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Objective. The present investigation is aimed at identifying key immune-related genes linked with SLE and their roles using
integrative analysis of publically available gene expression datasets. Methods. Four gene expression datasets pertaining to SLE, 2
from whole blood and 2 experimental PMBC, were sourced from GEO. Shared differentially expressed genes (DEG) were
determined as SLE-related genes. Immune cell infiltration analysis was performed using CIBERSORT, and case samples were
subjected to k-means cluster analysis using high-abundance immune cells. Key immune-related SLE genes were identified
using correlation analysis with high-abundance immune cells and subjected to functional enrichment analysis for enriched
Gene Ontology Biological Processes and KEGG pathways. A PPI network of genes interacting with the key immune-related
SLE genes was constructed. LASSO regression analysis was performed to identify the most significant key immune-related SLE
genes, and correlation with clinicopathological features was examined. Results. 309 SLE-related genes were identified and found
functionally enriched in several pathways related to regulation of viral defenses and T cell functions. k-means cluster analysis
identified 2 sample clusters which significantly differed in monocytes, dendritic cell resting, and neutrophil abundance. 65
immune-related SLE genes were identified, functionally enriched in immune response-related signaling, antigen receptor-
mediated signaling, and T cell receptor signaling, along with Th17, Th1, and Th2 cell differentiation, IL-17, NF-kappa B, and
VEGF signaling pathways. LASSO regression identified 9 key immune-related genes: DUSP7, DYSF, KCNA3, P2RY10,
S100A12, SLC38A1, TLR2, TSR2, and TXN. Imputed neutrophil percentage was consistent with their expression pattern,
whereas anti-Ro showed the inverse pattern as gene expression. Conclusions. Comprehensive bioinformatics analyses revealed 9
key immune-related genes and their associated functions highly pertinent to SLE pathogenesis, subtypes, and identified
valuable candidates for experimental research.
1. Introduction

Systemic lupus erythematosus (SLE) is a chronic autoim-
mune disease, which predominantly affects women in child-
bearing age, with a wide range of clinical manifestations and
incidence ranging from 1.5 to 11 per 100,000 individuals [1].
SLE remains a leading cause mortality and morbidity in
young women [2, 3]. Albeit the 10-year survival rates of
SLE have improved in the recent decades, mortality rates
in SLE affected individuals have remained high. Several fac-
tors are recognized as associated with the variation in the
incidence, course, and disease burden of SLE, including
age, gender, geographic, and ethnicity variation [1–3]. Aber-
rant innate and adaptive autoimmune responses in SLE are
driven by multiple immune cell types, inflammatory mediators,
and cytokines, whereby tissue and organ injury occurs via auto-
antibodies and immune complex formation [4, 5]. Current
treatment measures including the mainstay corticosteroids,
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Table 1: Sample information in SLE dataset.

GSE112087 GSE72509 GSE121239 GSE50772

Series type
High-throughput sequencing

(count)
High-throughput sequencing

(RPKM)
Array Array

Case 62 99 292 61

Control 58 18 20 20

Total 120 117 312 81

Platform GPL16791 GPL16791 GPL13158 GPL570

Tissue Whole blood Whole blood PBMC PBMC

Key clinical features from the
dataset

(1) Age
(2) Gender

(1) Anti-Ro
(2) Ism

(1) Imputed neutrophil
percentage

Unknown
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antimalarial drugs, and immunosuppressant drugs [6] are lim-
ited in their efficacy in improving patients’ quality of life, func-
tioning, and arresting disease progression [7, 8]. As immune
perturbations are the core of SLE pathology, the development
of novel therapeutics and genetic and epigenetic biomarkers
demands a detailed understanding of immune-related molecu-
lar regulatory processes that underlie SLE.

Large-scale analysis of genome wide association and gene
expression data revealed SLE susceptibility genes display
upregulation of transcription factors that leads to dysregulated
gene expression networks in multiple cells involved in innate
and adaptive immune responses [9]. Therefore, the recogni-
tion of deregulated gene expression patterns in immune cell
types in SLE assumes crucial research significance. Accruing
evidence has highlighted the role of aberrant gene expression
in B and T lymphocytes and innate immune cells including
platelets and neutrophils in SLE pathology [10, 11]. Emerging
large-scale genetic and gene expression datasets have high-
lighted significant molecular heterogeneity in SLE [12]. Gene
subsets associated with disease activity, progression, and sub-
type have been documented [13–15]. The characterization of
immune subtypes of SLE can drive precision medicine
approaches to improve disease diagnostics and therapy [15].
Bioinformatics immune infiltration analysis estimates
immune cell abundances based on gene expression data and
is a valuable tool to understand immune-cell population-
related gene expression patterns in various diseases including
autoimmune disease and cancer [16, 17].

