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Simple Summary: Camelidae are induced ovulators whose ovulation is tightly regulated by multiple
factors. Understanding the biological mechanisms underlying follicular development, hormone
secretion, and ovulation requires investigating the potential molecular pathways involved in these
mechanisms. However, little is known about these molecular pathways in Bactrian camels. To
screen and identify candidate biomarkers after seminal plasma (SP)-induced ovulation in the ovaries,
we performed comprehensive proteomic and molecular biological analyses of the ovaries from
camels that were intramuscularly injected with either seminal plasma or phosphate-buffered saline.
Identification of these candidate biomarkers will enable a better understanding of reproduction
in Bactrian camels. Our findings suggest candidate proteins for further studies on the molecular
mechanisms of induced ovulation.

Abstract: Camelidae are induced ovulators whose ovulation is tightly regulated by multiple factors.
Understanding the biological mechanisms underlying follicular development, hormone secretion, and
ovulation requires investigating the potential molecular pathways involved. However, little is known
about these pathways in Bactrian camels. To screen and identify candidate biomarkers after inducing
ovulation, this study performed comprehensive proteomic and molecular biological analyses of the
ovaries from two camel groups (n = 6). We identified 5075 expressed ovarian proteins, of which 404
were differentially expressed (264 upregulated, 140 downregulated) (p < 0.05 or p < 0.01), in samples
from plasma-induced versus control camels. Gene ontology annotation identified the potential
functions of the differentially expressed proteins (DEPs). These results validated the differential
expression for a subset of these proteins using Western blot (p < 0.05) and immunofluorescence
staining. Three DEPs (FST, NR5A1, and PRL) were involved in neurochemical signal transduction, as
well as endocrine and reproductive hormone regulatory processes. The Kyoto Encyclopedia of Genes
and Genomes analysis indicated the involvement of several pathways, including the calcium, cAMP,
gonadotropin-releasing hormone, MAPK, and neuroactive ligand–receptor signaling pathways,
suggesting that induced ovulation depends on the hypothalamic–pituitary–ovarian axis. Identifying
these candidate biomarkers enables a better understanding of Bactrian camel reproduction. Ovarian
proteomic profiling and the measurement of selected proteins using more targeted methods is a
promising approach for studying induced-ovulation mechanisms.

Keywords: iTRAQ; induced ovulation; ovary; Bactrian camel

1. Introduction

The Bactrian and dromedary camel, alpaca, llama, Guanaco and vicuna, belong to the
family Camelidae [1]. Camels live in extreme desert environments in Africa and Asia, and
their adaptations to arid conditions include hydropenia and a tolerance of temperatures
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exceeding 40 ◦C [2,3]. Gonadotropin-releasing hormone (GnRH) and luteinizing hormone
(LH) are critical regulatory factors of the neuro-endocrine system, which controls ovula-
tion [4]. Two categories of ovulation, spontaneous and induced, have been classified in
species, based upon the release of GnRH/LH. In spontaneous ovulators, such as cattle,
goats, horses, monkeys, pigs, sheep, and most rodents, perennial or seasonal estrus leads
to regular ovulation. In induced ovulates, such as alpaca, Bactrian camels and dromedary
camels, cats, ferrets, llamas, and rabbits, neural signals elicited by the act of copulation
trigger hypothalamic GnRH secretion, which induces preovulatory LH release from the
pituitary gland [5]. Although different stimuli (olfactory, tactile, and visual) have been
associated with eliciting/facilitating ovulation in induced ovulators [6,7], the physical
stimulation of penile intromission or cervical stimulation plays a pivotal role in triggering
the LH surge and subsequent ovulation [8]. Studies have shown that llama seminal plasma
(SP) contains active ovulation-inducing factors (OIFs) similar to GnRH [9]. Zhao et al. iso-
lated and purified OIFs from semen and found that a single intramuscular or intravaginal
administration of male seminal plasma (SP) induced an LH surge, followed by ovulation
in Bactrian camels [10]. Another study compared the effects of intravaginally adminis-
tering fresh and frozen semen, SP, washed spermatozoa, and intramuscularly injecting
SP on ovulation rates in Bactrian camels. This work showed that ovulation occurred in
most females that were inseminated with whole semen, regardless of whether the semen
contained frozen spermatozoa [11].

Studies have isolated and purified an OIF from other camelids (alpacas and lla-
mas) [12], and determined the protein structure of this OIF by X-ray crystallography [13].
Other studies found that camel OIFs directly or indirectly regulate ovulation via the
hypothalamic–pituitary–gonadal axis [14]. However, induced ovulation in Bactrian camels
is highly complex, involving coordinated regulation by the endocrine, reproductive, and
nervous systems, and by coding and regulating genetic information. The mechanism of
induced ovulation in Bactrian camels remains unclear. Therefore, in this study, we used
the isobaric tags for relative and absolute quantification (iTRAQ) technology to screen
ovulation-inducing proteins via bioinformatics, and verified key target proteins via PCR,
immunoblotting, and immunofluorescence staining to identify potential molecular reg-
ulatory mechanisms. This work provides a foundation for future research on induced
ovulation and reproductive potential in Bactrian camels.

