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Abstract

Cupriavidus sp. strain AMP6 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a
root nodule of Mimosa asperata collected in Santa Ana National Wildlife Refuge, Texas, in 2005. Mimosa asperata is
the only legume described so far to exclusively associates with Cupriavidus symbionts. Moreover, strain AMP6
represents an early-diverging lineage within the symbiotic Cupriavidus group and has the capacity to develop an
effective nitrogen-fixing symbiosis with three other species of Mimosa. Therefore, the genome of Cupriavidus sp.
strain AMP6 enables comparative analyses of symbiotic trait evolution in this genus and here we describe the
general features, together with sequence and annotation. The 7,579,563 bp high-quality permanent draft genome is
arranged in 260 scaffolds of 262 contigs, contains 7,033 protein-coding genes and 97 RNA-only encoding genes,
and is part of the GEBA-RNB project proposal.
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Introduction
Cupriavidus is one of two known genera of Betaproteo-
bacteria that include legume root-nodule symbionts [1].
The other genus, Burkholderia, has multiple species as-
sociated with diverse legume host plants indigenous to
North and South America, South Africa and Australia
[2–8]. Cupriavidus, by contrast, has only been isolated
from four species in two legume genera in the tribe
Mimoseae (Mimosa, Parapiptadenia), at a few locations
in the native geographic ranges of their host plants
(south Texas, the Caribbean, central America, French
Guiana, and Uruguay; [2, 9–12]). However, both Cupria-
vidus and Burkholderia have now spread to many new
regions along with species of Mimosa that are invasive
weeds [10, 13–17]. In South America, Cupriavidus was
uncommon in French Guiana and Uruguay (3-10 % of
nodule isolates; [9, 11]), and was not detected at all in
extensive surveys of Mimosa in central Brazil [5, 6].

However, it has been isolated from two cultivated
legumes in Minas Gerais, Brazil [18]. This suggests that
further surveys in South America may discover additional
wild legume hosts that utilize Cupriavidus symbionts.
The only legume studied to date that is exclusively as-

sociated with Cupriavidus nodule symbionts is Mimosa
asperata, from which Cupriavidus strain AMP6 was iso-
lated in 2005 [12]. The range of M. asperata is centered
in Mexico and extends slightly into south Texas, Cuba,
and northern Central America [19]. Based on both
housekeeping loci and symbiotic loci, strain AMP6 rep-
resents an early-diverging lineage of nodule-symbiotic
Cupriavidus [10, 12], whose genome may provide in-
sights about how legume nodule symbiosis became
established in this group.
Strain AMP6 was collected at the Santa Ana National

Wildlife Refuge in Hidalgo County, Texas. Cupriavidus
nodule bacteria resembling strain AMP6 are currently
known only from M. asperata populations in the lower
Rio Grande valley of Texas, and have not been detected
in surveys of Mimosa species in other geographic loca-
tions [2, 9–11]. Nevertheless, inoculation tests have
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indicated that Cupriavidus strain AMP6 has the capacity
to develop an effective nitrogen-fixing symbiosis with
three other species of Mimosa [12]. M. asperata occurs
mainly along the margins of seasonally flooded wetlands
[20], a habitat characterized by heavy silt/clay soils with
neutral to moderately alkaline pH (pH 7.0 - 8.4; [21]).
The first completed genome for a betaproteobacterial

legume symbiont was that of Cupriavidus taiwanensis
LMG 19424T [22]. Here we provide an analysis of the
high-quality permanent draft genome sequence of
Cupriavidus strain AMP6, enabling comparative ana-
lyses of symbiotic trait evolution in this genus.

Organism information
Classification and features
Cupriavidus sp. strain AMP6 is a motile, Gram-negative,
non-spore-forming rod (Fig. 1 Left, Center) in the order
Burkholderiales of the class Betaproteobacteria. The
rod-shaped form varies in size with dimensions of 0.4-
0.6 μm in width and 1.2-1.7 μm in length (Fig. 1 Left). It
is fast growing, forming 1.2-1.6 mm diameter colonies
after 24 h when grown on YMA [23] at 28 °C. Colonies
on YMA are white-opaque, slightly domed, moderately
mucoid with smooth margins (Fig. 1 Right).
Figure 2 shows the phylogenetic relationship of