Presently, immune cell infiltration patterns and associated
deregulated gene expression networks in various immune cell
subsets in SLE are not well understood [15]. Immune infiltra-
tion analysis can also enable identification of immune-related
molecular subtypes in disease [15]. Several earlier bioinfor-
matics studies of SLE gene expression data [18–21] have high-
lighted immune function associated genes among key
candidates. An earlier bioinformatics study has identified the
role of immune cell infiltration in SLE [22]. Therefore, the
present investigation is aimed at utilizing comprehensive bio-
informatics approaches to predict immune-related genes and
subtypes in SLE based on immune infiltration analysis.

2. Material and Method

2.1. Datasets. Datasets for Systemic Lupus Erythematosus
(SLE) were downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/). Four datasets (GSE112087,
GSE72509, GSE121239, and GSE50772) were obtained, of
which GSE112087 and GSE72509 were from whole blood
(WB) and the experimental type was obtained using high-
throughput sequencing. GSE121239 and GSE50772 were
from PBMC, and the experimental type belonged to array.
Among them, the SLE disease samples were considered as
cases, and the normal samples as control. The details of
the 4 datasets are shown in Table 1.

2.2. Data Preprocessing. The gene expression value of
GSE112087 was in Count, while the gene expression value
of GSE72509 was in RPKM (Reads Per Kilobase of exon
model per Million mapped reads). In order to unify the
values, we converted the count of GSE112087 to RPKM with
the following formula:

RPKM = Exonmapped reads ∗ 109

Totalmapped reads ∗ exon length
: ð1Þ

First, we downloaded the gene annotation file from
GENCODE (http://ftp.ebi.ac.uk/pub/databases/gencode/
Gencode_human/release_22/gencode.v22.annotation.gff3
.gz/). We converted the expression value counts of
GSE112087 gene into RPKM according to the length of the
exon in the annotation file and formula (1). Then, we con-
verted the Ensemble ID in the dataset to Gene Symbol
according to the annotation file. When multiple ENSG IDs
were mapped on one gene, the mean expression values of
ENSG ID in samples were taken as the gene expression
value. For GSE72509, we selected those genes whose TYPE
was protein_coding. GSE112087 and GSE72509 were
merged based on the intersection genes, and the expression
values were converted to log 2 (log2) after the datasets were
merged. Next, we used the ComBat method in the sva pack-
age of R project to process the log2-transformed data to
eliminate the batch effect generated after data merging. For
the whole blood data of SLE, we labeled the dataset obtained
after removing batch effects as SLE_WB.

For PBMC data (GSE121239 and GSE5077), we con-
verted probe ID to Gene Symbols according to the respective
platform information of the datasets. When multiple probe
IDs were mapped to one gene, the mean expression value
of the probe ID in the samples was taken as the gene expres-
sion value. Then, we merged the two datasets of PBMC
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Figure 1: Continued.
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Figure 1: PCA analysis results of batches before and after rectification. (a, b) SLE_WB; (c, d) SLE_PBMC.
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Table 2: Statistics of DEG for SLE.

SLE_WB SLE_PBMC

Datasets GSE112087, GSE72509 GSE121239, GSE50772

Adjusted p value p < 0:01 p < 0:05

|log2(FC)| ∣ log 2 FCð Þ∣ > 0:3 ∣ log 2 FCð Þ∣ > 0
DEG up 642 366

DEG down 997 1401

Total DEG 1459 1767
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Figure 2: Volcano plot of differentially expressed genes in SLE_WB and SLE_PBMC. (a) Volcano plot of differentially expressed genes in
SLE_WB; (b) volcano plot of differentially expressed genes in SLE_PBMC.
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based on the common genes and used the ComBat method
to eliminate the data batch effect and finally marked the
merged data as SLE_PBMC.

In SLE_WB and SLE_PBMC, if the number of samples
with an expression value of 0 for a particular gene exceeded
50% of the total number of samples, we removed that gene
from the dataset.

