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Identification of hyper-rewired genomic stress non-oncogene
addiction genes across 15 cancer types
Jessica Xin Hjaltelin1, Jose M. G. Izarzugaza 2, Lars Juhl Jensen1, Francesco Russo1, David Westergaard1 and Søren Brunak1,3

Non-oncogene addiction (NOA) genes are essential for supporting the stress-burdened phenotype of tumours and thus vital for
their survival. Although NOA genes are acknowledged to be potential drug targets, there has been no large-scale attempt to
identify and characterise them as a group across cancer types. Here we provide the first method for the identification of conditional
NOA genes and their rewired neighbours using a systems approach. Using copy number data and expression profiles from The
Cancer Genome Atlas (TCGA) we performed comparative analyses between high and low genomic stress tumours for 15 cancer
types. We identified 101 condition-specific differential coexpression modules, mapped to a high-confidence human interactome,
comprising 133 candidate NOA rewiring hub genes. We observe that most modules lose coexpression in the high-stress state and
that activated stress modules and hubs take part in homoeostasis maintenance processes such as chromosome segregation,
oxireductase activity, mitotic checkpoint (PLK1 signalling), DNA replication initiation and synaptic signalling. We furthermore show
that candidate NOA rewiring hubs are unique for each cancer type, but that their respective rewired neighbour genes largely are
shared across cancer types.
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INTRODUCTION
Non-oncogene addiction (NOA) is the phenomenon where
tumour cells present stress phenotypes that instigate a depen-
dency on support genes for survival.1–3 This phenomenon was first
characterised in Solimini et al.1 More specifically, NOA genes have
been defined as non-mutated genes that are upregulated to
uphold the stress phenotypes of cancer cells,1,4 making them
stress-specific. Tumour cells are under various types of stresses
and possess fewer regulatory mechanisms to compensate for
perturbations (i.e. buffering capacity) compared with their normal
counterparts.3 The activation of NOA genes is unnecessary for
normal cells but essential for cancer cells that are burdened by the
stress caused by for example oncogenes. A new generation of
treatments are starting to exploit these Achilles’ heels, owing to
experimental and clinical evidence showing that they have a
much wider space that can be mined for drug targets compared
with the classical oncogenes.5,6

Tumours can be affected by both intrinsic and extrinsic stresses,
such as genomic, proteotoxic, metabolic, hypoxic stress etc. In this
study, we focus on genomic stress. Many solid tumours present
widespread aneuploidy or DNA damage,7 and these extreme
manifestations of genomic instability constitute a stress pheno-
type. Recent findings demonstrate that patients with high-
mutation-burden tumours have improved survival.8,9 Genomic
instability can in turn instigate other stress forms such as mitotic
and proteotoxic stresses. Although some NOA genes have been
studied extensively,4 they have not been identified or analysed
from a systems perspective or characterised as a group that may
be subdivided further.
Differential coexpression has recently been employed as a

supplement to traditional differential gene expression.10,11 This

method identifies changes of coexpression between two states,
hence focusing more on the dynamics, or the ‘rewiring’ of the
network interactions, as opposed to simply quantitative measures
of gene expression.
We present the first systems level analysis for NOA gene and

module discovery, where we have investigated 15 cancer types.
We used copy number alteration (CNA) data and gene expression
profiles from The Cancer Genome Atlas (TCGA) to identify
significant differential coexpression modules between high and
low genomic stressed tumours. We furthermore applied physical
protein interactome information to identify NOA rewiring hub
genes. We identified 101 candidate NOA modules and 133
candidate NOA rewiring hub genes. We highlighted four activated
NOA modules and used these as examples to demonstrate the
unique rewiring roles of NOA genes in the human protein
interactome. We found that even though the NOA rewiring hub
genes are mainly cancer-specific, they regulate highly similar
neighbour genes across cancer types.

RESULTS
Defining the genomic instability stress phenotype
Aneuploidy and copy number alterations are known hallmarks of
cancer12 and their frequency vary largely between tumours even
within the same cancer type. Genome instability can be a side
effect of oncogenic perturbations and result in an enormous stress
burden for the tumour. To estimate tumour groups of high and
low degree of genomic instability, we used as a proxy the CNA
burden, which is the fraction of the autosomal genome that is
affected by copy number alterations (both gains and losses).13 We
calculated the CNA burden for each of the 11,034 CNA profiles
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available from TCGA, based on which we derived a CNA burden
distribution for 33 cancer types. From the distribution, tumours
were grouped into low and high-stress categories based on the
first quartile and the median, respectively (Fig. 1a). We specifically
applied this approach, leaving out samples with medium-level