Cupriavidus sp. strain AMP6 in a 16S rRNA gene
sequence based tree. This strain is phylogenetically most
related to Cupriavidus taiwanensis LMG 19424T,
Cupriavidus alkaliphilus ASC-732T and Cupriavidus
necator N-1T (deposited as ATCC43291T) with sequence
identities to the AMP6 16S rRNA gene sequence of
99.11 %, 99.04 % and 98.69 %, respectively, as deter-
mined using the EzTaxon-e server [24]. Cupriavidus tai-
wanensis LMG 19424T is a plant symbiont and was
isolated from root nodules of Mimosa pudica collected
from three fields at Ping-Tung Country in the southern
part of Taiwan [25]. Both ASC-732T and N-1T are soil

bacteria that are not able to nodulate or fix nitrogen
with legumes [26, 27]. Minimum Information about the
Genome Sequence (MIGS) [28] of AMP6 is provided in
Table 1.

Symbiotaxonomy
Cupriavidus sp. strain AMP6 was isolated from Mimosa
asperata nodules collected at the Santa Ana National
Wildlife Refuge in Hidalgo County, Texas [12]. Cupriavi-
dus sp. strain AMP6 was assessed for nodulation and
nitrogen fixation on five mimosa species, including M.
pigra, M. pudica, M. invisia, M. strigillosa and M. quad-
rivalvis [12]. Strain AMP6 could nodulate all hosts apart
from M. quadrivalvis [12]. Additional acetylene reduc-
tion assays provided information on the nitrogenase ac-
tivity of strain AMP6 on those hosts. These test showed
substantial nitrogenase activity with M. pudica and M.
invisia but only a small amount with M. pigra [12]. The
absence of nodule nitrogenase activity was also observed
for M. strigillosa and M. quadrivalvis [12].

Genome sequencing information
Genome project history
This organism was selected for sequencing on the basis
of its environmental and agricultural relevance to issues
in global carbon cycling, alternative energy production,
and biogeochemical importance, and is part of the Gen-
omic Encyclopedia of Bacteria and Archaea, The Root
Nodulating Bacteria chapter project at the U.S. Depart-
ment of Energy, Joint Genome Institute [29]. The gen-
ome project is deposited in the Genomes OnLine
Database [30] and the high-quality permanent draft gen-
ome sequence in IMG [31]. Sequencing, finishing and
annotation were performed by the JGI using state of the
art sequencing technology [32]. A summary of the pro-
ject information is shown in Table 2.

Fig. 1 Images of Cupriavidus sp. strain AMP6 using scanning (Left) and transmission (Center) electron microscopy and the appearance of colony
morphology on solid media (Right)
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Growth conditions and genomic DNA preparation
Cupriavidus sp. strain AMP6 was grown on YMA solid
medium [23] for 3 days, a single colony was selected and
used to inoculate 5 ml TY broth medium. The culture
was grown for 48 h on a gyratory shaker (200 rpm) at
28 °C. Subsequently 1 ml was used to inoculate 60 ml
TY broth medium and grown on a gyratory shaker
(200 rpm) at 28 °C until OD 0.6 was reached. DNA was
isolated from 60 mL of cells using a CTAB bacterial gen-
omic DNA isolation method [33]. Final concentration of
the DNA was 0.6 mg/ml.

Genome sequencing and assembly
The genome of Cupriavidus sp. AMP6 was generated at
the DOE Joint genome Institute [32]. An Illumina Std
shotgun library was constructed and sequenced using
the Illumina HiSeq 2000 platform which generated
15,823,344 reads totaling 2,373.5 Mbp. All general as-
pects of library construction and sequencing performed
at the JGI can be found at the JGI web site [34]. All raw
Illumina sequence data was passed through DUK, a
filtering program developed at JGI, which removes
known Illumina sequencing and library preparation