2.3. Differentially Expressed Gene (DEG) Analysis. We per-
formed differential expression analysis on both the SLE_
WB and SLE_PBMC datasets using the “limma” package
in R. For SLE_WB, we selected genes with adjusted p value
< 0.01, ∣ log 2ðFCÞ∣ ≥ 0:3 as DEG. For SLE_PBMC, genes
with adjusted p value < 0.05, ∣ log 2ðFCÞ∣ ≥ 0 were selected
as DEG.
2.4. Predicting SLE-Related Genes. We extracted the com-
mon DEG for SLE_WB and SLE_PBMC data, and these
common genes were predicted as SLE-related genes. Genes
upregulated in both SLE_WB and SLE_PBMC were pre-
dicted as SLE-related upregulated genes, and genes down-
regulated in both SLE_WB and SLE_PBMC were predicted
as SLE-related downregulated genes. We used the “pheat-
map” package in R to draw heatmaps for observing differ-
ences in the expression levels of SLE-related between
sample types.

2.5. Enrichment Analysis for the SLE-Related Gene. We used
the clusterProfiler package in R project to perform GO Bio-
logical process and KEGG pathway analysis on the SLE-
related genes.
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Figure 5: Continued.
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Figure 5: Immune cell heatmap and correlation analysis results. (a) Abundance of immune cells in SLE_WB and SLE_PBMC; (b)
correlation of immune cells in SLE_WB; (c) correlation of immune cells in SLE_PBMC.
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2.6. CIBERSORT Immune Cell Infiltration Analysis. CIBER-
SORT (https://cibersortx.stanford.edu/) uses imputed gene
expression profiles and provides an estimation of the abun-
dances of member cell types in a mixed cell population,
using gene expression data. CIBERSORT provided a gene
expression signature set LM22 for 22 immune cell subtypes
(Table S1). We extracted the expression values of case sam-
ples of SLE-related genes in SLE_WB and SLE_PBMC each
and then combined with the immune cell gene expression
feature set LM22 to perform CIBERSORT immune infiltra-
tion analysis. Cell abundance scores for the 22 immune cell
subtypes in each sample were thus obtained.

We selected samples with p value < 0.05 and correlation
coefficient > 0:75 as the significantly and strongly correlated
samples of the immune cell feature set matrix and SLE
expression matrix. A heatmap was constructed to check
the fractional distribution of these 22 immune cells in signif-
icant samples, and Pearson’s correlation analysis was applied
to screen the immune cells with high abundance scores.
2.7. Clustering Samples Using High-Abundance Immune
Cells. We performed k-means cluster analysis on case sam-
ples of SLE_WB and SLE_PBMC based on the high-
abundance immune cells. First, we used the fviz_nbclust
function of the “factoextra” package in R to determine the
optimal number of clusters. The fviz_nbclust function
includes three methods: average silhouette width, gap statis-
tics, and elbow method. We combined the results of the
three methods to determine the optimal number of clusters,
followed by k-means cluster analysis on SLE_WB and SLE_
PBMC. Wilcoxon’s test was performed to confirm the clus-
tering effect conducted on immune cell data, based on sam-
ple clusters.

https://cibersortx.stanford.edu/
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Figure 6: The three methods of average silhouette width, gap statistics and elbow method determine the optimal number of clusters for
SLE_WB and SLE_PBMC. (a–c) Determination of the optimal number of clusters for SLE_WB by three methods.
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2.8. Immune-Related SLE Gene Screening. For SLE_WB and
SLE_PBMC, firstly we obtained the abundance values of
high-abundance immune cells and the expression values of
SLE-related genes in the case samples. Pearson’s correlation
test was applied to test the correlation between immune cells
and SLE-related genes. Absolute values of all correlation sta-
tistics were used to obtain the third quartile (Q3) as the
threshold and relationship pairs with ∣correlation∣ ≥Q3 were
considered significant relationship pairs to determine SLE-
related genes that were highly related to immune cells. These
genes were marked as immune-related SLE genes, and the
expression values in case samples were extracted. We then
analyzed the differences of immune-related SLE genes in dif-
ferent clusters using ANOVA analysis. Genes with p value <
0.01 were screened as significantly different genes.