CNA burden, to perform differential analyses on the low- and
high-end CNA cases. We thus define high-stress phenotype
tumours as those with more than 19.2% genome-wide copy
number variation and low-stress phenotypes as those with <7.0%
genome-wide CNA.
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To perform differential gene and coexpression analysis between
high and low stress, we selected TCGA patients with both CNA
and gene expression profiles available. In addition, cancer types
with fewer than 20 samples in any of the stress groups were
excluded from the comparative analysis. Analyses were thus
performed on the remaining 15 TCGA cancer types comprising
overall 3356 high-stress and 1601 low-stress phenotype samples,
respectively (Fig. 1b). A schematic of the computational method is
shown in Supplementary Fig. S1.

Widespread loss of coexpression during genomic stress
We performed a differential gene expression analysis for the two
stress conditions for all cancer types and examined the
upregulated genes for NOA stress-relief processes (Log2 fold
change ≥ 1.5 and FDR < 0.05) (Supplementary Fig. S2). A Gene
Ontology (GO) enrichment analysis showed that these genes are
involved in cell differentiation, multicellular development and
neurogenesis amongst several cancer types. Differential gene
expression analysis can complement a network-based differential
coexpression analysis, and we therefore integrated the differential
gene expression profiles into the subsequent analyses as
additional information.
Differential coexpression analysis can be used to understand

condition-specific activation of functional modules based on the
idea of guilt-by-association.14,15 We carried out differential
coexpression analysis using DiffCoEx15 for each of the 15 cancer
types separately to identify modules that are activated by
genomic stress (see Methods section for details). This method is
an extended version of the Weighted Gene Co-expression
Network Analysis (WGCNA) tool.14 Instead of calculating coex-
pression modules given one condition, DiffCoEx calculates the
differential coexpression modules for two given conditions; in this
case high and low genomic stress. The approach can thus
minimise generic cancer interactions, such as proliferation-related
modules, which can be non-specific for the condition in
question.16

We used this strategy to identify differential coexpression
modules for all cancer types. Genomic CNA levels can correlate
with coexpression changes, which can give rise to results linked to
altered stoichiometry and not the stress response itself. To avoid
this, we performed differential coexpression analyses only for
genes uncorrelated for copy number and gene expression (see
Methods for details). No significant modules were found for
prostate cancer, which is unsurprising, since it is one of the cancer
types with lowest mutation burden profile17 (Fig. 1b). A total of
125 differential coexpression modules were identified across the
14 cancer types ranging in size from 75 to 3125 genes with a
median of 315 genes (Supplementary Fig. S3). We found that 100
of the 125 differential coexpression modules lose coexpression in
the high stress compared with the low-stress condition. Cervical
and skin cancers have the highest numbers of differential
coexpression modules, 21 and 15, respectively, whereas liver
cancer represents the minimum with four modules. To acquire
more knowledge on the functional properties of these modules,
we investigated both the differential gene expression and physical

protein–protein interactions within the modules (Fig. 2). Here we
observe that even though cervical cancer has the most differential
modules, these were comprised of few differentially expressed
genes and physical interactions.
To assess the robustness to subsampling, we performed a

fivefold cross validation test where each cancer type was
subsampled using 90 and 70% of the data. For the 90% cross
validation analysis, we obtained gene set overlaps ranging from
61 to 94% and for the 70% cross validation gene set overlaps from
59 to 93% (Supplementary Fig. S4).
Single-gene differential expression can detect upregulated NOA

genes within modules. Despite the massive loss of coexpression in
the high-stress state, single genes within the module can rewire
and participate in other functional modules. The human protein
interactome has, for example, been shown to be dominated by
many weak stoichiometric interactions and thus be highly
dynamic.18 Moreover, since many proteins exert their function in
protein complexes, physical protein–protein interaction modules
can be useful to deduct functional knowledge on novel modules.
Hence, we mapped the stress-specific differential coexpression
modules to an annotated and high-quality human interactome
InWeb_InBioMap (InWeb_IM)19 obtaining 101 condition-specific
differential coexpression modules with physical protein–protein
interactions (with a minimum module size of five) (Supplementary
Table S2). The modules range in size from 5 to 1651 proteins.