Fig. 2 Phylogenetic tree highlighting the position of Cupriavidus sp. strain AMP6 (shown in blue print) relative to other type and non-type strains
in the Cupriavidus genus using a 1,024 bp internal region of the 16S rRNA gene. Several Alpha-rhizobia sequences were used as an outgroup. All
sites were informative and there were no gap-containing sites. Phylogenetic analyses were performed using MEGA, version 5.05 [46]. The tree
was build using the maximum likelihood method with the General Time Reversible model. Bootstrap analysis with 500 replicates was performed
to assess the support of the clusters. Type strains are indicated with a superscript T. Strains with a genome sequencing project registered in GOLD
[30] have the GOLD ID mentioned after the strain number, otherwise the NCBI accession number is provided. Finished genomes are designated
with an asterisk
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artifacts (Mingkun L, Copeland A, Han J. unpublished).
Following steps were then performed for assembly:
(1) filtered Illumina reads were assembled using
Velvet (version 1.1.04) [35] (2) 1–3 Kbp simulated
paired end reads were created from Velvet contigs
using wgsim [36] (3) Illumina reads were assembled
with simulated read pairs using Allpaths–LG (version
r42328) [37]. Parameters for assembly steps were: 1)
Velvet (velveth: 63 –shortPaired and velvetg: −very

clean yes –exportFiltered yes –min contig lgth 500 –
scaffolding no–cov cutoff 10) 2) wgsim (−e 0 –1 100 –2
100 –r 0 –R 0 –X 0) 3) Allpaths–LG (PrepareAllpathsIn-
puts: PHRED 64 = 1 PLOIDY = 1 FRAG COVERAGE =
125 JUMP COVERAGE = 25 LONG JUMP COV= 50,
RunAllpathsLG: THREADS = 8 RUN = std shredpairs
TARGETS = standard VAPI WARN ONLY = True OVER-
WRITE = True). The final draft assembly contained
262 contigs in 260 scaffolds. The total size of the
genome is 7.6 Mbp and the final assembly is based
on 886.3 Mbp of Illumina data, which provides an
average of 117.0× coverage of the genome.

Genome annotation
Genes were identified using Prodigal [38], as part of the
DOE-JGI genome annotation pipeline [39, 40] followed
by a round of manual curation using GenePRIMP [41]
for finished genomes and Draft genomes in fewer than
10 scaffolds. The predicted CDSs were translated and
used to search the NCBI non-redundant database,
UniProt, TIGRFam, Pfam, KEGG, COG, and InterPro
databases. The tRNAScanSE tool [42] was used to find
tRNA genes, whereas ribosomal RNA genes were found
by searches against models of the ribosomal RNA genes
built from SILVA [43]. Other non–coding RNAs such as
the RNA components of the protein secretion complex
and the RNase P were identified by searching the
genome for the corresponding Rfam profiles using IN-
FERNAL [44]. Additional gene prediction analysis and
manual functional annotation was performed within the
Integrated Microbial Genomes-Expert Review (IMG-ER)
system [45] developed by the Joint Genome Institute,
Walnut Creek, CA, USA.

Table 1 Classification and general features of Cupriavidus sp.
strain AMP6 in accordance with the MIGS recommendations
[28] published by the Genome Standards Consortium [47]

MIGS ID Property Term Evidence
code

Classification Domain Bacteria TAS [48]

Phylum Proteobacteria TAS [49, 50]

Class
Betaproteobacteria

TAS [51]

Order Burkholderiales TAS [52]

Family
Burkholderiaceae

TAS [53]

Genus Cupriavidus TAS [54]

Species Cupriavidus sp. TAS [12]

(Type) strain AMP6 TAS [12]

Gram stain Negative TAS [54]

Cell shape Rod IDA

Motility Motile IDA

Sporulation Non-sporulating TAS [54]

Temperature range Mesophile TAS [54]

Optimum
temperature

28 °C IDA

pH range; Optimum Not reported

Carbon source Not reported

MIGS-6 Habitat Soil, root nodule on
host

IDA

MIGS-6.3 Salinity Not reported

MIGS-22 Oxygen requirement Aerobic IDA

MIGS-15 Biotic relationship Symbiotic IDA

MIGS-14 Pathogenicity Non-pathogenic NAS

MIGS-4 Geographic location Texas, USA TAS [12]

MIGS-5 Nodule collection
date

2005 TAS [12]

MIGS-4.1 Longitude −98.138 TAS [12]

MIGS-4.2 Latitude 26.0794 TAS [12]

MIGS-4.4 Altitude 30 m IDA

Evidence codes – IDA: Inferred from Direct Assay; TAS: Traceable Author
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [55]