2. Materials and Methods
2.1. Animals and Handling Conditions

The study was conducted at the breeding base farm in Zhangye City. Nine Bactrian
camels (three males and six females) were kept in a pasture and provided supplementary
hay, feed pellets, and Italic water. All tissue samples were collected in strict accordance
with the ethical guidelines approved by the Animal Care Commission of the College of
Veterinary Medicine, Gansu Agriculture University (ethical approval number: GSAU-AEW-
2018-0128).

2.2. Semen Collection and SP Preparation

Semen was collected from three mature (5–7 year-old) male Bactrian camels two to
three times weekly for 3 months, using an artificial vagina inserted into a latex phantom
as previously described [15]. Sixty ejaculates were obtained, with an average volume of
4 mL per ejaculate. Briefly, ejaculates were centrifuged at 1500× g for 30 min to remove
spermatozoa. Sperm-free SP was pooled in 5–6-mL aliquots, a drop of supernatant was
evaluated microscopically to confirm the absence of cells. If spermatozoa were detected,
the sample was centrifuged and reevaluated until no spermatozoa were detected, and then
stored at −20 ◦C. Sperm-free samples were stored at −80 ◦C for long-term storage.
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2.3. SP Injection and Sample Collection

The 5–7 year-old female camels were examined daily by manual touch and transrectal
ultrasonography using an ultrasound scanner (MyLab 30, Esaote; Maastricht, The Nether-
lands). Bactrian camels with growing preovulatory follicles (6–12 mm) were assigned
to either the control group (intramuscularly injected with 5 mL of phosphate-buffered
saline [PBS]; n = 3) or the treatment group (intramuscularly injected with 5 mL SP; n = 3).
After injection, blood was collected every 4 h, and follicular development was detected via
transrectal ultrasonography. After 48 h, the camels were slaughtered, and samples were
collected.

2.4. Samples Preparation and Collection

Hypothalamus, pituitary, pineal gland, ovarian, uterine, and oviduct samples were
obtained immediately after slaughtering (three treated and three control groups). Some
samples were fixed for histomorphological observation; others were immediately stored in
liquid nitrogen at −80 ◦C.

2.5. iTRAQ Labeling and SCX Fractionation and LC-Electrospray Ionization MS/MS

Two hundred milligrams of peptide mixture from each ovarian sample was labeled
with iTRAQ reagent (Applied Biosystems), per the manufacturer’s instructions. iTRAQ-
labeled peptides were fractionated via SCX chromatography using the AKTA Purifier
system (GE Healthcare). LC-MS/MS analysis was performed on a Q Exactive mass spec-
trometer (Thermo Scientific), coupled to an Easy nLC (Proxeon Biosystems, now Thermo
Fisher Scientific) for 60, 120, or 240 min (times were determined in a pilot study). The
mass spectrometer was operated in the positive-ion mode. MS data were acquired using a
data-dependent top 10 method, with the most abundant precursor ions from the survey
scan (300–1800 m/z) being dynamically chosen for HCD fragmentation. The experimental
process and data analysis were performed as previously described [16].

MS/MS spectra were searched using the MASCOT engine (Matrix Science, London,
UK; version 2.2), embedded into Proteome Discoverer 1.4 (Thermo Fisher Scientific Inc.,
San Jose, CA, USA). The following parameters were set. Peptides were matched against the
Bactrian camel database in NCBI with a peptide mass tolerance: 20 ppm, MS/MS tolerance:
0.1 Da, enzyme: trypsin, missed cleavage: 2, fixed modifications: carbamidomethyl (C),
iTRAQ 8-plex (K), and iTRAQ 8-plex (N-term), variable modification: oxidation (M), search:
thorough, and false discovery rate: b 0.01. Protein ratios were calculated as the median
of only unique peptides of the protein quantification. All peptide ratios were normalized
to the median protein ratio, with a median protein ratio of 1 after normalization. The
ProGroup algorithm was used to eliminate redundancy. The p-values were calculated
using a t-test. Statistical analysis was performed using SPSS version 22.0 (SPSS Inc.,
Chicago, IL, USA).

2.6. Hormone Analysis

Peripheral blood was collected at 0, 4, 8, 12, 24, 36, and 48 h, and the serum was then
isolated to measure hormone levels. The estradiol (E2), follicle-stimulating hormone (FSH),
gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), progesterone (PROG),
and prolactin (PRL) contents were assayed and measured using radioimmunoassay (RIA)
methods, as per Greenwood et al. [17]. The serum samples were incubated at 37 ◦C for
1–1.5 h, then hormone radioactive markers were added and incubated for another 1–1.5 h,
then for another 10–12 h. After incubation, the precipitate was harvested and counted in a
Packard Gamma Spectrometer for the measurement of bound radioactivity. All samples
from both treatment groups were always assayed in the same RIA to avoid interassay
variation, and to enable comparisons. Each experiment was repeated in its entirety at least
three times.
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2.7. Western Blot