Single-gene rewiring in differentially activated stress modules
It can be considered that stress-relieving NOA genes behave as
multifunctional hub genes capable of rewiring and participating in
several functionalities when dealing with fluctuating stress
levels.20 Therefore, we are especially interested in genes that are
differentially upregulated themselves while having several
deregulated physically interacting neighbours. These were the
most promising candidates for regulators that shift functionality
when experiencing stress. We defined the degree of rewiring as
the number of genes that (1) undergo significant differential gene
expression and (2) physically interact with the NOA rewiring hub
gene. We defined rewiring genes as genes that were significantly
upregulated (FDR < 0.05, Log2FC ≥ 0.5) and have a degree of
rewiring of at least three. We defined the latter threshold because
our stringent definitions of NOA rewiring interactions leads to a
very sparse network. In addition, three is the minimal number of
interactions for a hub protein to configure a functional
submodule.21,22 We thus ended up obtaining 133 NOA rewiring
hub genes in total (Supplementary Table S3). To compare these
genes to previous findings, we searched the literature for each
gene and found associations to the NOA mechanism for 26% of
them (Supplementary Table S4). These are enriched for functions
such as chromosome maintenance, oxireductase activity, mitotic
checkpoint, DNA replication initiation and synaptic signalling.
Surprisingly, 19% of the genes take part in synaptic signalling,
which may be due to brain cancer being the cancer type with
most NOA rewiring hubs. However, only two genes overlap
between the 25 synaptic genes and 44 brain cancer rewiring hubs.

Fig. 1 Defining stress phenotypes. a Genome-wide % CNA burden distribution quartiles for defining stress groups. The CNA burden
distribution for all TCGA cancer types (n= 33) with CNA profiles (n= 11,034) was used to define the stress phenotype groups indicated by the
dashed lines at 7.0% (low stress) and 19.2% (high stress). The pie charts represent the distribution of cancer types within the selected samples
that are used for analysis (n= 5367) covering the 15 cancer types. Some of the cancer types are altered to match the RNA-Seq data set such as
KIPAN (to Kidney-Clear and Kidney-Papillary) and STES (to Stomach). The grey cancer names are those used in this paper (for full names see
Supplementary Table S1). b CNA burden distributions for tumour samples applied in the analyses. Of the 33 cancer types, 24 cancer types
have both RNA-Seq and CNA samples, which is needed for our analyses. Furthermore, cancer types with at least 20 samples in both high and
low-stress groups were included in the comparative analyses. This resulted in including 15 cancer types (black) and excluding 9 (grey). The
cancer types left have in concert 3356 stress and 1601 non-stress phenotype samples. Onwards, we will refer to ‘Brain’ as LGG, since only this
brain cancer type is used for further analyses
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Fig. 2 High stress differential coexpression modules across 14 cancer types. Differential coexpression modules were obtained for high stress
vs. low-stress samples using differential coexpression analysis14,15 for 15 cancer types. No modules were found for prostate. The differential
coexpression modules were mapped to a physical human protein interactome.19 In addition, differential gene expression was performed on
the same stress groups. The brown and turquoise fractions illustrate significant differentially up or down expressed genes, respectively. Darker
areas are genes that participate in a physical protein–protein interaction. Grey areas are genes that are not differentially expressed. Numbers
within each bar are the number of genes per module. DE: differential expression; PPI: protein–protein interaction
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The four modules with highest fraction of upregulated genes in
their physically interacting subsets are Brain-M1, Kidney-Papillary-M1,
Lung-Adeno-M1 and Uterus-M1 (Fig. 3a–d). From these, we extracted
the NOA rewiring hub genes and their first-order interacting
neighbours to functionally examine. These were functionally
annotated using the gene enrichment tool gProfileR23 revealing that
they take part in mitotic checkpoint, DNA repair and chromatin
segregation regulation processes. We also found regulation of

ubiquitin-ligase activity, Ephrin receptor activation and oxireductase
activity. Ephrin and Ephrin receptors have been linked to tumorigen-
esis, but bidirectional roles and divergent expression patterns have
been observed across tumours.24 This could imply a stress-buffering
role, since their multifunctional characteristics benefit from the
fluctuating stress environments that tumours experience.
Some rewiring hubs are found in stress modules across several

