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Informed management and policy decisions, especially those at-
tempting to control invasive pests or recover endangered species, 
require accurate knowledge of individual location and abundance. 
However, many species are not easily or consistently detectable; in-
deed, there is a non- trivial probability that target species will re-
main undetected during a survey (e.g., Kery, 2002; Wintle et  al., 
2005; Garrard et  al., 2015). The consequences of false absences 
during weed surveys may be especially severe because invasive 
plants often go undetected during a substantial lag phase common 
during early invasion (Kowarik, 1995; Crooks and Soule, 1999; Ra-
dosevich, 2002). Yet, the lag phase of a nascent invasion or satel-
lite population is expected to be the easiest to control (Moody and 
Mack, 1988; Zamora and Thill, 1999; Sakai et al., 2001). Therefore, 
research should address imperfect detectability and develop new 
measures for avoiding high false absence rates. We propose an al-
ternative survey method that addresses problems of detection and 
identification that contribute to uncertainty associated with detec-

tion inaccuracy. The proposed method provides an approach to de-
tect and locate nascent, invading populations using pollen samples 
collected in traps.

Information about plant population distributions and abun-
dances comes from many sources, including formal survey work 
by scientists, happenstance reports by citizen scientists, and indig-
enous and traditional knowledge (Turner et al., 2000; Beckie et al., 
2003; Silvertown, 2009). The design of formal survey strategies 
depends on focal species, resident landscape, habitat information, 
and resource constraints. As a result, a number of techniques are 
employed and can include comprehensive surveys, quadrat- based 
surveys, targeted surveys within predictor habitats (e.g., point or 
line transects, radial searches), and remote sensing based on detect-
able plant characteristics such as flowering color (Hill et al., 2005; 
Rew et al., 2006; Crall et al., 2013). With the exception of remote-
ly sensed data, human surveyors must conduct laborious searches, 
 often traversing large areas of land.
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PREMISE OF THE STUDY: We present an innovative technique for sampling, identifying, and lo-
cating plant populations that release pollen, without extensive ground surveys. This method 
(1) samples pollen at random locations within the target species’ habitat, (2) detects species’ 
presence using morphological pollen analysis, and (3) uses kriging to predict likely locations 
of populations to focus future search efforts.

METHODS: To demonstrate, we applied the pollen sleuthing system to search for artificially 
constructed populations of Brassica rapa in an old field. Population size varied from 0–100 
flowers labeled with artificial pollen (paint pellets). After characterizing the landscape, we 
pan- trapped 2762 potential insect vectors from random locations across the field and washed 
particulate matter from their bodies to assess artificial pollen abundance with a microscope.

RESULTS: Population size greatly influenced artificial pollen detection success; following 
random pollen trap sampling and interpolation, ground surveys would be best focused on 
identified areas with high pollen density and low variation in pollen density. Sampling sites 
most successfully detected artificial pollen when they were located at higher elevations, near 
showy flowering plants that were not grasses.

DISCUSSION: Detection of nascent populations using the proposed system is possible but 
accuracy will depend on local environmental factors (e.g., wind, elevation). Conservation and 
invasive species control programs may be improved by using this approach.
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Terrestrial angiosperms and conifers periodically release pollen, 
and this biological process can be exploited to increase survey area 
and search efficiency. Pollen grain movement through space can be 
modeled based on physical characteristics of both the particles and 
environment (Niklas, 1985; Beckie and Hall, 2008). Using estimates 
of settling velocities and likely settlement locations, researchers may 
calculate a pollen dispersal curve, which describes a frequency dis-
tribution of dispersal distances based on both species- specific pol-
len traits and weather (Okubo and Levin, 1989; Klein et al., 2003). 
Generally, at a landscape scale, pollen movement may be character-
ized by large concentrations near the release site, which decrease 
exponentially with increasing distance from the source population 
(Campbell, 1991; Folloni et al., 2012). Yet, pollen dispersal curves 
are species-  and environment- specific (Jarosz et al., 2003; Hofmann 
et al., 2010). The pollen vector involved (i.e., wind, animal, water) 
can also influence the distance traveled and the pollen settlement 
pattern (Rader et  al., 2011). Thus, knowledge of pollen dispersal 
patterns across landscapes may aid in locating likely source loca-
tions, as long as pollen can be reliably identified ( Erdtman, 1943; de 
Nascimento et al., 2009).

When pollen vectors are sampled across a landscape (and at least 
some pollen is captured), spatial interpolation can be used to esti-
mate the likely location of the source, accounting for environmental 
variation that may affect pollen movement. This mapping process can 
be automated such that spatial interpolation is based on acceptable 
default settings (Hiemstra et al., 2009). Pollen capture may depend 
on the vector, source population size and density, sampling distance, 
weather conditions, and the type of landscape. Larger populations 
should release larger clouds of pollen and therefore be easier to detect 
(Campbell, 1991). They may also be detectable at a greater distance 
from their source than small populations (MacArthur and Wilson, 
1967; Handel, 1983; Ellstrand, 1992). Similarly, environmental con-
ditions such as wind velocity, elevation, and rainfall at sampling sites 
could influence the distance and amount of transported pollen. Fi-
nally, areas that attract vectors may act as better sampling locations 
than areas that lack attractants (e.g., nectar- consuming insects may 
be attracted to high densities of floral resources; Pyke, 1984).

Here, we propose a new approach to locate plant populations 
(and, more broadly, any population that releases vector- borne pol-
len) (Fig. 1). To focus search efforts, digital image analysis or even 

FIGURE 1. Schematic diagram of the pollen sleuthing system proposed to collect, identify, and locate the source of pollen within a natural landscape.
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genetic technology can then be used to facilitate species identifica-
tion, and automatic interpolation can be used to predict the likely 
locations of source populations. Furthermore, quantitative data on 
pollen abundance may predict demographic characteristics of focal 
populations. Notably, our identification, location, and monitoring 
system may be useful for finding rare biological populations within 
species- diverse, complex, outdoor environments (Fig.  1). To de-
termine whether a pollen sleuthing system could be used to detect 
source population locations, we used experimental populations of 
Brassica rapa L. that vary in size. Furthermore, we explored whether 
our pollen sleuthing system could direct us to plant populations of 
interest by labeling the flowers of our experimental B. rapa popu-
lations with artificial pollen (paint pellets), and then sampling the 
landscape for artificial pollen. We evaluated the accuracy of this 
system by locating our study populations within a natural, complex 
landscape using spatially explicit data obtained from captured arti-
ficial pollen grains. We address the following questions:

1. To what degree can location of a source population be predicted?
2. Does the floral abundance (pollen and individual abundance) at 

source populations influence our ability to detect their location?
3. Do environmental conditions influence our ability to predict the 

location of a source population?