Total protein was isolated from camel tissues using lysis buffer (Solarbio, Beijing,
China) and quantified using a BCA protein assay kit (Boster). Samples equivalent to
50 µg of protein were resolved using sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE), and were electrotransferred to PVDF membranes (Millipore CAT,
Billerica, MA, USA). The membranes were blocked for 2 h in Tris–HCl buffer containing
5% (w/v) non-fat milk powder, then were incubated overnight at 4 ◦C with the following
primary antibodies from mice or rabbits: ACTB (1:5000, Proteintech, China), CAMK2G
(1:1000, Proteintech), FST (1:1000, Proteintech), NR5A1 (1:500, Proteintech), PAK1 (1:1000,
Santa Cruz, USA), PRL (1:1000, Santa Cruz), STAG2 (1:1000, Santa Cruz), TGFB2 (1:500,
Santa Cruz), Wnt2b (1:500, Santa Cruz), GAPDH (1:5000, Proteintech). Membranes were
then washed three times with PBS containing 0.1% Tween 20, incubated with goat anti-
mouse/anti-rabbit IgG conjugated to horseradish peroxidase for 2 h at room temperature
(1:5000, Bioss, Beijing, China), then washed three times with PBS containing 0.1% Tween
20. All immunoblot assays were performed at least three times. Optical densities of the
bands were quantified, and membranes were scanned using Image-Pro plus 6.0 (Media
Cybernetics Co., Rockville, MD, USA).

2.8. Quantitative Real-Time PCR (qRT-PCR) Analysis

Total RNA was extracted from tissues using the TransZol Up reagent (Invitrogen,
Carlsbad, CA, USA), per the manufacturer’s instructions. After treatment with DNase, RNA
was reverse transcribed using a RevertAid First-Strand cDNA Synthesis Kit (TransGen,
Beijing, China), per the supplier’s instructions. Expression of the housekeeping gene
GAPDH was used as an intratissue control. Table 1 lists the primers used. qPCR was
conducted as reported previously [18].

Table 1. Primer sequences of the mouse genes used for qPCR.

Primer Sequence 5′–3′ Product Length (bp) Accession No.

GAPDH
gtggagccaagagggtcat

232 NW_011514262.1gggccatccacagtcttct

PRL
gggcagagggttcatgact

176 XM_010974249.1taccccgcacttctgtgac

NR5A1
tggtgttcgaccacatctacc

221 XM_010956204.1gaggctgaagaggatgaggaa

FST
agacctgtcgggatgttttct

183 XM_010966300.1ggaggcaggtagcctttctta

2.9. Immunofluorescence Staining

Hematoxylin–eosin (HE) and immunohistochemical staining were performed as pre-
viously described [19]. For immunofluorescence detection, the sections were routinely
dewaxed and hydrated, and antigens were retrieved by microwave heating. Sections were
treated with an autofluorescence quencher (Servicebio, Wuhan, China) and incubated with
5% (w/v) bovine serum albumin for 30 min at room temperature. Next, sections were
incubated with primary antibody (1:100; Santa Cruz or 1:150, Proteintech) overnight at 4 ◦C.
After being washed with PBS, the sections were incubated with FITC- or ALEX-conjugated
goat anti-mouse IgG (1:200; Abcam, Waltham, MA, USA) at room temperature for 1–1.5 h
in the dark. The nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). Finally,
the antifluorescence quencher was used to seal the sections. Images were observed and
obtained using a fluorescence microscope (LSM800, ZEISS, Oberkochen, Germany).

2.10. Data Analysis

PCR and western blotting data are expressed as the mean ± standard deviation using
Origin 8.6 (OriginLab, CA, USA). Data were analyzed via the Student’s t-test (between
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two groups) or a one-way analysis of variance (within multiple groups). p < 0.05 was
considered statistically significant.

3. Results
3.1. Follicle Size and Serum Hormone Levels

Follicles of more than 10.0 mm diameter were collected; the average follicular diameter
was 10.0 ± 1.5 mm. After 30 h, follicles in the treated group had decreased in volume, and
follicular diameter decreased to approximately 7.0 ± 1.0 mm at 48 h. In the control group,
the follicular diameters that were measured via B-ultrasound were unchanged (Figure S1).
RIA results revealed that the circulating LH level was higher in the treated group than
in the control group, with the highest LH level at 4 h, followed by a slow decrease in the
treated group, compared with almost no change observed in the control group. The FSH
level was also higher in the treatment group than in the control group. Additionally, the
FSH level slowly increased with time in the treated group, whereas in the control group, it
tended to decrease at 4 h and 36 h, and remained constant at other times. Serum E2 had
increased in the treated group when compared with that of the control group, with the
highest levels observed at 12 h, which were significantly higher than that at other time
points. Serum PROG was higher in the treatment group than in the control group, and
the PROG level peaked at 12 h, which was significantly higher than at other times. GnRH
increased slowly from 0–24 h, with the highest concentration observed at 36 h. However,
GnRH levels were relatively constant in the control group and did not change significantly
(Figure 1).

Figure 1. Serum hormone levels (LH, FSH, estradiol (E2), follicle-stimulating hormone (FSH), gonadotropin-releasing hor-
mone (GnRH), progesterone (PROG) and prolactin (PRL) in the treated and control groups were detected by radioimmunity
assay. Data are presented as mean ± SD (n = 3, * p < 0.05, ** p < 0.01).