cancer types. For example, we observe that PLK1, CCNB1/2, CCNA2,

Fig. 3 Four stress-activated modules. We selected the four modules with the highest fraction of upregulated genes with physical interactions.
Here, we show the NOA rewiring hubs with their first-level interactors. The modules are enriched for cell stress maintenance functions such as
DNA double-stranded break repair, stress response, chromatid segregation and DNA replication regulation. The sizes of the nodes are the
number of differential modules that the gene is part of across cancer types. Grey nodes indicate that these genes were not significantly
differentially expressed. a Brain module 1. b Kidney-Papillary module 1. c Lung-Adeno module 1. d Uterus module 1. e LogFC: Log2
fold change
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AURKB and BUB1B are shared across 6–9 cancer types (Fig. 3e) and
physically interact with several deregulated neighbouring genes in
our activated modules (Fig. 3a–c). PLK1, AURKB and BUB1B are
mitotic kinases and regulatory genes during mitotic cell cycle and
especially PLK1 and AURKB have been studied as promising NOA
drug targets.2,25 PLK1 is a multifunctional protein during cell cycle
following DNA damage26 regulating both mitotic entry/exit, DNA
damage checkpoint, spindle formation, etc. BUB1B is involved in
the spindle assembly checkpoint and ensures proper chromosome
segregation. Recent studies highlight that BUB1B dependency is
especially elevated in brain cancer.27,28 This is supported by our
analysis showing that BUB1B is the most upregulated NOA
rewiring hub in brain cancer.

Overlapping stress-activated genes across cancer types
Genes found in more than one cancer type may be generically
activated genes essential for stress response and can function as
targets for broader therapeutics that are not specific for a certain
cancer type. To acquire an overview of genes participating in more
than one tumour, we counted the number of times a gene was
found in the differential modules across cancer types. To estimate
the expression activity for each gene, we used their median LogFC
across cancer types (Supplementary Table S5). Since NOA genes
are often upregulated to uphold a robust cancer state, we looked
into the functionality of genes with high differential expression
(Log2FC ≥ 0.5) that are also shared across more than six cancer
types. These are mainly involved in cell cycle regulation, spindle
and chromosome stabilisation, cell adhesion junction, transmem-
brane signalling, metabolism or synaptic processes (Fig. 4).
Interestingly, several of these genes (BUB1B, CDC25C, CENPE,
kinesin and CCNB1) are involved in the PLK1 signalling pathway,
which is a regulator of several DNA damage control and genomic
instability processes. We found that the hub genes (BUB1B,
CDC25C, CENPE, kinesin and CCNB1) make up an essential
response across many cancer types. More studies are needed to
validate this as a novel NOA pathway. We also identified a group
of upregulated synaptic genes involved in vesicular trafficking
(LIN7A, SYT1 and SNAP25). This is consistent with mounting
evidence showing that cancer cells depend on intercellular
communication via the release of extracellular vesicles for viability
purposes. Extracellular vesicles have been shown to contain

oncogenes and RNAs and are proposed to have a mechanism of
transport as neurocytological transport.29

NOA rewiring hubs regulate similar neighbours across cancer
types
Next, we investigated the amount of overlap of the NOA rewiring
hubs across cancer types to establish whether the stress response
is cancer type-specific. For this analysis we used the Jaccard index
as a measure of overlap between lists of hubs for each cancer type
pair (Fig. 5a).
Brain, stomach, lung-squamous and uterus cancer are the

cancer types with most rewiring hubs and neighbours. The cancer
types kidney, lung, breast and brain cancer have the highest
overlap of NOA rewiring hubs. However, most of the cancer types
have low hub overlap with an average Jaccard index of 0.07 (the
average of all gene set comparisons within a cancer type). The
most shared rewiring hubs are BUB1B (brain, lung-adeno, kidney-
clear, kidney-papillary and stomach cancer), CYP11A1 (bladder,
brain, kidney-clear and uterus cancer) and CCNB1 (brain, kidney-
papillary, lung-adeno and lung-squamous cancer). BUB1B is
involved in mitotic checkpoint and is in normal tissue enriched
in testis. Recent studies have shown that it interacts with known
NOA genes, PLK1 and APC/C, to induce delay of anaphase due to
spindle defects.30,31 CYP11A1, mostly abundant in testis and
adrenal gland, is involved in drug biotransformation and could be
an indicator of cancer therapy responses. Finally, the cyclin CCNB1
involved in cell cycle regulation is expressed in all tissues. We
searched the human pathology atlas32 to verify if the upregulation
of these genes are negatively correlated with survival. Indeed,
both upregulation of BUB1B and CCNB1 were found to be a
marker for unfavourable prognosis across several cancer types
(Supplementary Fig. S5). Next, we investigated if the rewiring
hubs, despite their low overlap, rewire the same group of
neighbouring genes. Hence, we calculated the Jaccard index
between lists of neighbouring genes of the hubs. The require-
ments of being a rewired neighbouring gene is that the gene
needs to be significantly differentially expressed and physically
interact with the rewiring hub. We found that the overlaps of the
rewired neighbour genes are higher with an average Jaccard
index of 0.31 (Fig. 5b) (Supplementary Table S9). To ensure that
the overlap is significant, and not due to topological character-
istics of InWeb_IM, we permuted InWeb_IM 1000 times. We
generated 1000 random subnetworks using a within-degree node
label permutation approach, where the subnetworks kept their
degree distribution but had randomly re-assigned nodes. This
showed that none of the permutation rounds achieved a higher
overlap score than our finding (Supplementary Fig. S6). This
observation suggests further that each cancer type activates
distinct rewiring hubs. However, during stress, these hubs affect
similar pathways.