Using the above methods, we obtained differentially
expressed immune-related SLE genes in the clusters of
SLE_WB and SLE_PBMC cases. The intersection of these
DEGs was obtained. Such genes displayed a significant rela-
tionship with immune cells in both SLE_WB and SLE_
PBMC, and thus, we marked these as key immune-related
SLE genes.

We used R’s clusterProfiler package to analyze GO Bio-
logical process and KEGG pathways enriched in the key
immune-related SLE genes, and selected functions with p
value < 0.05 as significant functions. Protein-protein interac-
tion (PPI) relationship pairs were obtained from the HPRD
database (http://www.hprd.org/) and the BIOGRID database
(http://thebiogrid.org/). PPI data obtained from the two
databases were combined, and the genes that interacting
with the key immune-related SLE gene were identified.
Cytoscape software was used to construct the PPI network
related to key immune-related SLE genes, and the network
topology was analyzed.

2.9. LASSO Regression Analysis for Key Immune-Related SLE
Genes. LASSO (Least absolute shrinkage and selection oper-
ator) Logistic Regression was applied to further screen key

http://www.hprd.org/
http://thebiogrid.org/
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Figure 7: k-means algorithm analysis of (a) SLE_WB and (b) SLE_PBMC results.

13Disease Markers
immune-related SLE genes. Lasso regression is a machine
learning technique that identifies variables and a model that
produces the least prediction error [23].

Firstly, the gene expression values of key immune-
related SLE genes in case samples in SLE_WB and SLE_
PBMC were extracted, and then based on the respective
k-means cluster analysis results, LASSO was used to estab-
lish model feature screening. A refined LASSO model was
obtained by constructing a penalty function, so as to facil-
itate the selection of key genes. The intersection of the
characteristic genes obtained from SLE_WB and SLE_
PBMC was obtained and was marked as significant SLE-
related genes. The extracted gene expression value of these
significant SLE-related genes in SLE_WB and SLE_PBMC
was extracted, and boxplots were constructed to view the
distribution of expression values of these genes. Wilcox-
on’s test was performed to analyze the differences in sig-
nificant SLE-related genes in the different clusters in
SLE_WB and SLE_PBMC (case vs. control, cluster1 vs.
cluster2).

2.10. Relationship between Clinicopathological
Characteristics and Significant SLE-Related Genes. The path-
ological characteristics of case samples in the dataset were
obtained, and expression values of significant SLE-related
genes in these samples correlating with pathological charac-
teristics were obtained using Pearson’s correlation analysis,
in order to analyze the relationship between significant
SLE-related genes and clinicopathological features.
3. Results

3.1. Differential Expression Gene. After obtaining the SLE_
WB and SLE_PBMC datasets, PCA analysis was per-
formed on the datasets before and after eliminating the
batch effect, and a scatter plot depicted the analysis results
(Figure 1).

As evident in Figure 1, a notable difference existed
between the datasets before eliminating the batch effect,
which was significantly reduced after eliminating the batch
effect.

For SLE_WB genes with adjusted p value < 0.01, ∣ log 2
ðFCÞ∣ ≥ 0:3 indicated upregulated genes, and log 2ðFCÞ<−
0:3 indicated downregulated genes. For SLE_PBMC, genes
with adjusted p value < 0.05, and ∣ log 2ðFCÞ∣ ≥ 0 indicated
DEGs, where log 2ðFCÞ > 0 indicated upregulated genes,
and log 2ðFCÞ < 0 indicated downregulated gene. The statis-
tics for differential genes are shown in Table 2, and a volcano
plot depicted the distribution of differential genes in the two
datasets (Figure 2).

3.2. Predicting SLE-Related Genes. 1459 DEGs in SLE_WB
and 1767 DEGs in SLE_PBMC were identified, with 316
intersecting genes (Figure 3(a)). Among the 316 intersect-
ing genes, 309 genes had similar expression trends in SLE_
WB and SLE_PBMC, including 112 common upregulated
genes and 197 common downregulated genes. 309 genes
were identified as the SLE-related genes. The expression
values of SLE-related genes in SLE_WB and SLE_PBMC
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Figure 8: Differences of 22 immune cells in two clusters of (a) SLE_WB and (b) SLE_PBMC. nsp > 0:05, ∗p ≤ 0:05, ∗∗p ≤ 0:01, ∗∗∗p ≤
0:001,and∗∗∗∗p ≤ 0:0001.
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Figure 9: Correlation analysis of high abundance immune cells and SLE-related genes in (a) SLE_WB and (b) SLE_PBMC.
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were displayed using a heatmap (Figures 3(b) and 3(c)). It
can be seen from Figure 3 that the expression levels for
the case cluster and the control cluster were significantly
different.