3.2. Protein Profiling and Identification of Differentially Expressed Proteins

Ovarian samples from Bactrian camels in the treated and control groups were com-
pared using an iTRAQ experiment. This study used the log2 of the protein’s fold change in
expression and the log10 of its p-value. After processing the MS/MS spectra using Mascot
software, 23,786 unique peptides were mapped to 5075 proteins. Of these, 404 DEPs were
assigned to 25 clusters of orthologous groups (COG) categories, which included “signal
transduction mechanisms” (67, 16.58%), “general function prediction only” (62, 15.35%),
and “posttranslational modification, protein turnover, chaperones” (54, 13.37%; Figure 2A).



Animals 2021, 11, 3512 6 of 17

Figure 2. Annotation of differentially expressed proteins (DEPs). (A) Bar plot of KOG analysis of the DEPs. (B) Gene
ontology (GO) annotation and functional classification of ovarian DEPs. GO terms are given for the subcellular location,
biological process, cellular component, and molecular function. (C) KEGG Pathway analysis for the significantly enriched
ovarian DEPs. (D) Bar plot of the predicted subcellular localization of DEPs; x-axis displays subcellular structures; y-axis
displays protein count.

Using 0.8-fold and 1.2-fold changes as the cut-off values (p < 0.05), 404 proteins were
differentially expressed between the treated and control groups; 264 were upregulated, and
140 were downregulated (Table 2). GO analysis showed that certain proteins were involved
in cellular processes (40.35%), metabolic processes (28.96%), biological regulation (26.98%),
and the reproduction and reproductive processes (2.23%). Proteins were also predicted to
be components of cell structures (46.53%), organelles (37.37%), membranes (24.00%), and
synapses (1.69%). Some were binding proteins (38.61%), while others were assigned as
structural molecules (4.95%), those with catalytic activity (19.80%), and signal transducers
(1.49%) (Figure 2B). The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional
analysis indicated that the ovarian DEPs were involved in cellular processes, environmental
information processing and metabolism, and organismal systems, including 277 pathways.
Neurological and reproductive endocrine pathways, such as the cAMP, MAPK, neuroactive
ligand–receptor, phosphoinositide-3-kinase/Akt, NOD-like receptor, and transforming
growth factor-beta signaling pathways, were upregulated or downregulated to various
extents (Figure 2C). Subcellular localization analysis indicated that the DEPs are found in
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the cytoplasmic (110, 27.23%), nuclear (106, 26.24%), extracellular (60, 14.85%), mitochon-
drial (56, 13.86%), plasma (40, 9.90%), cytoplasmic and nuclear (14, 3.47%), cytoskeletal
(8, 1.98%), endoplasmic reticular (8, 1.98%), peroxisomal (1, 0.25%), and extracellular and
plasma (1, 0.25%) compartments (Figure 2D).

Table 2. Differentially expressed proteins in the ovarian tissues of Bactrian camels after SP-induced ovulation.

Different Expression Protein Name

UP

CRT, GABRB2, HDGF, CLIC1, LOC10507404, PURH, PPP1CB, CLIC2, STX11, SAP30BP, SIPA1L1,
PIP4K2C, ABCB9, CD63, TTC19, SOX1, EXOSC8, SAT2, CTR9, TMSB10, LDLR, F13A1, P3H4,
LOC105068711, FGGY, TBC1D24, TMEM87A, Slc22A17, HSL, FOXK1, HSPB6, REXO2, Ighg1a, SEBOX,
ATP1B1, MRPS26, CASK, Mrpl24, CCDC43, PHC2, UBE2N, MFF, LRRFIP1, NRIP2, COPE, SMARCB1,
KRT8, CDHR2, C17ORF67, AGPS, HDAC3, CAMKK1, PON1, CTSS, GPX1, FKBP14, MRPL14, MTHFD2,
CAPN2, THBS3, DDX19A, LGALSL, P3H1, JUND, BORCS6, SERPINH1, PTGES3, PTMS, TFCP2,
TNFaIP2, NFYB, WAC, PTPN6, LAMTOR1, CDH1, LIPG, SPARC, BTF3, STMN1, MANF, UFM1, Igh,
PRL, REX1BD, CNN3, NUDC, CNPY3, MBP, EDEM1, CHST14, PLCH1, PYCR1, STX2, SEC23B,
CDC42EP5, GBP1, KRT39, LOC105082461, CRMP1, PCNP, CIAPIN1, HDDC3, B2M, MFSD10, PPL, GJA1,
RARRES2, TFAP2B, SYVN1, FRAS1, MED1, PLP1, SMAP2, PSAT1, ELOB, QPCT, ATL2, SLC25A46,
SCCA, GLT8D2, PSTPIP2, AGG, TGFB2, NDEL1, TCHH, BZW2, VPS13D, GSDMD, CRYZL1, CRABP2,
CSTB, BCKDHB, RAB43, SPATA5, eEF2K, PRRC1, RER1, PSMF1, MRPL50, GABARAPL2, CTRL,
SLC13A5, RABL6, MTRR, MRC2, NPC1, PLIN3, KRT7, PSME2, NAT10, COL6A5, CSN2, NSD1, SYT1,
FKBP10, FDX1, TXN2, LGALS3, SLC35A3, HCLS1, MCRIP1, LOC105069208, SREK1, GLS, RPE, PPA1,
LOC105070504, LRRC41, OTUB1, TSFM, TEAD1, LOC105073173, CDC123, IRF3, CALU, FABP5,
KCNAB2, RWDD1, P4HA2, LOC105067606, SAR1B, MRPS25, LOC105069779, ERAP2, LOC105066647,
LOC105067240, LBP, SDC4, TCN1, COPZ1, SAR1A, SLC46A1, JPT2, KRT18, VSNL1, DDX59,
LOC105079327, CD109, CNN2, MAN2A1, ICOSLG, LOC105077404, PPP1R2, SLC1A5, S100A6, SEC11C,
CTSV, RCN3, UBR2, PSMB10, TPT1, LOC105075883, IRF2BP2, LOC105074738, ARMCX3, ESPL1, HP,
C1QTNF3, BABAM1, ELOC, GOLIM4, MRTFB, CDV3, ARHGAP32, TMEM94, TP53I3, GFPT2, CEP131,
TYMS, PLPP3, PAK1, PPCA, LETMD1, GFAP, LRRC8D, MCF2L, ITIH4, SIGLEC1, SEC13, EI24, P3H3,
CHMP5, POLR2I, WARS1, SELENOH, aLG11, ITIH3, MRFAP1, CEP104, MRPS31, DHCR24, MRPS36,
PLA2G6, VTA1, HYPK, STAG2.