Validation using external datasets
To validate our stress modules, we obtained two breast cancer
datasets from METABRIC (Molecular Taxonomy of Breast Cancer
International Consortium),33 which included samples with both
gene expression data and CNA profiles. The two datasets
comprised of N1= 997 (METABRIC discovery data set) and N2=
995 patients (METABRIC validation data set). For data set 1 we
obtained 336 high-stress phenotype samples and 319 low-stress
phenotype samples. For data set 2 we obtained 300 high-stress
phenotype samples and 375 low-stress phenotype samples.
Although the breast cancer data set was not the optimal cancer

type for validation, due to the limited results (four modules), we
did obtain a significant overlap of stress module genes between
the TCGA set and both the METABRIC datasets (Supplementary
Fig. S7). We furthermore validated two (AURKB and CCNB1) of the
five NOA rewiring hub genes.

Fig. 4 Upregulated stress module genes across cancer types. The
generality of upregulated stress module genes is shown across
cancer types. Genes with Log2FC ≥ 0.5 participating in more than six
cancer types (differential modules) are labelled (see Supplementary
Table S5 for rest). The functions of the genes have been grouped
into seven main categories illustrated by the colours of the
gene labels
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To explore the essentiality of our NOA rewiring hubs, we used
the Achilles CRISPR-Cas9 data set from the Broad Institute. The
data set provides gene dependency scores for 341 cancer cell lines
that have been systematically perturbed. The gene dependency
score reflects the gene knock down viability effects of cell lines
when screened using an shRNA/siRNA library.34 We found that the
NOA rewiring genes have a significantly higher dependency than
the average gene in the Achilles data set with a P= 4.75e−05
(Supplementary Fig. S8). We, furthermore, performed a permuta-
tion test, where the Achilles data set were randomly sampled
10,000 times by gene sets of 128 genes. For each sampling set, we
calculated the mean of dependency and recorded whether this
was below the mean of the NOA hubs gene set (lower
dependency than the NOA set). For none of the rounds, this
was the case (P < 0.0001).

DISCUSSION
Tumour states seem to be largely robust despite a disrupted
homoeostasis, compared with their normal counterpart, suggest-
ing that they rewire to obtain a new state of homoeostasis.3,22 A
generic buffering mechanism against stresses can be suggested
since most tumours have highly diverse mutation profiles, but
more similar expression profiles.35 In this study, we present the
first systems-based method to understand NOA genes and
pathways conditioned upon the intrinsic stress: genomic instabil-
ity. We focused on genomic stresses, including DNA damage
stress, proteotoxic stress and mitotic stress, but the approach can
be extended to other types of stresses as well. We used the
publicly available TCGA tumour profiles (CNA and RNA-Seq data)
for 15 cancer types and grouped samples into high and low
genomic stress based on their CNA burden.
Most studies have focused on gene-centric mutation-driven

NOA genes (synthetic lethality), where perturbation of a specific
gene, e.g. an oncogene, promotes the dependency on a NOA
gene. An example is PARP1 inhibitors used to treat BRCA2-
deficient tumours.36 Since BRCA2 tumours have a deficiency in the
DNA repair pathway, they are even more dependent on PARP1 for
DNA repair. A separate type of NOA genes is independent of any
oncogenic mutation;37 these genes are instead activated when the

cell is burdened by an generic cellular stress. An example is HSF1,
a transcription factor that controls heat-shock proteins and is
activated upon proteotoxic stress. HSF1 deficiency in mice and in
cancer cell lines lower tumourigenesis.38 HSF1 provides essential
stress relief through proteasome-mediated protein degradation
pathways by induction of heat-shock proteins, such as HSP90,
which is overexpressed in many cancers.39,40