METHODS

Study system
Brassica rapa (Brassicaceae), or field mustard, is a fast- growing 
Eurasian annual herb introduced to North America as either a seed 
contaminant or crop escape (Frankton and Mulligan, 1987; Rollins, 
1993; Darbyshire, 2003). When found outside of agricultural fields, 
B. rapa grows in a patchy distribution, and occurs in ruderal hab-
itats, generally in open grasslands and on roadside verges (Britton 
and Brown, 1897; Robinson and Fernald, 1908; Gulden et al., 2008). 
Plants have pale yellow flowers arranged in dense clusters at the top 
of highly branched stems (Gulden et al., 2008). It is often used as a 
model plant in ecological and evolutionary studies because of its 
hardy nature, long flowering season, and an abundance of avail-
able genetic information (Williams and Hill, 1986; Cheng et  al., 
2011). Brassica rapa is an obligate outcrossing species (Takayama 
et al., 2000), and pollen movement is accomplished by both wind 
and insect vectors. In the closely related B. napus L., reproduction 
is largely effected by insect pollinators and influenced by wind di-
rection (Mesquida and Renard, 1982; Beckie et al., 2003). Syrphid 
flies, native bees, and Pieris butterflies were common flower visitors 
observed on our plants.

Study site
Koffler Scientific Reserve (KSR) at King City, Ontario, Canada, is a 
350- ha research area that includes open, reclaimed pasture, small 
buildings, and protected old- growth forest within the Oak Ridges 
Moraine (elevational range: 278–318 m above sea level). Typical of 
moraines, the terrain varies considerably over a small spatial scale 
and is therefore a perfect location for investigating the potential of 
our approach. In the study area, pan- trap sampling efforts covered 
an area of approximately 1 km × 1.5 km (Fig. 2). Naturalized popu-
lations of B. rapa were not detected, allowing us to experimentally 
imitate a spatially rare organism by creating artificial populations 
in pots (Blaney, 1999). We also repeatedly searched the  landscape 

visually for B. rapa using both walking and driving surveys, but we 
did not detect any naturalized populations during the season un-
der investigation. Detailed maps of topography, vegetation, and soil 
conditions in the study area are available in Blaney (1999) and from 
the Koffler Scientific Reserve (University of Toronto). During the 
time when we collected data, the average air temperature ranged 
from 25–36°C, wind speeds varied from 0.5–2 m/s, and wind direc-
tion ranged from 111–226.5°.

Field experiment
Seeds were provided by E. Austen (Austen and Weis, 2015). Seeds 
were planted on 15 June 2013 in seedling trays containing standard 
potting soil (PRO- MIX BX peat; Premier Tech,  Rivière- du- Loup, 
Québec, Canada) and watered regularly. Individuals were reared 
under hoop- house conditions and planted 25–29 June 2013 at the 
seedling stage in Cone- tainers (Stuewe and Sons, Corvallis, Oregon, 
USA) so that we could easily vary population size and randomize 
individuals. Between 16 August and 11 September 2013, we con-
structed a single outdoor population of B. rapa to simulate a rare 
population of plants. Number of individuals and number of flowers 
within populations were manipulated (Table 1, location  described 
in Fig. 2). To prevent contamination and ensure simplicity in this 
preliminary study, only one model population was present in the 
landscape at one time. After flowering (16 August), the experimen-
tal population was created in an open field (in a single location) by 
placing an appropriate number of potted individuals (see below) in 
a tray placed within a children’s play pool with the bottoms of Cone- 
tainers submerged in water. Unused individuals remained outside 
the hoop house (44°01′45.84″N, 79°32′20.64″W) covered by pol-
linator exclusion bags (DelStar pollinator exclusion bag, 750- μm 
gauge; DelStar, Austin, Texas, USA) to reduce movement of pollen 
from dehiscing flowers.

On evenings (between 1500–1700 hours) prior to designated 
sampling dates, we arranged experimental populations such that 
they represented one of three population size treatments: large (100 
individuals), medium (50 individuals), or small (five individuals). 
After setting up the experimental population each day, anthers of 
one flower from every plant (100, 50, or five) were painted with as 
much artificial pollen as would stick. We used fluorescent yellow 
paint pellets (4.5 μm in diameter) as artificial pollen grains, which 
are comparable in size to maize pollen grains. Paint pellets appear 
as powder to the naked eye and are comparable in color to B. rapa 
pollen. We expected artificial pollen grains to be transported easily 
by insect vectors (Fenster et al., 1996; Van Rossum et al., 2011), al-
though there are some applications for which this would not have 
been appropriate (e.g., bird- pollinated plants; Waser, 1988). For 
reference, B. rapa pollen grains are less than 22.8 μm long (Cromp-
ton and Wojtas, 1993), which may mean that artificial pollen grains 
could potentially travel differently than B. rapa pollen. Importantly, 
because we did not count the number of paint pellets applied to 
flowers, we cannot relate either pellet abundance to the abundance 
of real pollen nor do we know how standardized the amount of pel-
lets applied to the flowers were (which may influence the accuracy 
of population size estimates from pellet density).

Treatments were randomly imposed so that the three population 
size treatment levels occurred once over a three- day sampling peri-
od, and we attempted to replicate each treatment level three times 
between 16 August and 11 September 2013 to minimize seasonal 
variation in pollinators, individual plant size, and weather condi-
tions (Table 1). A control population was set up on three additional 
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days. In the control population, all plants were covered with pollen 
exclusion bags, making population size for this treatment equal to 
zero individuals (Table  1). This experimental setup was not per-
formed on days that received rainfall (or when rain was predicted), 
given that we expected artificial pollen movement via wind or in-
sects to be relatively low under rainy conditions.

Sample collection and preparation for identification
We collected artificial pollen samples at 30 randomly chosen loca-
tions at KSR (Appendix 1). The same randomly selected sampling 
sites were applied to all treatments. To sample the artificial pollen 
load carried by insects (and capture windborne artificial pollen 
movement), we used pan traps, which capture a wide diversity of in-
sects, including potential pollinators of B. rapa. We set out one solid 
white plastic bowl (10 cm in length by 6 cm in width) on the ground 
as a trap in each sampling location for 24 h (Dollar Store, New-
market, Ontario, Canada). The traps were nestled among plants and 
half- filled with soapy water to trap insects (Dawn liquid dish soap, 

Proctor & Gamble, Toronto, Ontario, Canada; Droege, 2009). At the 
end of 24 h, pan traps were emptied into 50- mL tubes, washed, and 
replaced at all locations.

Samples were then prepared for analysis roughly following the 
wash method (Shoemaker, 2010). From each pan trap, all insects 
were placed in plastic 50- mL centrifuge tubes (no. 525- 0216; VWR, 
Radnor, Pennsylvania, USA), and leftover trap water was collected 
in a second sample tube and frozen at −20°C until further process-
ing. Both samples were thawed, and artificial pollen loads were col-
lected from each insect specimen by vortexing for approximately 30 
s and inverting sample tubes four times until a considerable portion 
of particulate matter disconnected from insect bodies and floated 
in the surrounding liquid (the liquid appeared cloudy). Scopa were 
removed from collected specimens, dissected to increase the like-
lihood that all pollen collected by bees would be potentially evalu-
ated, rather than hidden in a scopa, and then placed in the sample 
tube. Insects were then removed from the tubes, and the artificial 
pollen load solutions were centrifuged at 17,000 rpm for 2 min. The 

FIGURE 2. Study area and location of pollen sample pan traps (sample points) at the Koffler Scientific Reserve in King City, Ontario, Canada. The 
source pollen location at 44°01′58.33″N, 79°32′18.04″W is circled and depicted by an ‘×’. A potential pollen source at 44°01′45.84″N, 79°32′20.64″W 
where extra plants were stored at the greenhouse is also depicted (open circle). Locations of showy, flowering, non- experimental plant populations 
are identified with an asterisk. Distance values in the scale bar are given in meters.
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supernatant was drained, and the pellet was smeared on a micro-
scope slide. All insects were identified to family (www.Bugguide.
net). On 46 of 360 sampling events (12.8%), the sample was lost. We 
suspect wild turkeys inadvertently upset the pan traps.