GO biological process and KEGG pathway analysis for
these 309 SLE-related genes were performed using cluster-
Profiler, where p value <0 .05 indicated a significant path-
way. The top 25 pathways are depicted in Figure 4. From
the results, SLE-related genes were enriched in biological
processes including defense response to virus, defense
response to symbol, regulation of viral process, and nega-
tive regulation of viral genome replication (Figure 4(a)). In
addition, they regulated pathways including Epstein-Barr
virus infection, natural killer cell mediated cytotoxicity,
NOD-like receptor signaling pathway, NF-kappa B signal-
ing pathway, and T cell receptor signaling pathway
(Figure 4(b)).
3.3. CIBERSORT Immune Infiltration Analysis. From the
results of SLE_WB and SLE_PBMC immune infiltration,
we selected samples with p value < 0.05 and correlation >
0:75 as significantly correlated samples. 155 SLE_WB dis-
ease samples and 337 SLE_PBMC disease samples were
obtained, and the abundance scores of these samples in
immune cells were represented (Figure 5(a)). Pearson’s cor-
relation analysis on 22 immune cells using the “corrplot”
package was used to display the correlation between these
immune cells as seen in Figures 5(b) and 5(c).

As seen in Figures 5, 5 immune cell types (monocytes,
naive B cells, dendritic cells resting, neutrophils, and T cells
CD8) were abundant in SLE_WB and SLE_PBMC and were
highly correlated with other cells.

3.4. Clustering Samples Using High-Abundance Immune
Cells. We extracted the respective abundances of monocytes,
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Figure 10: Continued.
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Figure 10: Functional enrichment analysis results of 65 immune-related SLE genes. (a) Biological process significantly enriched by immune-
related SLE genes; (b) KEGG pathway significantly enriched by immune-related SLE genes; (c) the PPI network of immune-related SLE
genes.
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naive B cells, dendritic cells resting, neutrophils, and T cells
CD8 in SLE_WB and SLE_PBMC and then used average sil-
houette width, gap statistics, and elbow method to analyze
the optimal number of clusters (Figures 6(a)–6(f)).

The optimal number of clusters for the three methods of
average silhouette width, gap statistics and elbow method in
SLE_WB, showed 2 clusters, 1 cluster and 2 clusters, respec-
tively. Using comprehensive comparison, for SLE_WB, we
chose the number of clusters as 2 clusters. In SLE_PBMC,
the optimal number of clusters for the three methods of
average silhouette width, gap statistics and elbow method
were 2 clusters, 4 clusters, and 2 clusters, respectively. Using
comprehensive comparison, for SLE_PBMC, we chose the
number of clusters to be 2 clusters. After determining the
number of clusters, we used k-means to analyze the data.
A cluster plot was drawn to display the analysis results
(Figures 7(a) and 7(b)).

Wilcoxon’s test to examine the differences of 22 types of
immune cells in different clusters is depicted in Figures 8(a)
and 8(b).

From the results, monocytes, dendritic cells resting, and
neutrophils were significantly different in the two clusters of
SLE_WB and SLE_PBMC.

3.5. Immune-Related SLE Gene Screening. The outcomes of
Pearson’s correlation analysis of 5 highly abundant immune
cells and 309 SLE-related genes are depicted in Figures 9(a)
and 9(b). In addition, we extracted genes with higher corre-
lation with immune cells based on correlation value.
∣CorrelationðQ3Þ∣ = 0:388 for immune cells and SLE-
related genes in SLE_WB and ∣CorrelationðQ3Þ∣ = 0:212 in
SLE_PBMC are evident in Figure 9. We extracted relation pairs
with correlation values greater than |Correlation(Q3)| in SLE_
WB and SLE_PBMC, as significant relation pairs. Using the
genes in the significantly related pairs of SLE_WB and SLE_
PBMC and then taking the intersection of the genes, we finally
obtained a total of 204 SLE-related genes. We then performed
ANOVA analysis based on expression values of 204 genes in
SLE_WB and SLE_PBMC with 2 clusters. Genes with p <
0:01 were considered as the significant DEGs, and the intersec-
tion of DEGs was obtained from SLE_WB and SLE_PBMC.
These intersecting genes were marked as immune-related SLE
genes, and 65 immune-related SLE genes were thus acquired.