Down

ELMO2, LAP2, NAT14, ESPN, LPAAT1, DT S7, NEFL, Wnt2b, MCAM, Rint1, ARF5, BRPF1, WASH1,
c-Rel, TPD52, KRT19, TSTD3, CDK19, PTPP, EXOC6, CRT11, TMEM209, LOC105080173, ISPS, Di-Ras1,
RIM11, FST, GGTB, P400, TESTIN, PRELP, LMOD1, TINAGL1, TNFAIP8L3, HOXD8, SCO2, ZCCHC3,
Septin4, NIPSNAP1, NUMB, ZBED5, DHX35, PATZ, ALDH3B1, LAMA4, RPL11, NR5A1, PDX1, CLYBL,
MYH11, ABCC8, VPS4A, GLRX1, LIMS2, PPP1R10, LOC105068711, KRT1, Ybx3, MVI, ANAPC7,
LAMB2, MYZAP, MED1, ZNF410, PFDN6, Smoothelin, OR, PYCR2, MSH3, PNPLA7, CAMK2G, KRT17,
PPBP, DDX31, MRPL19, ZER1, MSTO1, KCR1, RPS27L, RyR3, QXPO4, Desmin, FBXO7, HSPA2, PGPEP1,
MYO7, Lamc1, A4D1P6, NOB1, ZNF326, TTC21B, CBL, RMC1, TRIM32, LIN9, SHPK, EPC1, PBX2,
SVEP1, DCTN4, PRKCD, HEBP2, EML6, DDT, LENG8, RPRD2, ECHDC3, PLIN4, H2A, BAG2, FLNA,
HMCN2, PLEKHH2, OSTC, CAVIN3, AHSP, GTPBP3, ARID4B, ART4, TINF2, CTU2, MEN1, RNF123,
MARK1, CCDC127.

3.3. Protein–Protein Interaction (PPI) Network Analysis

The study grouped the 404 DEPs by their fold change in expression and their ex-
pression levels across each sample on a heatmap, with red representing significantly
upregulated proteins, blue representing significantly downregulated proteins, and off-
white representing proteins with no expression changes (Figure 3A). In total, 133 of the
5075 identified proteins were assigned to the reproduction and reproductive processes
cluster and were used to generate a PPI network via the String online database and Cy-
toscape software (Figure 3B). We generated a PPI network of the 404 DEPs (264 upregulated
and 140 downregulated in the treatment group) and identified 100 nodes/DEPs with 103
edges (Figure 3C). Thirty three proteins were related to the endocrine system, nineteen
to reproduction and reproductive processes, and seventeen to neural signal transduction
(Figure 3D). Further PPI analysis revealed 44 nodes and 77 edges in the PPI network,
including the FST, NR5A1, PRL, CAMK2G, PAK1, PRKCD, PPP1CB, PPP1CC, and STAG2
central proteins. FST and NR5A1 are directly involved in steroid hormone synthesis and
secretion. PRL-NR5A1-FST was mainly in the PPI network and contained four nodes
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and six edges. The KRT39-KRT19-KRT17-KRT18 cluster was associated with the estradiol
receptor signaling pathway.

Figure 3. Clustering and protein–protein interaction (PPI) network analysis. (A) Hierarchical clustering of differentially
expressed proteins (DEPs). Clustering was based on ovarian protein expression levels in the Bactrian camel. (B) Analysis
of PPI network proteins related to the reproduction and reproductive processes. (C) Analysis of the PPI network for the
ovarian DEPs. (D) Analysis of the PPI network for hormone and ovulation regulation related proteins in the ovarian DEPs.