Data collection
Throughout the season, we recorded environmental and biotic 
variables associated with field site, sampling locations, and location 
of the source population. Weather data were recorded daily from 
a single weather station on the KSR property (including air tem-
perature, wind direction and speed, and total precipitation). At each 
sampling site, we recorded elevation, distance from source popula-
tion, and surrounding dominant vegetation. The latter estimate was 
based on a brief visual survey of the presence or absence of plants 
having showy flowers within 10 m of the sampling point. Whereas 
in most search scenarios, the distance between a sampling site and 
the source population would be unknown, in our artificial scenario, 
we used this distance to the source population measure to identify 
the maximum distance between sampling locations that could lead 
to source population detection.

Data recorded from the experimental population included total 
number of flowering plants and total number of flowers. We also 
recorded data from our pan traps that provided information on (bi-
otic) insect vector diversity and abundance (i.e., number of species, 
total abundance of all insects trapped, and abundance of bees, which 
are some of the more effective biotic pollen vectors in old field com-
munities), as well as amount of artificial pollen captured. Because 
we were not able to count all of the artificial pollen that was centri-
fuged off insect vectors, we sampled artificial pollen loads from each 
pan trap by counting the number of fluorescent paint particles in a 
single transect through the middle of a prepared microscope slide at 
40× magnification (total area sampled: 25 mm × 5 mm or 125 mm2).

Data analysis
To determine the location of source populations, recent develop-
ments in the geostatistical literature allow spatial interpolation in 
an automatic mapping context using acceptable default settings 
(Hiemstra et al., 2009). We used an R package to perform this task 

(R package automap; Hiemstra, 2013). Spatial interpolation by krig-
ing using automap allows the user to create continuous (mapped) 
predictions of dependent variables across the study area from point- 
based sample estimates. The resultant map (i.e., of artificial pollen 
abundance in this case) describes where artificial pollen density was 
highest, given the sampling design. With kriging, predictions are 
associated with prediction errors, and prediction errors can be used 
to hone in on areas where uncertainty is high—or low—as the case 
may be (e.g., Melles et al., 2011). For example, kriging prediction 
errors can be used to optimize spatial sampling designs by minimiz-
ing mean prediction errors across a study area (Brus and Heuvelink, 
2007; Melles et al., 2011). Therefore, this technique is suitable for 
predicting likely pollen sources. In the context of locating rare plant 
populations or early stages of a plant invasion, kriging prediction 
errors of pollen grain abundance can provide an effective measure 
of spatial accuracy. This method assumes, of course, that the model 
is correct and that measurement error is reasonably low.

We determined the maximum artificial pollen abundance de-
tected at each sampling location (i.e., maximum of the three rep-
licate treatments) for each of the three experimental populations 
and the control (0, 5, 50, and 100). We used maximum pollen 
abundance per trap for interpolation as this was deemed a more 
representative measure than a mean or a minimum. The nature of 
samples in our pollen traps meant that there were many zeroes in 
these data. When pollinators were present, pollen abundance was 
high, but if they were absent, pollen abundance decreased to zero or 
close to zero in many cases. Maximum pollen abundance is a better 
measure in such cases than the mean (or minimum) because the 
mean would underestimate pollen by including those days when we 
did not capture any pollinators in a pan trap.

Maximum artificial pollen abundance for each of these treat-
ments was interpolated by ordinary kriging to create a spatially 
continuous map of predicted abundance of artificial pollen. We 
used categories of pollen pellet abundance (e.g., Fig. 3) to allow for 
an immediate determination of where large differences in pollen 
amounts occur in the landscape. Category breaks were selected 
for even spacing, but natural breaks or deviations from mean val-
ues could be used. Mapping by interpolation relies on a model of 
spatial structure—a variogram—to depict how pollen abundance 
varies with increasing distance between sampling locations. The 
variogram is akin to a dispersal kernel. Variograms are commonly 
used to model spatial structure in the field of geostatistics, although 
they are less commonly used in the context of pollen movement. 
Dispersal kernels typically show an expected decrease in pollen 
abundance with increasing distance from source plants, which may 
be exponential or more gradual. This decrease is captured by the 
gradual rise to the sill (i.e., the upper limit of the variogram) in the 
exponential or spherical variogram model. The variogram sill, a 
measure of average variation, was calculated as the mean squared 
difference in pollen abundance between pairs of sampling points, 
which are separated by a given distance class. The sill is known in 
geostatistics as the level at which near points are no longer more 
similar than distant points, and the range is the distance at which 
the model variogram reaches the sill. Akin to a dispersal kernel, the 
range provides an unbiased estimate of the distance at which the 
dispersal kernel tail levels off.

To determine what conditions influenced detectability, we first 
analyzed the variance in the abundance of artificial paint pellets 
captured at each sampling location. Initially, we ran a general linear 
model, assuming a Poisson distribution (for artificial pollen count 

TABLE  1. Schedule of experimental treatments and subsequent pollen 
sleuthing sampling events imposed.a

Sampling 
event Date

Population 
size

No. of point 
samples

1 16 August 100 25
17 August 50 22
18 August 5 24
19 August 0 27

2 20 August 50 24
21 August 50b 28
22 August 5 22
23 August 0 16

3 24 August 5 28
9 September 100 25

10 September 50 26
11 September 0 17

aThe experimental populations of Brassica rapa were created by assembling populations that 
varied from 0, 5, 50, or 100 labeled flowers at the Koffler Scientific Reserve in King City, 
Ontario, Canada. We trapped potential insect pollen vectors in 16–28 pan traps randomly 
scattered across an old field landscape between 16 August and 11 September 2013.

bThe population size on this date was meant to be large (i.e., 100 plants), but only consisted 
of 50 because many plants failed to flower on that date.

http://www.Bugguide.net
http://www.Bugguide.net
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data) with three independent variables (one fixed effect [experimen-
tal population size] and two random effects [dominant vegetation 
and sample replicate (n = 3)]) and covariates of elevation and number 
of bees collected in the sample. We used PROC GLIMMIX in SAS 
version 9.4 (SAS Institute, Cary, North Carolina, USA) to analyze 
the relationship between artificial pollen and experimental popula-
tion size, elevation, presence/absence of showy flowers in the vicinity, 
and number of insects caught in a sample (Poisson distribution, logit 
link function). Because we were limited in the number of degrees of 
freedom in the model, we removed factor interactions with replicates 
from the model.