GO biological process andKEGGpathway analysis on these
65 immune-related SLE genes results are depicted. We selected
features with a p value < 0.05 and displayed the top 25 pathways
in Figures 10(a) and 10(b). Immune-related SLE genes were
mainly involved in biological processes including immune
response-activating cell surface receptor signaling pathway,
immune response-regulating signaling pathway, antigen
receptor-mediated signaling pathway, and T cell receptor sig-
naling pathway; they also regulated Th17 cell differentiation,
Th1 and Th2 cell differentiation, IL-17 signaling pathway,
NF-kappa B signaling pathway, and VEGF signaling pathway.

In addition, we extracted the interacting proteins of 65
immune-related SLE genes from the public databases HPRD
and BIOGRID and obtained a total of 4976 PPI-related
pairs. A PPI network for immune-related SLE-related genes



Table 3: Network topology properties of 20 nodes with high degree.

Name
regulate_
array

regulate_
NGS

Degree
Average shortest

path length
Betweenness
centrality

Closeness
centrality

Clustering
coefficient

Topological
coefficient

HSP90AB1 Down Down 738 2.278473 0.353518 0.43889 5.92E-04 0.003079

FYN Down Down 376 2.383381 0.164518 0.419572 0.002965 0.004162

ILF3 Down Down 357 2.708694 0.139646 0.369182 5.35E-04 0.009469

HSPA9 Down Down 282 2.771575 0.089005 0.360806 7.07E-04 0.01536

SMARCA4 Down Down 242 2.823548 0.100178 0.354164 4.12E-04 0.017488

PLCG1 Down Down 227 2.743022 0.074354 0.364561 0.005731 0.009125

IL7R Down Down 199 2.567212 0.080946 0.389528 0.005025 0.00771

CD247 Down Down 196 2.516522 0.091615 0.397374 0.003611 0.006817

LCK Down Down 159 2.550529 0.045982 0.392075 0.010509 0.00904

PABPC4 Down Down 149 2.839269 0.039722 0.352203 0.001814 0.017293

SORT1 Up Up 134 2.923965 0.068109 0.342001 0 0.018145

TXN Up Up 132 2.853064 0.040495 0.3505 0.001619 0.017513

DDX24 Down Down 124 2.686558 0.047209 0.372224 0.004196 0.010678

ETS1 Down Down 115 2.923965 0.045398 0.342001 0 0.034622

S100A9 Up Up 100 2.939365 0.028612 0.34021 0 0.0476

PRNP Down Down 95 3.091434 0.041419 0.323474 0 0.026608

PTMA Down Down 94 2.875842 0.030904 0.347724 0.002288 0.018951

MEX3C Down Down 92 2.936157 0.027107 0.340581 0 0.039171

AHNAK Down Down 77 2.858839 0.018477 0.349792 0.007861 0.022708

PEBP1 Down Down 67 2.896696 0.017795 0.345221 0.002714 0.023306

18 Disease Markers
was constructed after deduplicating the relationship pair and
contained 3188 nodes and 4939 edges. Cytoscape was used
analyze the topological properties of the network and extract
nodes with higher degrees listed in Table 3.

For the PPI network, we hid nodes with lower degrees
and selected nodes with higher degrees to display
(Figure 10(c)).

3.6. LASSO Regression Analysis for Key Immune Related SLE
Gene. The expression values of 65 immune-related SLE genes
in case samples of SLE_WB and SLE_PBMC were extracted,
and LASSO model was built (Figures 11(a)–11(d)). Nin com-
mon feature genes (DUSP7, DYSF, KCNA3, P2RY10,
S100A12, SLC38A1, TLR2, TSR2, and TXN) between SLE_
WB and SLE_PBMC acting as key immune-related SLE genes
were identified.

3.7. Relationship between Clinicopathological Characteristics
and Significant SLE-Related Genes. Boxplots depicting the
distribution of expression values of these 9 key immune-
related SLE genes are shown (Figures 12(a)–12(d)). Wilcox-
on’s test using these gene expression values in the sample
groups was performed showing 9 genes were significantly
different in different groups.