3.4. Expression Profile Verification

To verify the reliability of our iTRAQ results (Figure 4A), this study selected eight
DEPs that were associated with reproduction, steroid hormone synthesis, and secretion for
Western blot analysis. The results showed that GABRB2, KRT39, PAK1, PRL, STAG2, and
TGF-β2 were abundantly expressed and upregulated, while CAMK2G, CCK, FST, HSPA2,
NR5A1, and Wnt2b were downregulated in ovarian tissue from treated Bactrian camels.
Western blotting data revealed that all eight DEPs showed expression patterns similar to
those of the iTRAQ data, demonstrating the reliability of the iTRAQ data (Figure 4B,C).
We used multiplex immunofluorescence staining to analyze the ovarian expression pat-
terns of eight DEPs and found that they were expressed in granulosa cells and cumulus
complexes (Figure 4D). This study constructed a Venn diagram for the DEPs using mul-
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tiple comparisons of the endocrine, reproductive, and neural signal transduction system
groups (Figure 4E). Thus, we screened three DEPs (FST, NR5A1 and PRL) and examined
the expression patterns of three proteins in the hypothalamic–pituitary–ovarian axis and
genital organs (oviduct and uterus).

Figure 4. Validation of differentially expressed proteins (DEPs). (A) Protein expression levels detected in ovarian protein
extracts from Bactrian camels via iTRAQ LC-MS/MS. (B) Western blot analysis of PAK1, PRL, STAG2, TGFB2, CAMK2G,
FST, NR5A1, and Wnt2b in ovarian protein extracts from Bactrian camels. (C) Integrated optical density analysis of the
Western blots using ImageJ. Data are presented as the mean ± standard deviation; * p < 0.05, ** p < 0.01. (D) Venn diagram
of the DEPs using multiple comparisons of the endocrine system, reproductive system and neural signal transduction
system groups. (E) Immunofluorescence staining to localize the expression patterns of the DEPs in the ovarian samples.

3.5. Analysis of Tissue Expression

The FST, NR5A1, and PRL expression patterns were analyzed via PCR, Western
blot, and immunofluorescence staining. FST, NR5A1 and PRL mRNA were significantly
differentially expressed in the hypothalamus, pituicytes, pineal gland, ovaries, oviducts,
uterus, and other tissues.
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In the control group, PCR results revealed that the ovaries and oviducts had the
highest FST expression levels, with moderate expression in the pituitary and uterus and
weak expression in the hypothalamus and pineal gland (Figure 5A,B). Immunoblotting
results revealed that the ovaries and pituitary had the highest FST expressions, with
moderate expression in the oviducts and uterus and weak expression in the hypothalamus
and pineal gland (Figure 5C,D). In the treated group, PCR results revealed moderate
expression in the pineal gland, ovaries, oviduct, and uterus and weak expression in
the hypothalamus and pituitary (Figure 5A,B). Western blot results revealed strong FST
expression in the hypothalamus, pituitary, pineal gland, ovaries, oviduct, and uterus. These
expression patterns were opposite to those observed in the control group (Figure 5C,D).
FST mRNA and protein expression levels in the hypothalamus, pituitary, pineal gland,
ovaries, fallopian tubes, and uterus differed from those of the control group (Figure 6A–D).
Immunofluorescence results suggested weak FST immunoreactivity in the hypothalamus
and strong FST expression in the glia, pineal gland, pituicytes, ovarian granulosa cells,
cumulus complexes, oviduct ciliated columnar epithelium, and secretory cells, as well as
in the uterine, secretory, and epithelial cells of the endometrial gland (Figure 6A,B).

In the control group, NR5A1 mRNA expression levels were highest in the ovaries,
followed by the oviduct and pineal gland, and were weakest in the hypothalamus, pituitary,
and uterus. Western blotting results revealed strong NR5A1 expression in the ovaries,
oviduct, and uterus and moderate expression in the hypothalamus, pituitary, and pineal
gland (Figure 5A,B). In the treated group, NR5A1 mRNA expression was highest in the
ovaries, oviduct, and pineal gland, with weak expression in other tissues. Immunoblotting
results suggested that the protein expression trends differed from those of the transcrip-
tion levels (Figure 5A,B). NR5A1 mRNA and protein expressions in the hypothalamus,
pituitary, pineal gland, ovaries, oviduct, and uterus differed from those of the control
group; however, the expression patterns were similar (Figure 5A–D). Immunofluorescence
results revealed the expression levels for the cells, pineal cells, glia, pineal gland, pituicytes,
ovarian granulosa cells, cumulus complexes, oviduct epithelial cells, and endometrial cells
(Figure 5A,C).