RESULTS

We captured 2762 insects in total over the experiment, these in-
cluded a significant number of small native bees or wasps, flies, and 

beetles, and fewer than 65 bumble bees, honey bees, and butter-
flies. Ants, dragonflies, and spiders were extremely rare. A total of 
15,652 pollen grains were counted, and samples contained between 
zero and 2396 paint pellets (mean = 55 pellets, SD = 220). We cre-
ated maps of paint pellet density that were predicted using ordi-
nary kriging for each experimental population size by modeling 
spatial structure in artificial pollen grains detected across all pan 
traps. The experimental treatment with a single source population 
of 100 labeled flowers resulted in high amounts of spatial structure 
that could be easily modeled using automated mapping techniques. 
The variogram inset (Fig. 3A) depicts how neighboring samples are 
more similar than distant ones, and this spatial structure was mod-
eled using an exponential variogram curve. Results of predictions 
based on variogram models of spatial structure are depicted in the 
form of continuous maps of predicted number of paint pellets (arti-
ficial pollen) across the sampled area (Fig. 3A–D). At the 100- flower 
experimental population size, predicted pollen was highest at and 

FIGURE 3. Predicted number of pollen grains (by interpolation) based on randomly sampled point locations (n = 30 pan traps used to estimate pollen) 
distributed throughout the field at Koffler Scientific Reserve, King City, Ontario, Canada. Each map depicts pollen predicted based on experimental treat-
ments of artificial pollen grains applied to 100 individual flowers (A), 50 individual flowers (B), five individual flowers (C), and a control (D). Locations of 
source and potential pollen escape at the greenhouse are depicted using the same symbols as in Fig. 2. Category breaks were selected for even spacing. 
Each panel contains a variogram (akin to a dispersal kernel) depicting how pollen abundance varies with increasing distance between sampling locations.
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in the vicinity of two sampling sites, and the source plant was locat-
ed between them (Fig. 3A). As neighboring points are used to make 
predictions at unsampled locations based on a weighting scheme 
derived from the variogram, we see how pollen was predicted to be 
relatively high in areas that were unsampled (outside of the black 
boundary line, Fig. 3A) because neighboring points included sam-
ples located close to the source plant. These areas can be interpreted 
in concert with prediction errors (Fig.  4A). Prediction errors are 
highest in areas that were not sampled, and we are least confident 
in these values (darkest red zones on Fig. 4A). Prediction errors are 
lowest close to sampling sites; moreover, prediction errors are lower 
overall when the magnitude of semivariance in the response vari-
able is lower overall.

Ordinary kriging was also used to interpolate the other exper-
imental treatments, including the control treatment in which no 
paint pellets should have been available. However, there was very 
little spatial structure for treatment population sizes less than or 
equal to 50 labeled flowers. These results are depicted in the form 

of continuous maps of predicted number of paint pellets (artificial 
pollen) across the sampled area (Fig. 3). Prediction errors provide 
an indication of where sampling density was lowest and where vari-
ability in the number of paint pellets detected was highest ( Fig. 4).

We found the largest abundance of paint pellets in two pan traps 
close to our experimental source population for the treatment size 
of 100 individual labeled flowers (Fig.  3A). However, pan traps 
closest to the treatment source location did not necessarily have the 
highest number of artificial grains detected, and this may be be-
cause these samples were at lower elevations or they did not have 
showy flowers in their vicinity, which could attract more pollinators 
(as per Table 2 results). Adding covariates to the interpolation may 
improve predictive ability, but for this initial case study, and with 
a relatively small sample size of 30 samples, we selected ordinary 
kriging as a proof of concept to see if we could narrow in on the 
location of the source population.

The best results were obtained with the highest experimental 
treatment size (100 labeled flowers, Fig. 3A). Surprisingly, we were 

FIGURE 4. Prediction of standard error of pollen grains. Each map depicts the standard error of predicted pollen counts for treatments shown in Fig. 3 
representing experimental treatments of artificial pollen grains applied to 100 individual flowers (A), 50 individual flowers (B), five individual flowers 
(C), and a control (D). Locations of source and potential pollen locations at the greenhouse are depicted using the same symbols as in Fig. 2.
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not able to fit a decent spatial model to samples taken during the 
 experimental treatment of 50 labeled flowers; that is, spatial struc-
ture broke down very quickly for this treatment size, such that 
neighboring pan traps were not necessarily similar in the number 
of artificial pollen pellets detected. Despite this finding, all of the 
highest- density locations where paint pellets were detected were 
close to the source of the 50 labeled flowers treatment (data not 
shown due to color legend categories on Fig. 3B). Finally, as expect-
ed, the control population size with zero labeled flowers showed no 
detectable spatial structure in artificial pollen detected. In fact, arti-
ficial pollen pellets were detected under the control treatment, but 
only at one pan trap. In the single event where we found 10 artificial 
pollen pellets under population size of zero, the sample trap that 
collected the paint pellets was 240 m from the source population 
and 230 m from the greenhouse population. This seems to be a con-
sequence of delayed pollen dispersal.

The abundance of artificial pollen collected differed significantly 
based on the size of the source population, where more artificial 
pollen pellets were collected when the source population was larger 
(Table 2, Fig. 5A). When showy flowers were common in the sur-
rounding dominant vegetation, the abundance of artificial pollen 
pellets collected significantly increased by 39% relative to locations 
where the vegetation was grass- dominated (Table 2). Sampling sites 
at higher elevations tended to collect more artificial pollen pellets 
than sampling sites at lower elevations (Table 2). As the abundance 
of insects in pan traps increased, we captured significantly fewer 
artificial pollen pellets (although the difference was perhaps not bi-
ologically significant [β = − 0.008]). Although the likelihood of de-
tecting artificial pollen was higher when showy flowers were locally 
abundant (Table 2), this trend was not influenced by the number of 
insects caught in pan traps.

DISCUSSION

Artificial pollen tended to be transported by insects between patch-
es of flowers offering food resources, and artificial pollen pellets 
tended to move short rather than long distances. Therefore, pollen 
dispersal can be exploited as a tool to detect plant populations with-
in a landscape. This result is of applied interest not only because it 
creates a new tool for invasive species weed control but also because 
this tool could accommodate imperfect detection and high false 

absence rates in a plant survey at the edge of an invading species’ 
range or in endangered species surveys. Plant surveys at the edge of 
a range are often vulnerable to false absences because of reasonable 
limitations placed on search effort, especially those performed by 
line transects (Rew et al., 2006; Buckland et al., 2007). Our approach 
was able to hone in on a smaller area for searching, thus potentially 
reducing field search time. Future work will need to test this pollen 
sleuthing approach using various sampling regimes and a broader 
phylogenetic context to represent species with diverse life histories 
and a diversity of ecosystems.

Artificial pollen pellets, dispersed by wind vectors or insect vec-
tors, are easy to capture over an old field landscape. The amount 
of artificial pollen captured in pan traps, dispersed from a sin-
gle point source, was dramatically higher in large (100 individu-
als) versus very small populations (five individuals). Importantly, 
when  populations were small, the rare plant could evade detection. 

TABLE  2. Statistical models predicting artificial pollen detection at the 
Koffler Scientific Reserve in King City, Ontario, Canada, based on Brassica rapa 
population size, proximity of showy flowers, elevation, and insects collected in a 
pan trap. Results of ANCOVA model predicting the abundance of artificial pollen 
at a sampling point (Poisson distribution, log link function, n = 274) for source 
population size, the presence of showy flowers in the local neighborhood of the 
pan trap, the elevation of sampling location, and the number of insects collected 
in pan trap.a

Parameter β (SE) df F P
Population size — 3267 3130.00 <0.0001*
Flowers in  

neighborhood
— 1267 361.98 <0.0001*

Elevation of sampling 
location

0.042 (0.0008) 1267 2833.74 <0.0001*

No. of insects in 
sample

 − 0.008 (0.0016) 1267 23.78 <0.0001*

Note: β = slope of the covariate; df = degrees of freedom; F = fixation index.
*Significant effects.