In Table 1, we depict 6 clinicopathological features (age,
gender, anti-Ro, ISM, sledai, and imputed neutrophil per-
centage) in different datasets and organized these patholog-
ical feature files and extracted case samples. For each
pathological feature, we extracted the case samples’ 9 key
immune-related SLE gene expression levels and clinicopath-
ological features and analyzed the relationships between
them using Pearson’s correlation (Figure 13).

The results showed that the imputed neutrophil percent-
age was highly correlated with the 9 SLE-related genes and
consistent with the gene expression pattern. Relationships
between other pathological features and genes were evident
where anti-Ro is showed the inverse pattern with gene
regulation.
4. Discussion

The present study used integrative and comprehensive bio-
informatics approaches to identify the most significant
immune-related genes in SLE and further identified case
subsets based on immune-cell infiltration analysis. The main
findings revealed a 9-candidate gene signature (DUSP7,
DYSF, KCNA3, P2RY10, S100A12, SLC38A1, TLR2, TSR2,
and TXN), which discriminated both cases from controls
and identified immune cell based clusters. These genes’
involvement in immune-related functions was supported
by a previous literature.

DUSP (dual specificity phosphatase) genes have been
found to be involved in autoimmune disease and in T cell
activation [24, 25] in SLE. Dysferlin encoded by DYSF has
been typically implicated in myopathies and found to regu-
late cell adhesion in monocytes [26]. The gene KCNA3 is
associated with voltage gated Kv 1.3 potassium ion channels
and has been implicated in multiple sclerosis and autoim-
mune pancreatitis [27, 28] Functionally, KCNA3 has been
shown to regulate CD4 T memory cell function [29, 30]
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Figure 11: LASSO feature screening of 65 SLE-related genes. (a, b) LASSO analysis results of SLE_WB and SLE_PBMC. Each line in the
figure represents a gene. When the gene tends to 0, the larger the value of the abscissa (log lambda), the more critical the gene is. (c, d)
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via Kv 1.3 channels, which are considered an emerging tar-
get in autoimmune disease [31]. P2RY10 encodes a G-
protein coupled receptor activated by lysophosphatidylser-
ine that is shown to induce chemokine induced CD4 T cell
migration by RhoA activation in response to autocrine and
paracrine signals [32]. P2RY10 has also been implicated in
eosinophil degranulation [33] and considered a target for
eosinophil associated diseases. The S100A12 gene belongs
to the family of calcium binding proteins expressed in gran-
ulocytes that act as a chemoattractant and is considered a
pivotal player in inflammation [34] by contributing to neu-
trophil and monocyte migration [35] and monocyte activa-
tion [36]. SLC38A1 belongs to the solute carrier family and
is an important transporter of amino acids, which are known
to be perturbed in T cells in SLE [37]. SLC38A1 transports
alanine in CD4 T cells upon T cell receptor activation [38].
The role of toll like receptor 2 TLR2 has been well investi-
gated in SLE initiation in context of pathogen recognition
and autoantibody production to self-DNA antigens [39].
Furthermore, PMBC bound TLR2 has been shown as
marker of disease activity in SLE [40] and SLE susceptibility
has been found to be associated with TLR2 gene polymor-
phism [41]. TSR2 is known to inhibit nuclear factor-κB tran-
scription and induce apoptosis [42]. The TXN gene encodes
thioredoxin which reacts with procaspase-3 in T cells to
inhibit apoptosis [43].