We performed comparative analyses obtaining differential
coexpression modules for the high-stress groups for each of the
15 cancer types. Most of the modules were negatively coex-
pressed compared with the low-stress group, suggesting that
these rewire into other modules with processes more needed for
the new burdened tumour state. We mapped the modules to
physical interactions and gene-specific differential gene expres-
sion values and identified 101 modules and 133 rewiring hubs
related to genomic instability. We found that the rewiring hubs are
mainly enriched for processes involved in chromosome main-
tenance, oxireductase activity, mitotic checkpoint, DNA replication
initiation and synaptic signalling. Moreover, 19% of the rewiring
hubs are involved in synaptic signalling, which can be related to
the fact that brain tissue has a higher level of gene expression
compared with other tissue.41 However, recent evidence corro-
borates that (1) cancer cells can repurpose neuronal communica-
tion mechanisms to fuel tumourigenesis42 and (2) that there is no
association between high mutation burden and improved survival
in brain cancer, unlike other cancer types.8 In contrast to classical
oncogenic targets, which are essential for tumour transformation
events, our NOA rewiring hubs and modules are involved in
maintenance functions for homoeostasis purposes; some of which
are comparable to the effects of tumour suppressor genes. We
found that despite the small overlap of hub rewiring genes across
tumour types, the overlap of their respective neighbours is much
larger. This suggests that stress-activated mechanisms are shared
across cancer types.
Thus, increasing efforts are being directed towards mapping out

cancer dependencies for example by systematically performing
genome-wide vulnerability screens on large numbers of cancer
cell lines,34,43,44 or by using advanced computational algorithms.45

Limitations arise when working with collected tumour data that
are not optimised for tumour stress analysis. For example, TCGA
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samples can be highly heterogeneous and co-vary with tumour
stage, other stresses, treatment effects, gene expression etc. To
measure tumour stress environments, more tailored technologies
and strategies are more fitting. For example, single-cell technology
has the potential to measure varying levels and types of stresses
across subpopulations of cells.46,47 Other examples are synthetic
dosage lethality, in which gene dosage is taken into account, or
conditional synthetic lethality that takes into account the tumour
microenvironment.6 Another limitation is that the NOA hubs need
further experimental and clinical tests to validate their causal
effects as drug targets.
Few experimentally validated NOA genes exist that have been

associated with related stresses, let alone entire databases. Based
on a manual literature search, we found that the 26% of the NOA
rewiring hubs have been associated to the NOA mechanism. Some
of the NOA rewiring hubs, such as AURKB,48,49 PLK1,50,51 tubulins,
CHEK1/252 and HSPA1B,53 are already being considered and tested
as promising cancer therapeutics. The general mechanisms
behind these are either to exploit a ploidy-burdened phenotype
by inducing ploidy overload (AURKB, PLK1, tubulins, CHEK1/2) or
to reduce levels of stress-reflief proteins (HSPA1B). Aurora kinases,
such as AURKB, are undergoing phase III clinical trials in various
cancer types due to their multifunctionality and promising effects
when treated in combination with, e.g. chemotherapy.54

Our findings identify 101 genomic stress-activated NOA
modules comprising of 133 NOA rewiring hub genes across 14
cancer types. Our method shows that activated NOA modules are
enriched for homoeostasis maintenance functions, such as
PLK1 signalling, DNA repair and spindle and chromosome
maintenance. Finally, we observe the tendency that NOA rewiring
hub genes share many neighbours across cancer types suggesting
a generic stress response. We suggest that these shared
neighbour genes could be important candidates for use in
combinatorial therapy together with cancer-specific oncogenes
as a step towards cancer precision medicine. The approach
provides the first comprehensive view of condition-specific NOA
genes and can pave the way to better understanding of the NOA
concept in future studies. We believe that the next era of cancer
therapeutics will exploit intrinsic and extrinsic conditional vulner-
ability mapping to leverage how tumour stresses can be utilised
for drug targeting.6

METHODS
Data
Copy number alteration (CNA) data (n= 11,034) were obtained from The
Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/) on 7 April
2017. TCGA RNA-Seq data (raw read counts) were obtained from the GEO
(Gene Expression Omnibus) (https://www.ncbi.nlm.nih.gov/geo/) data set
GSE6294455 as input to the pre-processing and differential gene
expression analysis in DESeq2.56 From the literature we manually curated
a list of experimentally validated non-oncogene addiction genes using full
article texts (Supplementary Table S4).