FIGURE 5. The effect of pollen source population size (graphed on a log 
scale) on the ability to detect populations based on collecting artificial 
pollen grains at 30 locations randomly located at the field site (Koffler 
Scientific Reserve, King City, Ontario, Canada) as determined by the 
number of sampling sites where artificial pollen grains were collected 
(A), and the number of artificial pollen grains found at all sampling sites 
(±SE) (B).

B

A
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 Consistent with results from other studies that experimentally ma-
nipulated population size and with published theory, as population 
size increases—not surprisingly—more pollen (artificial or other-
wise) was dispersed out of populations (Slatkin, 1987; Klinger et al., 
1992; Richards et al., 1999), a pattern likely influenced by the be-
havior of pollen vectors (Cresswell and Osborne, 2004). Although 
reduced population size reduces the volume of pollen produced by 
that patch, studies generally report that the amount of gene flow 
into and out of small proximate populations (i.e., even as small as 
two individual plants) is similar to that with large populations that 
are at moderate to long distances apart (Klinger et al., 1992; Rich-
ards et al., 1999); this finding is likely due to the fact that pollinators 
do not remain within small populations very long (Cresswell and 
Osborne, 2004). A second result that was surprising in this study 
was the slight reduction of pollen grains captured with increased 
numbers of insects trapped. We hypothesize that this decline may 
reflect either that insects were less likely to have the artificial pollen 
on their bodies or that it was more difficult to separate the artificial 
pollen from their bodies. However, if pollen censuses are systemat-
ically completed, this pollinator movement should serve to increase 
the likelihood that small populations will be detected using our 
pollen sleuthing technique, and therefore the proposed method is 
likely to have broad applications to other study systems.

Elevation also significantly influences source population detect-
ability. For example, our pan trap sampling sites were most success-
ful at collecting insects that carried artificial pollen when the pan 
traps were located at elevated points in the landscape. The complex 
effects of local topography on pollen dispersal are well documented 
(Markgraf, 1980; Fall, 1992; Van de Water et al., 2007; Pasquet et al., 
2008). For example, although air movement is known to take insect 
vectors of pollen (and pollen itself) upslope and downslope, pollen 
is more likely to be found at hilltops rather than valleys (Markgraf, 
1980; Fall, 1992). Moreover, constricted passes may increase the 
distance traveled by pollen (Van de Water et al., 2007). Thus, eleva-
tion may complicate efforts to model the location of small popula-
tions relying only on pollen density and may limit, in some cases, 
the implementation of a pollen sleuthing system.

Similarly, floral display is known to influence pollen movement 
across the landscape (Willson and Rathcke, 1974; Richards et  al., 
1999; Cresswell and Osborne, 2004). Pan- trap sampling sites were 
most successful at detecting insect- dispersed artificial pollen when 
these sites included showy flowers rather than grass- dominated 
microsites. Generally, floral display size increased pollen move-
ment between patches (Richards et  al., 1999), perhaps because it 
increased patch attractiveness for insect visitors, increasing geito-
nogamy, which may reduce pollen movement among plants with-
in patches (Richards et  al., 1999; Cresswell and Osborne, 2004). 
Furthermore, as floral display size increases, excess pollen will be 
produced, which should increase pollen movement out of patches 
(Willson and Rathcke, 1974). Therefore, species that tend to pro-
duce large floral displays and larger patches will be easier to detect 
using our sleuthing system than species that produce few flowers 
per plant or exist in very small patches.

There were two potentially important factors that could influ-
ence the applicability of the proposed technique but that were not 
considered in this paper. The first factor is the extent to which pol-
linator body size can influence pollen movement. Although polli-
nator body size does not influence the rate of pollen collection in 
brassicaceous plants (Sahli and Conner, 2007), the distance pollen 
moves by different insect vectors is largely correlated with their 

foraging distance and body size (Nielsen and Ims, 2000; Ghazoul, 
2005; Hensen and Oberprieler, 2005), which, in turn, may influence 
the uncertainty of estimates of pollen source locations. The second 
factor is the extent to which landscapes and population sizes of 
flowering plants influence the body size composition of the vector 
community (Sowig, 1989; Woodward et al., 2005; Greenleaf et al., 
2007). When the vectors’ communities differ in body size, this may 
influence the average distance pollen moves. Thus, future use of this 
tool would benefit from a stronger understanding of the dispersal 
distance of insect vectors and pollinator community of any partic-
ular focal plant.

Although we demonstrate the potential of pollen sleuthing as 
a detection tool for invading species, we are aware of limitations, 
such as upper and lower threshold plant densities, and/or minimum 
pollen inter- trap distances where this tool will be most useful for 
detecting invasion fronts. Dispersal varies with pollen abundance, 
and these differences were clearly evident in our model variograms 
(Fig. 3A–D, insets). For example, the range of detected artificial pol-
len got larger as pollen abundance increased (Fig. 3B compared with 
Fig. 3A), whereas at very low levels of artificial pollen (five painted 
grains and the control [Fig. 3C, D]) spatial structure was not evi-
dent. Therefore, a dispersal kernel would be undetectable at very 
low pollen levels. The ability to locate populations was improved in 
sampling sites with high pollen capture and low variance in pollen 
capture. Figure 4 depicts prediction error in modeled values of pol-
len abundance across the sampled area. The beauty of geostatistical 
methods is that once a variogram is known and a model of spatial 
structure for pollen dispersal is quantified, prediction error can be 
estimated anywhere in the study area (regardless of whether a given 
location was sampled or not). Prediction error can be used to direct 
sampling efforts (Melles et al., 2011) such that errors are minimized 
in the vicinity of locations with the highest detected pollen pellets. 
We expect that there is an upper threshold of plant density at which 
the tool becomes less useful than human surveys, but this high den-
sity would be more typical of a mature invasion rather than an inva-
sion front. Because of the existence of these thresholds, the pollen 
sleuthing system could be used as sampling sentries scattered on 
landscapes for remotely tracking invasion fronts, or for evaluation 
of demographic consequences of eradication efforts. Furthermore, 
because detection success varied among days, it would be import-
ant to incorporate sampling on multiple days in a future study.

The natural next step to development of this pollen detection sys-
tem will be use of DNA metabarcoding, or a similar genetic tool, able 
to identify pollen capture at the species level. Advancement of this 
technology into environmental DNA (eDNA) metabarcoding, which 
allows for identification of a single species within a multi- species en-
vironmental sample, has given scientists a useful tool for biodiversity 
estimates (Dejean et  al., 2011; Knox et  al., 2012; Bell et  al., 2016a, 
2016b, 2017a, 2017b) and has proven to be a useful method to iden-
tify species too cryptic to be identified by morphological methods 
alone (Hebert and Gregory, 2005; Kress, 2005; Hajibabaei et al., 2007; 
Janzen et al., 2009). For instance, when using species- specific DNA 
barcodes, DNA extracted from environmental samples (sediment 
sampling, soil cores, water samples) can reveal the identity and dis-
tributions of individual species (e.g., Hofreiter et  al., 2003; Willer-
slev et al., 2003; Ficetola et al., 2008; Jerde et al., 2011). Methods for 
pollen DNA metabarcoding (a type of eDNA barcoding) were only 
recently developed to use DNA barcodes to identify individual spe-
cies in mixed pollen samples from air or insect vectors (Folloni et al., 
2012; Keller et al., 2015; Bell et al., 2016a, 2016b, 2017a, 2017b), but 
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may prove similarly useful for revealing species distribution, abun-
dance, and other spatial information. The more specific advantage of 
e- barcoding is in its ability to capture a DNA signal from mobile indi-
viduals (i.e., extra- organismal DNA [Ficetola et al., 2008; Hajibabaei 
et al., 2012; Barnes and Turner, 2016]). Although plants themselves 
are stationary organisms, pollen is predictably mobile and thus pos-
sesses great potential for broad application of barcode- assisted pollen 
sleuthing surveys, especially for the detection of source populations 
of invasive or rare and endangered species.

