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Neonatal lethality and recycling defect
of transferrin receptor in mice with
Syntaxin12/13 disruption

Dear Editor,
Iron deficiency, documented by World Health Organiza-

tion (WHO), is the most common nutritional deficiency, and
accounts for ∼50% of anemia globally. Iron-deficiency ane-
mia is notably and frequently associated with chronic heart
failure, chronic kidney disease, cancer and inflammatory
bowel disease. According to WHO Global Health Estimates
2014 Summary, iron-deficiency anemia is a major and
prevalent public health problem worldwide, which contributes
to 0.2% mortality, especially maternal and child mortality.

In adults, the human body stores approximately 3–5 g of
iron. Iron in the circulation and in extravascular fluid remains
nonreactive by binding with transferrin, which delivers ferric
ion (Fe3+) to transferrin receptors (TFR) located on cell
membranes. One TFR together with four transferrin-bound
Fe3+ (two per transferrin) is internalized into endocytotic
vesicle, where Fe3+ is released from transferrin at low pH
(∼5.6–6.2) and reduced by metalloreductase STEAP (six
transmembrane epithelial antigen of the prostate) proteins to
ferrous ion (Fe2+). Fe2+ can be transported out of endo-
somes via the divalent metal transporter 1 (DMT1) and the
iron-depleted endosomes recycle TFR back to plasma
membrane (Andrews, 2008). Cytosol Fe2+ is tightly con-
stricted due to the deleterious effects of superoxide forma-
tion, which can further lead to Haber–Weiss–Fenton reaction
generating the most toxic oxidant, hydroxyl radical (∙OH), in
cells (Aisen, 2001). Thus, cytosol Fe2+ is likely protected in
endosomal compartments. There are increasing evidences
to support the roles of vesicular trafficking in intracellular iron
homeostasis, such as exocyst complex component 6
(EXOC6, also known as Sec15l1) for the recycling of
transferrin and the release of TFR exocytic vesicles (Lim
et al., 2005), and sorting nexin 3 (SNX3) for the recycling of
TFR and iron assimilation (Chen et al., 2013). Beyond these
animal models, evidences from confocal-living imaging of
reticulocytes show that TFR-containing vesicles colocalize
transiently with mitochondria and endosomal iron is released
into mitochondrial compartments (Sheftel et al., 2007).
However, the molecules mediating the fusion events of TFR
recycling still remain to be identified.

Soluble NSF attachment protein receptor (SNARE) pro-
teins are proposed to be responsible for intracellular mem-
brane specific fusion (Südhof and Rothman, 2009). In the
present study, we identify that a Qa-SNARE, Syntaxin 12/13
(STX-T, T stands for twelve and thirteen), involves in intra-
cellular metal homeostasis. We demonstrate that STX-T
plays an essential role in the fast recycling of transferrin
receptor and STX-T-deficiency mice are lethal with iron
deficiency anemia.

Vesicle fusion is a key step of intracellular endosomes
trafficking, and the syntaxins are known as essential com-
ponents of SNARE complexs for regulated exocytosis,
especially synaptic exocytosis (Südhof and Rothman, 2009).
In human genome, there are 11 genes coding Qa-SNAREs
(Fig. S1) out of 35 genes coding SNAREs (Bock et al.,
2001). Among these Qa-SNAREs, syntaxin-1, syntaxin-2
and syntaxin-4 reside predominantly at plasma membrane,
while syntaxin-5 and STX-T locate in the Golgi apparatus
(Hong, 2005) and endosomes (Tang et al., 1998), respec-
tively. It is well known that syntaxin-1 is important for
synaptic vesicle exocytosis (Südhof and Rothman, 2009).
On the other hand, syntaxin-2 has inhibitory role in insulin
granule exocytosis (Zhu et al., 2017). However, the function
of STX-T remains unknown.

To study the physiologic function of STX-T, we have
silenced the expression of STX-T by inserting GFP gene
with stop codon at the site 10 bp before the ATG start codon
of Stx-t gene (Fig. S2). Heterozygotes (Stx-t+/−) and wild-
type mice are indistinguishable, but STX-T-deficiency mice
show smaller body size (Fig. 1A) and dramatically decreased
body weights compared with the weights of wild-type mice at
both embryonic days (E) 18.5 and postnatal day (P) 0
(Fig. 1B). Western blot analysis with the antibody against
STX-T confirms the silence of STX-T expression in
homozygous (Stx-t−/−) mice (Fig. 1C). None of STX-T-defi-
ciency mice can survive beyond postnatal 12 hours
(Fig. 1D).