In the control group, the pituitary contained the highest PRL mRNA and protein
levels. The PCR results indicated weak PRL mRNA expression in the hypothalamus, ovary,
oviduct, pineal gland, and uterus; however, Western blotting revealed strong PRL expres-
sion only in the pituitary (Figure 5A,B). In the treated group, the PCR results suggested
that the pituitary had the highest PRL mRNA expression and that the ovary and pineal
gland had the weakest PRL mRNA expression. Immunoblotting suggested a strong protein
abundance in the pituitary and a weak protein abundance in the ovaries. No protein was
detected in the hypothalamus, pineal gland, oviduct, or uterus (Figure 5C,D). The ovarian
PRL mRNA and protein levels in the treatment group differed significantly, and the other
tissues had similar expression patterns to those of the control group (Figure 5A–D). Im-
munofluorescence revealed different PRL expression levels in various tissues, with a weak
PRL immunoreactivity in the blood vessels, nerve cells, glial cells, hypothalamus, pituitary
gland cells, and nerve cells, as well as strong immunoreactivity in the pineal cells, variant
granulosa cells, oviduct secretory epithelial cells, and endometrial cells (Figure 6A,D).
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Figure 5. Expression and localization analysis of the differentially expressed proteins (DEPs) in the hypothalamic–pituitary–
ovarian axis. (A) FST, NR5A1 and PRL mRNA expression levels in Bactrian camel tissues detected via RT-PCR. (B) Optical
density was analyzed via PCR and ImageJ. Different letters indicate significant differences within groups. (C) Western blot
analysis of FST, NR5A1 and PRL proteins in different tissue samples. (D) Optical density value was analyzed via ImageJ.
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Figure 6. (A) Representative images of hematoxylin and eosin staining of the hypothalamus, pituitary, pineal gland, ovaries,
oviduct, and uterus. (B) Intracellular localization analysis of FST in different tissues. (C) Intracellular localization analysis
of NR5A1 in different tissues. (D) Intracellular localization analysis of PRL in different tissues.
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4. Discussion

Bactrian camels are induced ovulators, and their ovulatory mechanism appears to
differ completely from those of spontaneous and other ovulators. During estrus, Bactrian
camel follicles grow, develop and mature (diameter > 10 mm), and the female camels
mate in order to ovulate. In a previous study, llamas that were administered intrauterine
infusions of PBS or SP had follicles of 9.6 ± 0.8 mm or 8.8 ± 0.4 mm in diameter, respec-
tively [20], A previous study on llamas found that LH peaked 2.5 h after normal male
mating, and SP peaked at 4.5 h, then decreased progressively [21]. In alpaca SP, b-NGF
was identified as one of the most abundant proteins via liquid chromatography-mass spec-
trometry [22]. Studies have shown that camel semen is rich in b-NGF, and this molecule
is far more abundant in camel SP than in SP from other species (e.g., cows, horses, pigs,
and sheep) [23]. Here, we induced ovulation using fresh SP in Bactrian camels, where the
serum LH concentrations peaked at 4 h, then decreased progressively. Circulating E2 and
PROG levels also increased and peaked at 12 h after mating. However, in female llamas
that were administered SP, PROG reached its highest concentration after 7 days [24]. In
the current study, serum FSH and PRL levels increased significantly and were higher in
the treated group than in the control group. Serum GnRH peaked at 36 h, and its level
was significantly higher than that of the control group. Within 0–48 h, the hormone levels
in the control group were nearly stable. Ovulation in mammals involves GnRH secretion
from the hypothalamus into the hypophyseal ovarian system, followed by the release of
LH from the anterior pituitary into systemic circulation [25]. The ovulatory effect of OIFs
in SP is mediated via a surge release of LH into the bloodstream. The Bactrian camel, the
dromedary (Camelus dromedarius), the alpaca (Lama pacos), and the llama (Lama glama) are
all induced ovulators. Chen B, X et al. suggested that one mature or developing follicle
of Bactrian camels was usually present in an ovary. When not allowed to mate, the camel
manifested prolonged periods of estrus; if mating occurred, then ovulation would take
place 30–48 h later [11]; for Dromedaries, ovulation would take place at least 32–40 h
later [26]; for llamas, then ovulation would take place 26 h later, however, if hCG and
GnRH are injected, ovulation would take place 27.2 ± 0.3 h and 28.6 ± 0.3 h later [27,28].
A study to determine the site of action of OIFs found that treating llamas with a GnRH
antagonist suppressed the effects of OIFs, suggesting a direct or indirect effect of OIFs on
GnRH neurons in the hypothalamus [29].

Previous research on induced ovulation has mainly focused on isolating and purifying
OIFs and hormone testing. We identified 5075 proteins after intramuscularly injecting
SP, and found that 133 proteins were associated with reproduction and reproductive
processes. We classified 404 DEPs (260 upregulated, 144 downregulated) via GO analysis
and assigned them into three groups (i.e., molecular functions, biological process, and
cellular component groups) using GO terms through multiple approaches. The upregulated
and downregulated DEPs were then further clustered on the basis of their functions
and signaling pathways, with a significant enrichment analysis. We also developed a
PPI network complex of DEPs and identified 100 nodes/DEPs with 103 edges. Finally,
qPCR and Western blot results revealed the expression profiles of ovulation-inducing and
hormone-related genes and proteins, and immunofluorescence colocalization revealed that
these DEPs were expressed in ovarian granulosa cells. Further screening of 69 DEPs related
to neurochemical signal transduction, endocrine hormones, reproductive hormones, and
PPI network mapping revealed 44 nodes and 77 edges. We further screened three proteins
(FST, PRL, and NR5A1) using a Venn diagram. Finally, RT-PCR and Western blotting
verified the expression profiles of three proteins in in the hypothalamic–pituitary–gonadal
axis. Interestingly, the most significant module was filtered from the PPI network complex,
and all three proteins were located in the PPI node. KEGG results indicated that FST,
NR5A1, and PRL were involved in steroidogenic, oxytocin, follicular development, and
oocyte meiosis processes.