ACKNOWLEDGMENTS

The authors thank A. Klimowski, Z. Teitel, and P. Chiranji for 
 research assistance; E. Austen for B. rapa seed; and A. Weis and 
the Koffler Scientific Reserve for logistical support. Funding was 
 provided by Ryerson University, the Species at Risk Research Fund 
for Ontario (SARRFO; L.G.C., S.J.M.), and the Natural Sciences and 
Engineering Research Council of Canada (NSERC; no. 402325- 
2011 to L.G.C., no. 03834- 2015 to S.J.M.).

LITERATURE CITED

Austen, E. J., and A. E. Weis. 2015. What drives selection on flowering time? 
An experimental manipulation of the inherent correlation between genotype 
and environment. Evolution 69: 2018–2033.

Barnes, M. A., and C. R. Turner. 2016. The ecology of environmental DNA and 
implications for conservation genetics. Conservation Genetics 17: 1–17.

Beckie, H. J., and L. M. Hall. 2008. Simple to complex: Modelling crop pollen- 
mediated gene flow. Plant Science 175: 615–628.

Beckie, H. J., S. I. Warwick, H. Nair, and G. Séguin-Swartz. 2003. Gene flow in 
commercial fields of herbicide- resistant canola (Brassica napus). Ecological 
Applications 13: 1276–1294.

Bell, K. L., B. J. Brosi, N. de Vere, A. Keller, R. Richardson, A. Gous, and K. S. 
 Burgess. 2016a. Pollen DNA barcoding: Current applications and future 
prospects. Genome 59: 1–12.

Bell, K. L., K. S. Burgess, K. C. Okamoto, R. Aranda, and B. J. Brosi. 2016b. Re-
view and future prospects for DNA barcoding methods in forensic palynol-
ogy. Forensic Science International: Genetics 21: 110–116.

Bell, K. L., J. Fowler, K. S. Burgess, E. K. Dobbs, D. Gruenewald, B. Lawley, C. 
Morozumi, and B. J. Brosi. 2017a. Applying pollen DNA metabarcoding to 
the study of plant–pollinator interactions. Applications in Plant Sciences 5: 
1600124.

Bell, K. L., V. M. Loeffler, and B. J. Brosi. 2017b. An rbcL reference library to 
aid in the identification of plant species mixtures by DNA metabarcoding. 
Applications in Plant Sciences 5: 1600110.

Blaney, C. S. 1999. Seed bank dynamics of native and exotic plants in open up-
lands of southern Ontario. M.Sc. thesis, Department of Botany, University of 
Toronto, Toronto, Ontario, Canada.

Britton, N. L., and A. Brown. 1897. An illustrated flora of the northern United 
States, Canada and the British possessions, vol. 2: Portulacaceae to Menyan-
thaceae. Charles Scribner’s Sons, New York, New York, USA.

Brus, D. J., and G. B. M. Heuvelink. 2007. Optimization of sample patterns for 
universal kriging of environmental variables. Geoderma 138: 86–95.

Buckland, S. T., D. L. Borchers, A. Johnston, P. A. Henrys, and T. A. Marques. 
2007. Line transect methods for plant surveys. Biometrics 63: 989–998.

Campbell, D. R. 1991. Comparing pollen dispersal and gene flow in a natural 
population. Evolution 45: 1965–1968.

Cheng, F., S. Liu, J. Wu, L. Fang, S. Sun, B. Liu, P. Li, W. Hua, and X. Wang. 2011. 
BRAD, the genetics and genomics database for Brassica plants. BMC Plant 
Biology 11: 136.

Crall, A. W., C. S. Jarnevich, B. Panke, N. Young, M. Renz, and J. Morisette. 2013. 
Using habitat suitability models to target invasive plant species surveys. Eco-
logical Applications 23: 60–72.

Cresswell, J. E., and J. L. Osborne. 2004. The effect of patch size and separation 
on bumblebee foraging in oilseed rape: Implications for gene flow. Journal of 
Applied Ecology 41: 539–546.

Crompton, C. W., and W. A. Wojtas. 1993. Pollen grains of Canadian honey plants. 
Agriculture Canada, Research Branch, Ottawa, Ontario, Canada.

Crooks, K. R., and M. E. Soule. 1999. Mesopredator release and avifaunal extinc-
tions in a fragmented system. Nature 400: 563–566.

Darbyshire, S. J. 2003. Inventory of Canadian agricultural weeds. Agriculture and 
Agri-Food Canada, Research Branch, Ottawa, Ontario, Canada.

Dejean, T., A. Valentini, A. Duparc, S. Pellier-Cuit, F. Pompanon, P. Taberlet, 
and C. Miaud. 2011. Persistence of environmental DNA in freshwater eco-
systems. PLoS ONE 6: e23398.

de Nascimento, L., J. D. Delgado, J. Méndez, R. Otto, M. Arteaga, and J. M. 
Fernández-Palacios. 2009. Honeybees and pollen as indicators of alien 
plant species in two native forest ecosystems of an oceanic island (La Palma, 
Canary Islands). Open Forest Science Journal 2: 98–107.

Droege, S. 2009. The very handy bee manual: How to catch and identify bees and 
manage a collection, p. 59. USGS Native Bee Inventory and Monitoring Lab, 
U.S. Geological Survey, Beltsville, Maryland, USA.

Ellstrand, N. C. 1992. Gene flow among seed plant populations. New Forest 6: 
241–256.

Erdtman, G. 1943. An introduction to pollen analysis. Chronica Botanica, 
Waltham, Massachusetts, USA.

Fall, P. L. 1992. Spatial patterns of atmospheric pollen dispersal in the Colorado 
Rocky Mountains, USA. Reviews in Palaeobotany and Palynology 74: 293–313.

Fenster, C. B., M. R. Dudash, and C. L. Hassler. 1996. Fluorescent dye parti-
cles are good pollen analogs for hummingbird- pollinated Silene virginica 
(Caryophyllaceae). Canadian Journal of Botany 74: 189–193.

Ficetola, G. F., C. Miaud, F. Pompanon, and P. Taberlet. 2008. Species detection 
using environmental DNA from water samples. Biology Letters 4: 423–425.

Folloni, S., D. M. Kagkli, B. Rajcevic, N. C. C. Guimaraes, B. Van Droogenbroeck, 
F. H. Valicente, G. van den Eede, and M. van den Bulcke. 2012.  Detection 
of airborne genetically modified maize pollen by real- time PCR.  Molecular 
Ecology 12: 810–821.

