNAs in ccRCC and miR-206 loss has
likewise been reported under hypoxic conditions [15]. As

given in Figure 3, VEGFA is one of the predicted targets of
miR-206. This prediction has gained support by the study
of Zhang et al., who showed that miR-206 downregulation
promotes proliferation and invasion of laryngeal cancer by
regulating VEGF expression [37].

In line with downregulation ofmiR-206 and upregualtion
ofVEGFA under hypoxia,MET overexpression can be caused
by hypoxia [38]. The overexpression of the cell surface
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Figure 4: Interaction network of upregulated genes and downregulated miRNAs in ccRCC. Post-transcriptional regulation of a gene by an
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indicated in red. Interactions between an miRNA and a 3UTR of a gene are visualized by arrows. Green arrows visualize interactions that
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receptor Met tyrosine kinase MET is a hallmark of various
types of cancers including pRCC and ccRCC [39]. In the
normal kidney, ligand binding to MET mediates the activa-
tion of the MAPK, STAT, and a variety of other signaling
pathways and promotes increased cell growth, scattering
and motility, invasion, protection from apoptosis, branching
morphogenesis, and angiogenesis [40].MET overexpression
in transgenic mice led to spontaneous development of hep-
atocellular carcinoma and and inactivation of theMET gene
to tumor regression [41]. We identified MET as a proposed
target ofmiR-206 and this prediction is supported by Yan and
colleagues [29], who showed that miR-206 targets MET and
inhibits rhabdomyosarcoma development.

Fibronectin (encoded by FN1) is a multifunctional extra-
cellular glycoprotein and its increased expression is signif-
icantly associated with a higher probability of metastasis,
poorer overall survival, and distant metastasis development
[42]. FN1 expression was significantly increased in hypoxic

mouse embryonic stem cells [43] anddownregulation ofmiR-
206 has been shown to induce FN1 upregulation in mouse
lung tissues [30].

NRP1 encodes a receptor for VEGF and a block to NRP1
suppresses tumor growth due to decreased angiogenesis and
cell proliferation [44]. In two different lung cancer cell lines,
hypoxia regulated NRP1 expression differently. In the A549
AC cell line the expression increased, whereas a decreased
expression was reported in SKMES-1 SCC [45]. Regulation
of VEGF as well as VEGF receptor gene expression has
been ascribed to transcription factor ETS1 [46]. Oikawa
et al. showed that hypoxia induced ETS1 expression in
human bladder cancer cell lines [47]. In several tumors, high
ETS1 expression has been associated with decreased survival,
angiogenesis, and poor prognosis [46].

Myristoylated alanine-rich C kinase substrate (MAR-
CKS) controls mucus granule secretion by airway epithe-
lial cells and directed migration of leukocytes, stem cells,
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Figure 5: Influence of downregulated miRNAs on upgregulated genes from the GO category: “cell migration.” Interactions between gene
products (red circles) are indicated by a blue line and interactions between an miRNA and an mRNA are indicated by a grey line.

and fibroblasts. SiRNA knockdown of MARCKS expression
in invasive lung cancer cell lines reduced migration [48].
In bladder cancer, MARCKS expression is induced under
hypoxia [49].

Currently, an interaction between miR-206 and NRP1,
ETS1, or MARCKS has not been experimentally verified but
is predicted by our analysis. Therefore, these interactions
represent an interesting target for experimental validation.

Taken together, loss ofmiR-206 under hypoxic conditions
might be the reason for VEGF, FN1, NRP1, ETS1, and MET
upregulation, all hallmark events of (ccRCC) carciogenesis.
Notably, besides miR-206, downregulated miR-106a-5p has
also been shown to interact with VEGFA [50]. Moreover,
another gene coding for aVEGFA receptor (FLT1) is predicted
to be regulated by miR-106a.

Other suggested targets of miR-106a by our analysis in
ccRCCare i.a. E2F1,CDKN1A, andPREX. Upregulation of the
transcription factor E2F1, a key regulator of proliferation and
apoptosis, might be a driving force in the local and vascular
infiltration of ccRCC [51]. In glioma, cell growth is inhibited
by miR-106a due to post-transcriptional downregulation of
E2F1 and accordingly downregulation of p53 [32]. Campbell
and colleagues [52] showed that a common predicted target
of miR-206 and miR-106a, PREX, is essential for metas-
tasis formation in several cancer types by influencing phys-
ical migration processes through effects upon Rac1-driven
motility.

One miRNA without previous implications in ccRCC is
miR-3065-5p, an antisensemiRNA tomiR-338 [53]. Due to its

novelty, currently no experimentally validated interactions
are known for this miRNA. Based on our predictions it
might target the previously described NRP2, FLT1, ETS1, and
MARCKS and its loss can thereby contribute to angiogenesis
in ccRCC.