Table 2 Genome sequencing project information for
Cupriavidus sp. strain AMP6

MIGS ID Property Term

MIGS-31 Finishing quality High-quality permanent draft

MIGS-28 Libraries used Illumina Std PE

MIGS-29 Sequencing platforms Illumina HiSeq 2000

MIGS-31.2 Fold coverage 117.0x Illumina

MIGS-30 Assemblers Velvet 1.1.04, ALLPATHS V.r42328

MIGS-32 Gene calling methods Prodigal 1.4

Locus Tag K309

Genbank ID AUFE00000000

Genbank Date of Release December 12, 2013

GOLD ID Gp0009812

BIOPROJECT PRJNA195776

MIGS-13 Source Material Identifier AMP6

Project relevance Symbiotic N2fixation, agriculture
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Genome properties
The genome is 7,579,563 nucleotides with 65.46 % GC
content (Table 3) and comprised of 260 scaffolds and
262 contigs. From a total of 7,130 genes, 7,033 were pro-
tein encoding and 97 RNA only encoding genes. The
majority of genes (80.24 %) were assigned a putative
function whilst the remaining genes were annotated as
hypothetical. The distribution of genes into COG func-
tional categories is presented in Table 4.

Conclusion
Cupriavidus sp. AMP6 belongs to a group of Beta-rhi-
zobia isolated from Mimosa asperata. Phylogenetic
analysis revealed that AMP6 is most closely related to
Cupriavidus taiwanensis LMG 19424T, which was iso-
lated from Mimosa pudica, and is able to nodulate
and fix nitrogen in association with several Mimosa
species [13]. In total five Cupriavidus strains (AMP6,
LMG 19424T, STM6018, STM6070 and UYPR2.512),
which can form a symbiotic association have now
been sequenced. A comparison of these strains reveals
that AMP6 has the second largest genome (7.6 Mbp),
with the highest KOG count (1398) and the second
lowest GC (65.46 %) and signal peptide (9.55 %) per-
centages in this group. All of these genomes share
the nitrogenase-RXN MetaCyc pathway characterized
by the multiprotein nitrogenase complex. Out of five
Cupriavidus strains (AMP6, LMG 19424T, STM6018,
STM6070 and UYPR2.512), which contain the N-
fixation pathway, only Cupriavidus sp. AMP6 has
been shown to fix effectively with Mimosa asperata.
The genome attributes of Cupriavidus sp. AMP6, in

conjunction with other Cupriavidus genomes, will be
important for ongoing molecular analysis of the plant
microbe interactions required for the establishment of
Mimosa symbioses.
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Table 4 Number of genes associated with general COG
functional categories

Code Value % age COG Category

J 182 3.37 Translation, ribosomal structure and
biogenesis

A 1 0.02 RNA processing and modification

K 527 9.76 Transcription

L 188 3.48 Replication, recombination and repair

B 4 0.07 Chromatin structure and dynamics

D 32 0.59 Cell cycle control, Cell division,
chromosome partitioning

V 59 1.09 Defense mechanisms

T 210 3.89 Signal transduction mechanisms

M 275 5.09 Cell wall/membrane/envelope
biogenesis

N 96 1.78 Cell motility

U 119 2.20 Intracellular trafficking, secretion, and
vesicular transport

O 164 3.04 Posttranslational modification, protein
turnover, chaperones

C 447 8.28 Energy production and conversion

G 256 4.74 Carbohydrate transport and metabolism

E 501 9.28 Amino acid transport and metabolism

F 90 1.67 Nucleotide transport and metabolism

H 185 3.43 Coenzyme transport and metabolism

I 344 6.37 Lipid transport and metabolism

P 272 5.04 Inorganic ion transport and metabolism

Q 235 4.35 Secondary metabolite biosynthesis,
transport and catabolism

R 659 12.21 General function prediction only

S 552 10.23 Function unknown

- 2339 32.81 Not in COGS

The total is based on the total number of protein coding genes in the genomeTable 3 Genome statistics for Cupriavidus sp. AMP6

Attribute Value % of Total

Genome size (bp) 7,579,563 100.00

DNA coding (bp) 6,545,489 86.36

DNA G + C (bp) 4,961,426 65.46

DNA scaffolds 260 100.00

Total genes 7,130 100.00

Protein-coding genes 7,033 98.64

RNA genes 97 1.36

Pseudo genes 0 0.00

Genes in internal clusters 538 7.55

Genes with function prediction 5,721 80.24

Genes assigned to COGs 4,791 67.19

Genes with Pfam domains 5,837 81.87

Genes with signal peptides 681 9.55

Genes with transmembrane helices 1,477 20.72

CRISPR repeats 1
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