Frankton, C., and G. A. Mulligan. 1987. Weeds of Canada, revision of 1970 edi-
tion, Publication 948. Agriculture Canada, Ottawa, Ontario, Canada.

Garrard, G. E., S. A. Bekessy, M. A. McCarthy, and B. A. Wintle. 2015. Incorpo-
rating detectability of threatened species into environmental impact assess-
ment. Conservation Biology 29: 216–225.

Ghazoul, J. 2005. Implications of plant spatial distribution for pollination and 
seed production. In D. Burslem, M. Pinard, and S. Hartley [eds.], Biotic in-
teractions in the tropics: Their role in the maintenance of species diversity, p. 
241–266. Cambridge University Press, Cambridge, United Kingdom.

Greenleaf, S. S., N. M. Williams, R. Winfree, and C. Kremen. 2007. Bee foraging 
ranges and their relationship to body size. Oecologia 153: 589–596.

Gulden, R. H., S. I. Warwick, and A. G. Thomas. 2008. The biology of Canadian 
weeds 137. Brassica napus L. and B. rapa L. Canadian Journal of Plant Science 
88: 951–996.

Hajibabaei, M., G. A. Singer, P. D. Hebert, and D. A. Hickey. 2007. DNA barcod-
ing: How it complements taxonomy, molecular phylogenetics and popula-
tion genetics. Trends in Genetics 23: 167–172.

Hajibabaei, M., J. L. Spall, S. Shokralla, and S. van Konynenburg. 2012. Assessing 
biodiversity of a freshwater benthic macroinvertebrate community through 
non- destructive environmental barcoding of DNA from preservative etha-
nol. BMC Ecology 12: 28.

Handel, S. N. 1983. Pollination ecology, plant population structure, and gene flow. 
In L. Real [ed.], Pollination biology. Academic Press, Orlando, Florida, USA.

Hebert, P. D., and T. R. Gregory. 2005. The promise of DNA barcoding for taxon-
omy. Systematic Biology 54: 852–859.

Hensen, I., and C. Oberprieler. 2005. Effects of population size on genetic diver-
sity and seed production in the rare Dictamnus albus (Rutaceae) in central 
Germany. Conservation Genetics 6: 63–73.



Applications in Plant Sciences 2018 6(1): e1020 Campbell et al.—Pollen sleuthing for terrestrial plant surveys • 11 of 12

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2018 Campbell et al.

Hiemstra, P. H. 2013. R package automap. Website https://cran.r-project.org/
web/packages/automap/index.html [accessed 11 January 2018].

Hiemstra, P. H., E. J. Pebesma, C. J. W. Twenhöfel, and G. B. M. Heuvelink. 2009. 
Real- time automatic interpolation of ambient gamma dose rates from the Dutch 
radioactivity monitoring network. Computers & Geosciences 35: 1711–1721.

Hill, D., M. Fasham, G. Tucker, M. Shewry, and P. Shaw. 2005. Handbook of 
biodiversity methods: Survey, evaluation and monitoring. Cambridge Uni-
versity Press, Cambridge, United Kingdom.

Hofmann, F., R. Epp, A. Kalchschmid, W. Kratz, L. Kruse, U. Kuhn, B. Maisch, et 
al. 2010. Monitoring of Bt- maize pollen exposure in the vicinity of the nature 
reserve Ruhlsdorfer Bruch in northeast Germany 2007 to 2008. Environmen-
tal Sciences Europe 22: 229–251.

Hofreiter, M., J. I. Mead, P. Martin, and H. N. Poinar. 2003. Molecular caving. 
Current Biology 13: 693–695.

Janzen, D. H., W. Hallwachs, J. Burns, M. A. Solis, and N. E. Woodley. 2009. In-
tegration of DNA barcoding into an ongoing inventory of complex tropical 
biodiversity. Molecular Ecology Resources 9: 1–26.

Jarosz, N., B. Loubet, B. Durand, A. McCartney, X. Foueillassar, and L. Huber. 
2003. Field measurements of airborne concentration and deposition rate of 
maize pollen. Agricultural and Forest Meteorology 119: 37–51.

Jerde, C. L., A. R. Mahon, W. L. Chadderton, and D. M. Lodge. 2011. ‘‘Sight- 
unseen’’ detection of rare aquatic species using environmental DNA. Con-
servation Letters 4: 150–157.

Keller, A., N. Danner, G. Grimmer, M. Ankenbrand, K. Ohe, W. Ohe, S. Rost, et 
al. 2015. Evaluating multiplexed next- generation sequencing as a method in 
palynology for mixed pollen samples. Plant Biology 17: 558–566.

Kery, M. 2002. Inferring the absence of a species—A case study of snakes. Jour-
nal of Wildlife Management 66: 330–338.

Klein, E. K., C. Lavigne, X. Foueillassar, P. Gouyon, and C. Larédo. 2003. Corn 
pollen dispersal: Quasi- mechanistic models and field experiments. Ecologi-
cal Monographs 73: 131–150.

Klinger, T., P. E. Arriola, and N. C. Ellstrand. 1992. Crop- weed hybridization in 
radish (Raphanus sativus): Effects of distance and population size. American 
Journal of Botany 79: 1431–1435.

Knox, M. A., I. D. Hogg, C. A. Pilditch, A. N. Lörz, P. D. Hebert, and D. Steinke. 
2012. Mitochondrial DNA (COI) analyses reveal that amphipod diversity is 
associated with environmental heterogeneity in deep- sea habitats. Molecular 
Ecology 21: 4885–4897.

Kowarik, I. 1995. Time lags in biological invasions with regard to the success and 
failure of alien species. In P. Pyšek, K. Prach, M. Rejmánek, and M. Wade 
[eds.], Plant invasions: General aspects and special problems, p. 15–38. SPB 
Academic Publishing, Amsterdam, The Netherlands.

Kress, W. J., K. J. Wurdack, E. A. Zimmer, L. A. Weigt, and D. H. Janzen. 2005. 
Use of DNA barcodes to identify flowering plants. Proceedings of the Nation-
al Academy of Sciences, USA 102: 8369–8374.

MacArthur, R. H., and E. O. Wilson. 1967. The theory of island biogeography. 
Princeton University Press, Princeton, New Jersey, USA.

Markgraf, V. 1980. Pollen dispersal in a mountain area. Grana 19: 127–146.
Melles, S. J., G. B. M. Heuvelink, C. J. W. Twenhöfel, and U. Stöhlker. 2011. Op-

timizing the spatial pattern of networks for monitoring radioactive releases. 
Computers & Geosciences 37: 280–288.

Mesquida, J., and M. Renard. 1982. Study of the pollen dispersal by wind and 
the importance of wind- pollination in rapeseed (Brassica napus spp. oleifera 
Metzger). Apidologie 13: 353–367.

Moody, M. E., and R. N. Mack. 1988. Controlling the spread of plant invasions: 
The importance of nascent foci. Journal of Applied Ecology 25: 1009–1021.

Nielsen, A., and R. A. Ims. 2000. Bumble bee pollination of the sticky catchfly in 
a fragmented agricultural landscape. Ecoscience 7: 157–165.

Niklas, K. J. 1985. The aerodynamics of wind pollination. Botanical Reviews 51: 
329–383.