Taken together the analysis underlines the role of hypoxia
as a key factor in kidney tumor angiogenesis [54], which
might i.a. be regulated by the loss of miR-206. We show
that miR-206 has several targets that are upregulated under
hypoxic conditions. A couple of these predicted interactions
have already been experimentally validated, which highlights
the validity of our bioinformatical in silico approach.

5. Conclusion

In this study we demonstrate how the combined analysis
of miRNA and mRNA data with omiRas can explain dif-
ferential gene expression signatures via loss/gain of post-
transcriptional control by deregulated miRNAs. Without
the integration of coding gene expression, differentially
expressed miRNAs can only serve as biomarkers with
nonspecific function. We assign roles to miRNAs without
laborious functional testing by concentrating on the “low
hanging fruit,” namely, interactions between miRNAs and
mRNAs with increased likelihood of interaction due to the
support of several databases.These promising candidates can
afterwards undergo further functional testing. The validity
of this strategy is underlined by the fact that several predic-
tions from our study have recently been validated in cell
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lines. This makes omiRas a beneficial tool in cancer research.
Furthermore, omiRas is not only limited to cancer studies,
but is a useful tool to integrate coding gene expression profiles
into miRNA analysis for any dataset that compares two
different biological conditions.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the Bundesministerium für
Bildung und Forschung (BMBF) (Grant nos. FKZ0316043
and FKZ031A104A). The authors thank Professor Günter
Kahl and Professor Ina Koch as well as Dr. Björn Rotter and
Dr. Peter Winter for their advice and assistance.

References

[1] L. Lipworth, R. E. Tarone, and J. K. McLaughlin, “The epidemi-
ology of renal cell carcinoma,” Journal of Urology, vol. 176, no.
6, pp. 2353–2358, 2006.

[2] A. J. Ruppert-Kohlmayr, M. Uggowitzer, T. Meissnitzer, and
G. Ruppert, “Differentiation of renal clear cell carcinoma and
renal papillary carcinoma using quantitative CT enhancement
parameters,” The American Journal of Roentgenology, vol. 183,
no. 5, pp. 1387–1391, 2004.

[3] J. C. Cheville, C. M. Lohse, H. Zincke, A. L. Weaver, and M. L.
Blute, “Comparisons of outcome andprognostic features among
histologic subtypes of renal cell carcinoma,” The American
Journal of Surgical Pathology, vol. 27, no. 5, pp. 612–624, 2003.

[4] S. Steffens, M. Janssen, F. C. Roos et al., “Incidence and long-
term prognosis of papillary compared to clear cell renal cell
carcinoma—a multicentre study,” European Journal of Cancer,
vol. 48, no. 15, pp. 2347–2352, 2012.

[5] S. Waalkes, F. C. Roos, H. Eggers et al., “Incidence and long-
term prognosis of papillary renal cancer: results of a retrospec-
tive multicenter study,”Der Urologe, vol. 50, no. 9, pp. 1125–1129,
2011.

[6] S. Djuranovic, A. Nahvi, and R. Green, “miRNA-mediated
gene silencing by translational repression followed by mRNA
deadenylation and decay,” Science, vol. 336, no. 6078, pp. 237–
240, 2012.

[7] H. W. Z. Khella, N. M. A. White, H. Faragalla et al., “Exploring
the role of miRNAs in renal cell carcinoma progression and
metastasis through bioinformatic and experimental analyses,”
Tumor Biology, vol. 33, no. 1, pp. 131–140, 2012.

[8] Q. B. Huang, X. Ma, X. Zhang et al., “Down-regulated miR-
30a in clear cell renal cell carcinoma correlated with tumor
hematogenous metastasis by targeting angiogenesis-specific
DLL4,” PLoS ONE, vol. 8, no. 6, Article ID e67294, 2013.

[9] H.W.Z. Khella,M. Bakhet, G.Allo et al., “miR-192,miR-194 and
miR-215: a convergent microRNA network suppressing tumor
progression in renal cell carcinoma,”Carcinogenesis, vol. 34, no.
10, pp. 2231–2239, 2013.

[10] R. L. Maute, C. Schneider, P. Sumazin et al., “tRNA-derived
microRNA modulates proliferation and the DNA damage

response and is down-regulated in B cell lymphoma,” Proceed-
ings of the National Academy of Sciences, vol. 110, no. 4, pp. 1404–
1409, 2013.

[11] J. Chen, D. Zhang, W. Zhang et al., “Clear cell renal cell carci-
noma associated microRNA expression signatures identified by
an integrated bioinformatics analysis,” Journal of Translational
Medicine, vol. 11, no. 1, article 169, 2013.