Data pre-processing
Genes with zero variance and a low raw count (<10 in more than 90% of
the samples) were excluded from the analysis as recommended by the
WGCNA pipeline authors for pre-processing of RNA-Seq data (https://labs.
genetics.ucla.edu), as they tend to reflect noise. This also ensures that
genes not expressed in a certain cell type are left out of the comparative
analysis. DESeq2 (version 1.10.1)56 was used to perform pre-processing on
the raw RNA-Seq counts. The DESeq2 function varianceStabilizingTrans-
formation57 is a global normalisation approach performed to minimise
variation caused by technical errors. Unwanted variation in the data, such
as age and sex, were corrected for using the svaseq function implemented
in the SVA R package (version 3.18.0).58 Age and sex information on the
TCGA samples are available at firebrowse (http://firebrowse.org/). We
furthermore corrected the breast cancer samples for PAM50 subtypes
using svaseq.

Genes with a significant RNA-Seq copy number correlation were
removed from the analysis to avoid confounding effects due to
stoichiometric alterations. This was done from pre-calculated TCGA
correlation tables available at firebrowse (version 2016_01_28). The
correlation coefficients were calculated based on the Log2 CNA and
RNA-Seq expression for each corresponding feature using Pearson
correlation (“Correlations between copy number and RNA-Seq expression,”
2016) (http://firebrowse.org/). We used genes that did not show
significantly RNAseq-CNA correlation, thus genes with a Benjamini and
Hochberg-corrected q-value > 0.05.

Defining low and high-stress groups
Pre-processed TCGA mutation and copy number segment tables were
used to group tumour samples into stress and non-stress phenotypes.
Copy number segment tables were used to calculate the percentage-wise
base pairs affected by CNA for each tumour.

CNVburden ¼
P

nloss þ ngain
nautosome

(1)

To calculate the percentage-wise CNA burden, segments of CNA gains
and losses were determined, and their total genomic length (in number of
base pairs: nloss and ngain) was summed and calculated as a percentage of
the size of the autosomal genome (nautosome).

13 The autosomal genome
length was calculated from NCBI’s Build 36 (hg18) from UCSC (https://
genome.ucsc.edu/), since this is the reference used for the TCGA CNA SNP-
array data. We excluded CNAs with a segment mean in the range −0.2 <
segment mean < 0.2 to provide a threshold for when to infer gain and loss
of CNAs.59 Segment mean is the Log2 ratios of the tumour copy number to
the normal copy number.
All TCGA tumour samples (n= 11,034) were considered when defining

the thresholds for low and high mutation burden samples. Our definition
of the low-stress phenotype includes those samples presenting a CNA
burden equal or lower than the upper boundary of the first quartile.
Similarly, the high-stress phenotype was defined as those presenting a
CNA burden above the lower limit of the medium quartile. Only low and
high mutation burden samples were used for further stratification. The
exact thresholds for the low and high group are 7.0% and 19.2% CNA
burden, respectively.

Differential gene expression analysis using edgeR
Raw counts were used as input to edgeR60 to perform differential gene
expression analysis. The data were normalised using the edgeR functions
calcNormFactors and afterwards, dispersion estimates were done using the
functions estimateGLMCommonDisp and estimateGLMTagwiseDisp. In the
model, we corrected for covariates age and sex. Finally, we used glmFit to
perform the differential analysis between stresses and obtained results
with FDR < 0.05 to acquire significantly differentially expressed genes in
the high-stress state. Genes were analysed for enriched GO Biological
Processes using gProfileR23 in R.

Differential coexpression modules using DiffCoEx
Differential coexpression analysis was performed for the high versus low
CNA burden groups using the R implementation of DiffCoEx.15 DiffCoEx
uses the WGCNA statistical framework14 to identify differential coexpres-
sion modules. We implemented the topological overlap measurement
(from the WGCNA framework) when identifying coexpression modules,
which takes into account the interconnectedness of the network when
performing correlation analysis. The approach can be useful to exclude
spurious or isolated connections during network construction and is more
robust than pairwise correlation alone for clustering genes by similarity.
The differential coexpression measurements are transformed into dissim-
ilarity scores between genes, and then hierarchical clustering is used to
detect gene modules. The hierarchical clustering was applied using the
dynamic tree cut method. The soft threshold β is a parameter used to scale
the correlation networks such that the weights of larger correlation
differences are emphasised in comparison with lower ones. These were
calculated for each of the 15 cancer types using the function
pickSoftThreshold from the WGCNA package. A minimum module size of
30 was used to exclude small modules in the results. Besides the
mentioned settings, default parameters from WGCNA were used for the
clustering.
To access the significance of the differential coexpression modules, we

performed a permutation procedure (included in the DiffCoEx package)
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using dispersion statistics. For each DiffCoEx run, samples were permuted
n= 1000 times between the two stress conditions to generate a null
distribution from which we could evaluate the significance of the modules.
A dispersion value was calculated for each module, which is a measure of
the correlation change for a group of genes. The p-value was calculated
based on the number of times a permutation yielded a higher dispersion
than the dispersion value of our module. The permutation was done using
a function from DiffCoEx using the R framework.15