Among these, the upregulated genes included DYSF,
S100A12, TXN, and TLR2, which were strongly correlated
with imputed neutrophil abundance, possibly indicating
disease subtype that should be investigated in experimental
research. In SLE, aberrant neutrophil function, including
the retention of low-density neutrophils (LDN) in micro-
vasculature, is recognized as an important mechanism of
organ damage and vasculopathy, and differences in neu-
trophil gene expression are seen in association with neu-
trophil trafficking [44]. Furthermore LDN also secrete
type I interferon (IFN), activating adaptive immune
responses in SLE [45]. Therefore, gene signatures of neu-
trophil heterogeneity may be very relevant to disease sub-
typing in SLE. These 4 genes also showed an inverse
correlation with anti Ro antibodies, which are shown to
negatively correlate with complement C3 in SLE [46],
which is essential for neutrophil infiltration and neutrophil
extracellular trap (NET) formation [47]. In the cluster
analysis using imputed high abundance immune cells,
monocytes, dendritic cells resting, and neutrophils were
found significantly different in representation in both
PMBC and whole blood sample gene expression data,
whereas Treg cells, CD 4 activated T cells, NK cells, and
B cells were also different in the whole blood samples. In
an earlier work using gene expression data, 3 main sub-
types of SLE were determined as an interferon (IFN) sub-
type enriched in viral infection and IFN deregulation, a
mixed subtype of more severe nature characterized by
viral, bacterial and fungal infection-related modules, and
a neutrophil-elastase subtype (NE) enriched in bacterial
and fungal infection related modules [48]. Others have
identified T cell transcriptome-based molecular subtypes
of SLE including severe subtypes marked by differences
in genes related to membrane protein production [49].
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Figure 12: Expression levels of 9 key immune-related SLE genes in SLE_WB and SLE-PBMC. (a, b) are the expression distributions in the
case group and control group for SLE_WB and SLE_PBMC, respectively. (c, d) are the expression distribution of cluster1 group and cluster2
group of SLE_WB and SLE_PBMC, respectively. nsp > 0:05, ∗p ≤ 0:05, ∗∗p ≤ 0:01, ∗∗∗p ≤ 0:001,and∗∗∗∗p ≤ 0:0001.
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Functional enrichment analysis of SLE-related genes
indicated several biological processes and pathways associ-
ated with defense response to viruses, which bear pathogen
associated molecular patterns (PAMPS) that trigger inter-
feron production from T cells and have a central role in
SLE induction [50]. Among KEGG pathways, necroptosis,
a form of caspase independent programmed cell death was
the top enriched pathway. Increased interferon signaling
potentiates necroptosis in SLE and may be an important
means of sustained tissue damage [51]. The top GO biological
process enriched in the immune-related SLE genes concerned
RNA splicing, which is a fundamental process crucial to main-
tain diversity in protein isoforms and also regulates key
immune processes such as lymphocyte differentiation and acti-
vation [52]. Analysis of RNA splicing variants can offer a venue
to understand variations in gene expression networks, cell type,
and localization [53]. The top among the PPI network analysis
included the downregulated HSP90AB1 gene, which encodes a
heat shock protein, and its polymorphism has been recently
associated with SLE risk and glucocorticoid response [54] Ele-
vated HSP90AB in the serum from SLE patients has been doc-
umented, and it is purported to be a key regulator of innate and
adaptive responses via controlling signal transduction, protein
folding, and transport [55].

These findings must be viewed keeping in mind the limita-
tion of the study. Here, we analyzed a gene signature based on
SLE-related DEGs that were common to whole blood and
PBMC samples, whichmay limit the generalizability of the find-
ings to other cell types or blood. These two datasets are not
completely comparable owing to different cell types in whole
blood, which may be more representative of the global immune
response, and therefore, these results should be confirmed in
future studies of multiple datasets from clinical samples. Of
note, the application of single transcriptomics can enable gran-
ular analysis of immune cell perturbation in SLE. Furthermore,
here, we have analyzed microarray data, and RNA-seq datasets
should be addressed in future studies. However, the incorpora-
tion of high-throughput sequencing data and multiple sample
types augments the relevance of these findings particularly to
PBMC cells. The 9-immune-related gene signature of SLE and
its relevance to SLE subtypes needs to be validated in experi-
mental models and clinical research. Furthermore, clinical and
pathological features of samples clustering based on high abun-
dance immune cell types should be examined in further
research. Moreover, the incorporation of data pertaining to lon-
gitudinal disease progression and drug response scores should
be addressed in future research in SLE and its molecular sub-
types. Clinical translation of the present data includes precision
medicine approaches wherein prognosis and treatments can be
better tailored based on patients’ molecular subtyping and also
pave the way for novel drug discovery.

5. Conclusion

In sum, the present study applied a series of bioinformatics
analysis and identified a 9 immune-related gene signature
in SLE based on immune infiltration analysis and depicted
their associated clinicopathological characteristic, function-
ally enriched pathways, and interacting genes. These find-
ings offer important insights into the immunological
heterogeneity in SLE and its relevant cellular and molecular
aspects.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.
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