Steroid-producing factor-1 (SF-1, NR5A1) is a member of the nuclear receptor super-
family and is an orphan nuclear receptor with a genetically distinct domain that is different
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from those of other nuclear receptors [30]. NR5A1 is a key transcriptional regulator of genes
involved in the hypothalamic–pituitary–steroidogenic axis [31]. It is expressed in tissues
such as the adrenal gland, gonad, hypothalamus, pituitary, skin, and spleen [32]. NR5A1 is
highly expressed at steroid production sites. We found that NR5A1 was expressed in the
fallopian tube epithelium, ovaries (granulosa cells and cumulus complex), hypothalamus,
pituitary, pineal gland, and uterus of Bactrian camels. KEGG analysis suggested that
NR5A1 is involved in steroidogenesis via cortisol synthesis/secretion pathways and the
regulation of rate-limiting enzymes, suggesting that it may be involved in the secretion syn-
thesis of E2, FSH, LH, PRL, and PROG. In mice, NR5A1 is expressed during the functional
differentiation of steroidogenic tissues, and in the sexual differentiation of gonads [33].
Other research found that NR5A1 was expressed in the fetal and adult adrenal cortex, as
well as in the testicular Leydig and Sertoli cells [34]. NR5A1 regulates the transcription
of key genes involved in sexual development and reproduction, including steroidogenic
acute regulatory protein, 17-alpha-hydroxylase, cytochrome P-450 cholesterol side-chain
cleavage, and the beta subunit of LH [35]. NR5A1 is also expressed in nonsteroidogenic
tissues, such as the ventromedial nucleus of the hypothalamus, pituitary gonadotrophs [36],
placental venous blood vessels, sinus endothelial cells, skin, and the spleen [37]. In this
study, camel NR5A1 was expressed at different levels in the tissues of the hypothalamic–
pituitary–gonadal axis, the oviduct, and uterus. This study speculates that it may regulate
steroid hormone synthesis and secretion.

Follistatin (FST) is a single-chain, secreted glycoprotein that can bind to many members
of the transforming growth factor superfamily and inhibit their activity [38]. Earlier studies
have found that FST is expressed in most body tissues and is highly expressed in fetuses and
the heart, kidney, liver, ovaries, and pituitary [39,40]. Ovarian expression of FST in follicles
and granulosa cells suggested that it may regulate granulosa cell differentiation through
autocrine mechanisms [41]. This study found that FST was highly expressed in the fallopian
tubes, ovaries, pituitary, and uterus and weakly expressed in the hypothalamus and pineal
gland in Bactrian camels. We also found differences in FST expression levels between the
treated and control groups. One study showed that loss of FST or Wnts resulted in the loss
of mouse germ cells [42]. This study suggested that FST was mainly distributed within the
glial cells of the hypothalamus and pituitary gland, ovarian granulosa cells, and uterine
and fallopian tube cells.

PRL is a polypeptide hormone secreted mainly by the anterior pituitary. Carrasco et al.
reported that OIFs and NGF mediated ovulation and lactation in camels and cattle [43].
This study found PRL in the ovaries and pituitary of the treated group. In the control
group, PRL was strongly expressed only in the pituitary and was undetected in other
tissues via immunoblotting. Immunofluorescence results showed different PRL expression
levels in other tissues. PRL immunoreactivity has been found in numerous hypothalamic
areas in other mammals, including rats [44]. Rats, mice, cows, pigs, and humans all have
a placenta, amnion, decidua, and uterus [45]. Some well-established stimulators, such
as ovarian steroids, modulate hypothalamic E2, angiotensin II, and vasoactive intestinal
peptides and regulate hypothalamic and pituitary prolactin synthesis and secretion [46,47].
Studies have shown that hypothalamic prolactin-release inhibitors, prolactin-releasing
factors, peripheral hormones, and PRL self-feedback regulate PRL secretion to promote
gonadal development and reproductive behavior [48,49]. Estrogen also promotes PRL
synthesis, storage, and release [50]. These results demonstrate the pivotal roles of FST,
NR5A1, and PRL in modulating and activating the reproductive axis during induced
ovulation in Bactrian camels.

5. Conclusions

In this study, we used RIA to measure hormones and B-ultrasound to detect follicular
development, and identified ovarian DEPs in treated and control camels using iTRAQ
labeling. This study identified 404 DEPs, and among them, FST, NR5A1, and PRL were
involved in regulating induced ovulation and hormone secretion. The results verified the



Animals 2021, 11, 3512 15 of 17

expression profiles of these three proteins via PCR, Western blot and immunofluorescence.
Our study revealed distinct molecular functions and metabolic pathways that are active
during Bactrian camel reproduction. These results demonstrated the pivotal roles of FST,
NR5A1, and PRL in modulating and activating the reproductive axis during induced ovu-
lation in Bactrian camels. Measurement of selected proteins using more targeted methods
is a promising approach for studying the potential mechanisms of ovarian development
and ovulation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11123512/s1, Figure S1. (A) B-ultrasound detected the development of follicles from the
control group. (B) B-ultrasound detected the development of follicles from the treated group. Table
S1. Bactrian camels SP-induced ovulation up-regulated differential protein list of ovarian tissues;
Table S2. Bactrian camel SP-induced ovulation down-regulated differential protein list of ovarian
tissues.
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