Physical differential coexpression modules and rewiring hubs
The differential coexpression modules were then mapped to the scored
physical human interactome, InWeb_IM.19 These modules were selected if
they have a minimum of five genes. Genes were assigned as a NOA
rewiring hub if they are significantly upregulated (FDR < 0.05, Log2FC ≥ 0.5)
and have at least three physically interacting genes that are significantly
differentially regulated (FDR < 0.05).

Functional analysis
The differential coexpression modules mapped to physical protein–protein
interactions from InWeb_IM were annotated in Cytoscape. Due to the large
sizes of these modules, we furthermore used the MCL clustering algorithm
to obtain smaller submodules for functional analysis. To gain functional
knowledge for these submodules, we used gProfileR (version
r1732_e89_eg36)23 to perform gene enrichment analysis on Gene
Ontology (GO) Biological Processes (BP) terms. GO BP terms with highest
significant FDR-corrected p-values (FDR < 0.05) were used.

Protein interaction data
InWeb_IM is a scored and benchmarked protein–protein interaction (PPI)
database, including interactions from humans and model organisms
(human orthologs) collected from various resources.19 The InWeb_IM score
is based on metrics such as reproducibility of the interaction data. The
collection (version 2016_02_05) consists of 504,608 unique interactions
covering 17,104 proteins. Only high-confident InWeb_IM interactions with
scores higher than the author-recommended cutoff of 0.156 were used in
the analyses covering 56,750 interactions and 10,669 proteins.

Cross validation and significance testing
We performed a fivefold cross validation for each cancer type to assess the
robustness of our results. We randomly subsampled each of the sample
groups (of high and low stress) and repeated this five times for each cancer
type. We performed both a 90 and 70% subsampling. We then calculated
the significance of the gene overlap compared with the original results
using the Fisher’s exact test for the hypergeometric distribution
implemented in the R function phyper.
We tested the significance of NOA shared neighbour overlaps by

performing a within-degree node label permutation. This approach
generated permuted networks that kept their degree distribution but
randomly re-assigned the nodes. We built 1000 random networks and for
each of these, we calculated the neighbour overlaps of the modules and
compared with the average value of our neighbour overlaps (for the NOA
hubs across all cancer types).

Validation using the METABRIC cohort
Normalised gene expression data and segmented copy number profiles for
two METABRIC breast cancer cohorts (Ndiscovery= 997 and Nvalidation= 995)
(EGAS00000000083) were downloaded from the European Genome-
phenome Archive (https://www.ebi.ac.uk/ega/). After removing cases with
NAs, the validation set was reduced to 987 samples.
We adjusted the gene expression data for age and breast cancer

subtypes (PAM50) using svaseq. We repeated our analysis pipeline for 336
high-stress phenotype samples and 319 low-stress phenotype samples for
the discovery set and 300 and 375 for the validation set, respectively.

Validation using Project Achilles
The Achilles CRISPR data set (Avana-17Q2-Broad_v2) was downloaded
from the Broad Institute data set portal (https://portals.broadinstitute.org/
achilles/).
This data set includes 341 cancer cell lines, for which the individual

genes have been systematically perturbed using CRISPR-Cas9 to identify

their effects on survival. Hundred and twenty-eight NOA rewiring hubs
were present in the Achilles data set. We performed a permutation test,
where the Achilles data set were subsampled 10,000 times with a sample
size of 128 genes to assess the significance of the Achilles score for our
NOA rewiring hubs. We also performed a Wilcoxon rank sum test to test if
the NOA Achilles score distribution differed from the average Achilles score
distribution.

Additional resources
The protein interaction data set, InWeb_IM, is available at http://www.
lagelab.org/resources/. TCGA CNA and RNA-Seq profiles are available at
https://cancergenome.nih.gov/. TCGA raw read count RNA-Seq data are
available at https://www.ncbi.nlm.nih.gov/geo/. TCGA RNAseq-CNA correla-
tion tables are available at http://firebrowse.org/. The Project Achilles data
set is available at https://portals.broadinstitute.org/achilles. The METABRIC
datasets can be applied for through https://www.ebi.ac.uk/ega/.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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