We have observed that Stx-t−/− homozygous mice are
relatively pale. Consequently, we examine the hematological
indices of wild-types, heterozygotes (Stx-t+/−) and homozy-
gous (Stx-t−/−) mice. STX-T-deficiency mice show fewer red
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blood cells in blood smear tests (Fig. 1E and 1F), which is
further confirmed by whole blood cell analysis (Fig. 1G).
Heterozygotes (Stx-t+/−) have normal hematological indices
as wild-types (Fig. 1G).

Besides fewer red cells, STX-T-deficiency mice also show
that hematocrit and hemoglobin values are dramatically
decreased (Fig. 1G), while hemoglobin (in g/L) is decreased
in STX-T-deficiency mice by 18% (86.33 ± 11.64) compared
with wild type (105.45 ± 11.64). The results demonstrate that
STX-T-deficiency mice suffer from iron deficiency anemia.

STX-T has been reported to be colocalized with TFR in
endosomes (Prekeris et al., 1998) (Prekeris et al., 1999), but
the role of STX-T in endosomes dynamics is unknown. Thus,
to better study the role of STX-T in vesicle dynamics, mouse
embryonic fibroblasts (MEFs) from E17.5 Stx-t−/− and wild-
type embryos are cultured. Localization of STX-T is exam-
ined in MEFs (Fig. 2A), H9C2 cell line and primary cultured
hippocampal neuron (Fig. S3A and S3B), and found to be
highly colocalized with TFR in these cells (Fig. S3C). The
expressions and absences of STX-T are confirmed by
immounblotting in wild-type and Stx-t−/− MEFs (Fig. S 3D).

To investigate the effects of STX-T on TFR recycling,
MEFs labeled with Alexa-546-conjugated transferrin (TF-
546) are live chasing with unlabeled TF (Fig. 2B). The fluo-
rescence intensity of TF-546 in MEFs of Stx-t−/− mice only

show mild decay, while the intensity of TF-546 in wild-type
MEFs decrease about 15% in a couple of minutes (Fig. 2B).
We also did long time chasing, and found that STX-T-defi-
ciency affect fast recycling of TFR but did not affect the long
time recycling of TFR (Fig. 2C), which is very similar to the
role of sorting nexin 3 (SNX3) in the recycling of TFR (Chen
et al., 2013).

Furthermore, we have evaluated the effect of STX-T
deficiency on TF absorption by checking the colocalization
rate (Fig. 2D–G) of TF-546 and early endosome antigen 1
(EEA1) (Fig. 2D and 2E). Consequently, we have found that
there are no differences about the colocalization rate and
intensity of internalized TF-546 between Stx-t−/− and wild-
type MEFs (Fig. 2F and 2G). Our findings demonstrate that
knockout of Stx-t does not affect TF-containing early endo-
somes process but impairs fast TFR recycling (Fig. 2B),
which may lead to iron deficiency in Stx-t−/− mice. STX-T is
not necessary for the slow recycling of TFR (Fig. 2C), which
could explain that STX-T-deficiency has normal absorption
of TF-546. In addition, the results are consistent with the role
of Qa-SNARE in fusion rather than in endocytosis.

Compared with the postnatal lethality of STX-T-deficiency
mice, TFR-deficiency mice are embryonic lethal before E12.5
with anemia (Levy et al., 1999). BesidesStx-t and Tfr knockout
mouse, the majority of knockout-mouse models for iron
homeostasisshowhereditaryhemochromatosisor anemia.We
have demonstrated that STX-T-deficiencymice have fewer red
blood cells (Fig. 1E–G) and lower hemoglobin level (∼18%
decrease, Fig. 1G), which are markers of iron deficiency (Lor-
enz et al., 2015). The findings indicate that STX-T is necessary
for erythropoiesis, which is in line with erythroid precursors are
strictly dependent upon TFR-mediated endocytosis of trans-
ferrin (Levy et al., 1999). However, unlike Tfr+/− mice showing
an increase in thenumberof redcells (Levyetal., 1999),Stx-t+/−

mice have normal hematological indices aswild-type (Fig. 1G).
In addition, unlike DMT1 which is essential for intestinal iron
absorption after birth (Gunshin et al., 2005), neonatal lethality of
STX-Tdeficiencymice suggests that STX-Thas essential roles
in iron homeostasis during embryonic development.