[12] S. Osanto, Y. Qin, H. P. Buermans et al., “Genome-wide
microRNA expression analysis of clear cell renal cell carcinoma
by next generation deep sequencing,” PLoS ONE, vol. 7, no. 6,
Article ID e38298, 2012.

[13] L. Zhou, J. Chen, Z. Li et al., “Integrated profiling ofMicroRNAs
andmRNAs:MicroRNAsLocated onXq27.3 associatewith clear
cell renal cell carcinoma,” PLoS ONE, vol. 5, no. 12, Article ID
e15224, 2010.

[14] S. Müller, L. Rycak, P. Winter et al., “omiRas: a Web server for
differential expression analysis of miRNAs derived from small
RNA-Seq data,” Bioinformatics, vol. 29, no. 20, pp. 2651–2652,
2013.

[15] J. Yue, J. Guan, X. Wang et al., “MicroRNA-206 is involved in
hypoxia-induced pulmonary hypertension through targeting of
the HIF-1𝛼/Fhl-1 pathway,” Laboratory Investigation, vol. 93, no.
7, pp. 748–759, 2013.

[16] M. B. Wozniak, F. le Calvez-Kelm, B. Abedi-Ardekani et al.,
“Integrative genome-wide gene expression profiling of clear
cell renal cell carcinoma in Czech Republic and in the United
States,” PLoS ONE, vol. 8, no. 3, Article ID e57886, 2013.

[17] M. Martin, “Cutadapt removes adapter sequences from high-
throughput sequencing reads,” EMBnet. Journal, vol. 17, no. 1,
2011.

[18] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast
and memory-efficient alignment of short DNA sequences to
the human genome,” Genome Biology, vol. 10, no. 3, article R25,
2009.

[19] D. Karolchik, A. S. Hinricks, T. S. Furey et al., “The UCSC table
browser data retrieval tool,” Nucleic Acids Research, vol. 32, pp.
D493–D496, 2004.

[20] S. Anders and W. Huber, “Differential expression analysis for
sequence count data,” Genome Biology, vol. 11, no. 10, article
R106, 2010.

[21] D. W. Huang, B. T. Sherman, Q. Tan et al., “DAVID Bioin-
formatics Resources: expanded annotation database and novel
algorithms to better extract biology from large gene lists,”
Nucleic acids research, vol. 35, supplement 2, pp. W169–W175,
2007.

[22] D. Szklarczyk, A. Franceschini, M. Kuhn et al., “The STRING
database in 2011: functional interaction networks of proteins,
globally integrated and scored,” Nucleic Acids Research, vol. 39,
supplement 1, pp. D561–D568, 2011.

[23] P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software
environment for integrated models of biomolecular interaction
networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504,
2003.

[24] H. K. Saini, A. J. Enright, and S. Griffiths-Jones, “Annotation
of mammalian primary microRNAs,” BMC Genomics, vol. 9,
article 564, 2008.

[25] X. Xiao, C. Tang, S. Xiao et al., “Enhancement of proliferation
and invasion by MicroRNA-590-5p via targeting PBRM1 in
clear cell renal carcinoma cells,” Oncology Research Featuring



BioMed Research International 11

Preclinical and Clinical Cancer Therapeutics, vol. 20, no. 11, pp.
537–544, 2012.

[26] H. Liu, A. R. Brannon, A. R. Reddy et al., “Identifying mRNA
targets of microRNA dysregulated in cancer: With application
to clear cell Renal Cell Carcinoma,” BMC Systems Biology, vol.
4, article 51, 2010.

[27] N. M. A. White, T. T. Bao, J. Grigull et al., “MiRNA profiling
for clear cell renal cell carcinoma: biomarker discovery and
identification of potential controls and consequences ofmiRNA
dysregulation,” Journal of Urology, vol. 186, no. 3, pp. 1077–1083,
2011.

[28] M. Jung, H.-J. Mollenkopf, C. Grimm et al., “MicroRNA pro-
filing of clear cell renal cell cancer identifies a robust signature
to define renal malignancy,” Journal of Cellular and Molecular
Medicine, vol. 13, no. 9 B, pp. 3918–3928, 2009.

[29] D. Yan, X. D. Dong, X. Chen et al., “MicroRNA-1/206 targets c-
met and inhibits rhabdomyosarcoma development,” Journal of
Biological Chemistry, vol. 284, no. 43, pp. 29596–29604, 2009.

[30] X. Zhang, J. Xu, J. Wang et al., “Reduction of MicroRNA-206
contributes to the development of bronchopulmonary dysplasia
through up-regulation of fibronectin 1,” PLoS ONE, vol. 8, no. 9,
2013.
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