Okubo, A., and S. A. Levin. 1989. A theoretical framework for data analysis of 
wind dispersal of seeds and pollen. Ecology 70: 329–338.

Pasquet, R. S., A. Peltier, M. B. Hufford, E. Oudin, J. Saulnier, L. Paul, J. T. 
 Knudsen, et al. 2008. Long- distance pollen flow assessment through evalu-
ation of pollinator foraging range suggests transgene escape distances. Pro-
ceedings of the National Academy of Sciences, USA 105: 13456–13461.

Pyke, G. H. 1984. Optimal foraging theory: A critical review. Annual Reviews in 
Ecology, Evolution, and Systematics 15: 523–575.

Rader, R., W. Edwards, D. A. Westcott, S. A. Cunningham, and B. G. Howlett. 
2011. Pollen transport differs among bees and flies in a human- modified 
landscape. Diversity & Distributions 17: 519–529.

Radosevich, S. 2002. Plant invasions and their management. In Center for In-
vasive Plant Management [ed.], Invasive plant management: CIPM online 
textbook. Center for Invasive Plant Management, Bozeman, Montana, 
USA.

Rew, L. J., B. D. Maxwell, F. L. Dougher, and R. Aspinall. 2006. Searching for a 
needle in a haystack: Evaluating survey methods for non- indigenous species. 
Biological Invasions 8: 523–539.

Richards, C. M., S. Church, and D. E. McCauley. 1999. The influence of popu-
lation size and isolation on gene flow by pollen in Silene alba. Evolution 53: 
63–73.

Robinson, B. L., and M. L. Fernald. 1908. Gray’s new manual of botany. Ameri-
can Book Company, New York, New York, USA.

Rollins, R. C. 1993. The Cruciferae of continental North America. Stanford Uni-
versity Press, Stanford, California, USA.

Sahli, H. F., and J. K. Conner. 2007. Visitation, effectiveness, and efficiency of 
15 genera of visitors to wild radish, Raphanus raphanistrum (Brassicaceae). 
American Journal of Botany 94: 203–209.

Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. 
Baughman, et al. 2001. The population biology of invasive species. Annual 
Reviews of Ecology, Evolution & Systematics 32: 305–332.

Shoemaker, I. R. 2010. Tracking floral visitation using DNA barcodes. M.Sc. the-
sis, Columbus State University, Columbus, Georgia, USA.

Silvertown, J. 2009. A new dawn for citizen science. Trends in Ecology and Evo-
lution 24: 467–471.

Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. 
Science 236: 787–792.

Sowig, P. 1989. Effects of flowering plant’s patch size on species composition 
of pollinator communities, foraging strategies, and resource partitioning in 
bumblebees (Hymenoptera: Apidae). Oecologia 78: 550–558.

Takayama, S., H. Shiba, M. Iwano, H. Shimosato, F. S. Che, N. Kai, M. Wata-
nabe, et al. 2000. The pollen determinant of self- incompatibility in Bras-
sica campestris. Proceedings of the National Academy of Sciences, USA 97: 
1920–1925.

Turner, N. J., M. B. Ignace, and R. Ignace. 2000. Traditional ecological knowl-
edge and wisdom of Aboriginal peoples in British Columbia. Ecological Ap-
plications 10: 1275–1287.

Van de Water, P. K., L. S. Watrud, E. H. Lee, C. Burdick, and G. A. King. 2007. 
Long- distance GM pollen movement of creeping bentgrass using modeled 
wind trajectory analysis. Ecological Applications 17: 1244–1256.

Van Rossum, F., I. Stiers, A. Van Geert, L. Triest, and O. J. Hardy. 2011. Fluores-
cent dye particles as pollen analogues for measuring pollen dispersal in an 
insect- pollinated forest herb. Oecologia 165: 663–674.

Waser, N. M. 1988. Comparative pollen and dye transfer by pollinators of Del-
phinium nelsonii. Functional Ecology 2: 41–48.

Willerslev, E., A. J. Hansen, J. Binladen, T. B. Brand, M. T. Gilbert, B. Shapiro, M. 
Bunce, et al. 2003. Diverse plant and animal genetic records from Holocene 
and Pleistocene sediments. Science 300: 791–795.

Williams, P. H., and C. B. Hill. 1986. Rapid- cycling populations of Brassica. Sci-
ence 232: 1385–1389.

Willson, M. F., and B. J. Rathcke. 1974. Adaptive design of the floral display in 
Asclepias syriaca L. American Midland Naturalist 92: 47–57.

Wintle, B. A., R. P. Kavanagh, M. A. McCarthy, and M. A. Burgman. 2005. Esti-
mating and dealing with detectability in occupancy surveys for forest owls 
and arboreal marsupials. Journal of Wildlife Management 69: 905–917.

Woodward, G., B. Ebenman, M. Emmerson, J. M. Montoya, J. M. Olesen, A. 
Valido, and P. H. Warren. 2005. Body size in ecological networks. Trends in 
Ecology & Evolution 20: 402–409.

Zamora, D. L., and D. C. Thill. 1999. Early detection and eradication of new 
weed infestations. In R. L. Sheley and J. K. Petroff [eds.], Biology and man-
agement of noxious rangeland weeds, p. 73–84. Oregon State University 
Press, Corvallis, Oregon, USA.

https://cran.r-project.org/web/packages/automap/index.html
https://cran.r-project.org/web/packages/automap/index.html


Applications in Plant Sciences 2018 6(1): e1020 Campbell et al.—Pollen sleuthing for terrestrial plant surveys • 12 of 12

http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2018 Campbell et al.

APPENDIX 1. Geographic coordinates for the locations of the pan traps used in the study.

Trap no. Latitude Longitude

Trap 1 −44.03388889°N −79.53805556°W
Trap 2 −44.03333333°N −79.53666667°W
Trap 3 −44.03305556°N −79.53972222°W
Trap 4 −44.03277778°N −79.53527778°W
Trap 5 −44.03250000°N −79.53916667°W
Trap 6 −44.03250000°N −79.53833333°W
Trap 7 −44.03250000°N −79.53444444°W
Trap 8 −44.03222222°N −79.53777778°W
Trap 9 −44.03222222°N −79.53611111°W
Trap 10 −44.03166667°N −79.53361111°W
Trap 11 −44.03138889°N −79.54000000°W
Trap 12 −44.03138889°N −79.53500000°W
Trap 13 −44.03111111°N −79.53833333°W
Trap 14 −44.03000000°N −79.53361111°W
Trap 15 −44.02944444°N −79.54000000°W
Trap 16 −44.02944444°N −79.53694444°W
Trap 17 −44.02916667°N −79.54222222°W
Trap 18 −44.02916667°N −79.53777778°W
Trap 19 −44.02888889°N −79.54111111°W
Trap 20 −44.02861111°N −79.53611111°W
Trap 21 −44.02861111°N −79.53500000°W
Trap 22 −44.02833333°N −79.54888889°W
Trap 23 −44.02805556°N −79.54055556°W
Trap 24 −44.02805556°N −79.53888889°W
Trap 25 −44.02777778°N −79.53666667°W
Trap 26 −44.02750000°N −79.53750000°W
Trap 27 −44.02722222°N −79.54305556°W
Trap 28 −44.02638889°N −79.54555556°W
Trap 29 −44.02638889°N −79.54416667°W
Trap 30 −44.02638889°N −79.54333333°W