Neonatal lethality and iron deficiency suggest that loss of
STX-T function can be added to the growing list of rare
genetic defects causing iron-deficiency anemia (Andrews,
2008). The majority of genomic variations are attributable to
single nucleotide polymorphisms (SNPs, particularly those
located in protein-coding DNA regions, or cSNPs). Conse-
quently, we have analyzed all known cSNPs and other small-
scale variations (such as indels and multinucleotide poly-
morphisms) for the coding region of human Stx-t gene. A
total of 90 non-synonymous cSNPs have previously been
identified, some of which might affect the STX-T function
(Fig. S4). More importantly, at least five frameshift and stop-
gained variants are also reported, which could lead to a
complete loss of STX-T function (Fig. S4). Thus, the SNP
analysis of Stx-t gene may provide a valuable option for
prenatal gene diagnosis in preventing and decreasing birth
defects.

Figure 1. Mice lacking Stx-t are lethal in postnatal 12 h.

(A) P0 littermates. Representative Stx-t−/− mouse (Homo) on

left, and wild-type mouse (WT) on right. Stx-t−/− pup exhibits

small size and stiff body compared to Stx-t+/+ littermate.

(B) Scatterplots with boxplots show that Stx-t−/− pups (Homo)

have decreased weights (in g, mean ± s.d., t test) compared to

wild-types (WT) or heterozygotes (Heter) both at E18.5 (Homo,

n = 16, 0.95 ± 0.08; Heter, n = 27, 1.16 ± 0.07, P = 4.3 × 10−10;

WT, n = 13, 1.17 ± 0.12, P = 5.7 × 10−6) and P0 (Homo, n = 17,

0.99 ± 0.14; Heter, n = 32, 1.35 ± 0.12, P = 5.3 × 10−14; WT, n =

22, 1.36 ± 0.15, P = 1.4 × 10−9). (C) Immunoblot analysis of

STX-T. Protein samples prepared from P0 mice are blotted with

antibodies against STX-T (top panel) or loading control tubulin

(bottom panel). (D) The genotypic distribution of heterozygous

offspring. Data are collected at embryonic and postnatal stages.

Note that the genotypic distribution of wild-type (WT), heterozy-

gous (Heter) and homozygous (Homo) littermates are analyzed

and comparable to the expected numbers based on 1:2:1 ratio

of Mendelian inheritance at embryonic (P = 0.19, χ2) and P0

stages (P = 2.1 × 10−12, χ2). Moreover, none of Stx-t−/−

homozygous pups (*, n = 43) can survive beyond postnatal 12

h. (E and F) Blood smears of wild-types (WT) and Stx-t−/− mice,

respectively. The scale bar represents 20 μm. (G) Haematolog-

ical indices and statistic results of wild-types (WT), Stx-t+/−

heterozygotes (Heter) and Stx-t−/− homozygous mice (Homo).

Abbreviations: RBC, red blood cell; HGB, hemoglobin; Hct,

hematocrit; MCV, mean corpuscular volume; MCH, mean

corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin

concentration. Data represent mean ± SD.
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b Figure 2. Fast recycling deficiency of transferrin receptor

in Stx-t−/− MEF. (A) Colocalization of STX-T (red, RFP tagged)

with TFR (green, GFP tagged) in double transfected MEFs cell.

The scale bar represents 5 μm. (B) Live chasing of TF-Alexa

546 in MEFs of wild-types (WT, black, n = 40) and homozygotes

(Homo, red, n = 43) shows deficiency of transferrin receptor

recycling in Stx-t−/− MEF. Error bars represent mean ± SEM.

(C) Transferrin receptor recycling in Stx-t−/− MEF (KO, n = 15) is

normal compared to wild-types (WT, n = 13) for long time (60

min) chasing. (D and E) show EEA and TF-Alexa 546 in wild-

type MEF (WT) and Stx-t−/− MEF (Homo), respectively. The

scale bars represent 5 μm. (F and G) Show that Alexa

546-labelled transferrin (TF, red) in Stx-t−/− MEF (KO, n = 18)

has normal colocalization coefficience (F, P = 0.44, t test, WT,

n = 17) with early endosome marker (EEA, green), and

comparable intensity distribution of intracellular TF-Alexa 546

(G, P = 0.50, t test, KO, n = 15) with wild-types (WT, n = 15).
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