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A B S T R A C T   

The effect on functional properties of kodo millet flour was studied using multipin cold plasma electric reactor. 
The analysis was carried out at various levels of voltage (10–20 kV) and treatment time (10–30 min) for four 
different parameters such as water absorption capacity (WAC), oil absorption capacity (OAC), solubility index 
(SI) and swelling capacity (SC). Response surface methodology (RSM) and artificial neural network – genetic 
algorithm (ANN – GA) were adopted for modelling and optimization of process variables. The optimized values 
obtained from RSM were 20 kV and 17.9 min. On the contrary, 17.5 kV and 23.3 min were the optimized values 
obtained from ANN – GA. The RSM optimal values of WAC, OAC, SI and SC were 1.51 g/g, 1.40 g/g, 0.06 g/g and 
3.68 g/g whereas optimized ANN – GA values were 1.51 g/g, 1.50 g/g, 0.06 g/g and 4.39 g/g, respectively. 
Infrared spectra, peak temperature, diffractograms and micrographs of both optimized values were analyzed and 
showed significant differences. ANN showed a higher value of R2 and lesser values of other statistical parameters 
compared to RSM. Therefore, ANN – GA was treated as the best model for optimization and modelling of cold 
plasma treated kodo millet flour. Hence, the ANN – GA optimized values of cold plasma treated flour could be 
utilized for practical applications in food processing industries.   

1. Introduction 

Millets are extensively cultivated in Asian and African countries. 
India, one of the significant millet producing countries, cultivates 
various types of millets, generally categorized as ‘coarse grain cereals’ 
(Hegde, Chandrakasan, & Chandra, 2002). Among different millets 
produced in India, kodo, little, barnyard, proso and foxtail millet etc., 
are termed as ‘minor millets’ due to their under utility. The kodo millet 
(Seritia italica), with high antioxidant activity and significant anti- 
diabetic capacity, is one of the most critical minor millet primarily 
produced in the subcontinents of India (Arya & Shakya, 2021; Sharma, 
Saxena, & Riar, 2017). Kodo millet contains higher amounts of crude 
fibre (14.3 g) and total phenolic content (10.3 mg) as compared to other 
millets (Rao, Nagasampige, & Ravikiran, 2011). In addition, kodo millet 
does not form a gluten network and could be an alternative for those 
suffering with celiac disease or various intolerances/allergies of wheat. 
Furthermore, it is very much beneficial to people who have diabetes 
since the kodo millet contains complex carbohydrates that allow the 
slowest release of glucose into the blood, which minimises the glycaemic 

index. Hence, along with a high nutritional profile of the kodo millet 
with carbohydrates 66.1 g, protein 8.3 g, ash 2.6 g, fat 1.4 g, and energy 
value 355 kcal adds nutritional security to the vast population (Nanje 
Gowda et al., 2022). 

However, a significant share of the total kodo millet produced in the 
country is directly consumed by the rural population. Because of this, 
the actual value of millets has not been appropriately studied, and their 
utilization has been not appreciated so far in view of food security 
(Sharma, Sharma, Handa, & Pathania, 2017). Considering the potential 
health benefits such as anti-carcinogenic anti-oestrogenic, anti- 
inflammatory, and antiviral effects (Ferguson, 2001) and no gluten 
content in kodo millet, it is commonly used to make bakery products like 
bread, biscuit, etc (Sharma, Saxena, & Riar, 2016). 

The improvement in the millet flour functional properties is essential 
to enhance the desired qualities of the final products. Nevertheless, there 
is a challenge involved in attaining the preferred increase in the func-
tional properties of flour without adversely affecting its heat labile nu-
trients. Different treatments were employed for enhancing the flour 
hydration and gel properties in various millet and cereal flours like 
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germination, pre-gelatinization, microwave cooking, etc. Previous 
studies stated that functional properties of whole corn was improved by 
extrusion and germination methods. Cassava flour along with other 
flours such as popped rice and wheat flours, rice and wheat brans made 
as collective flour and their functional properties positively modified 
through pre-gelatinization treatment and pre-treatment with amylase 
enzyme (Jisha, Padmaja, Moorthy, & Rajeshkumar, 2008). The hydra-
tion properties of foxtail millet by microwave treatment resulted in more 
SI and WAC whereas SC and OAC were reduced. The microwave treat-
ment of proso and little millet flour were increased their functional 
properties (Rao et al., 2021). By use of either thermal treatment or 
imbibition, the functional properties of cereal and millet flours were 

increased. These treatments have disadvantages like reduction of heat 
sensitive components in thermal processing and needs long time for 
enhancing the functional properties in germination. Novel technologies 
could be alternative for attaining the improvement in functional prop-
erties without prolonging time and no heat treatment. 

Cold plasma can be a promising method to improve the functional 
properties of millet and cereal flours. During generation of plasma, 
many reaction species are released particularly reactive nitrogen and 
oxygen species and their action on flour enhances functional properties 
by dissociation of starch granules (Jaddu, Pradhan, & Dwivedi, 2022). 
Hence, cold plasma technology was adopted to achieve the desired 
characteristics of kodo millet flour. RSM and ANN – GA were used for 

Fig. 1. Schematic diagram of multipin cold plasma reactor (adapted from M/s. Ingenium Naturae pvt. ltd., Gujarat, India).  

Table 1a 
Experimental and predicted responses of RSM and ANN models.  

Run Voltage time WAC OAC SI SC    

Expt RSM 
Predd 

ANN 
Predd 

Expt RSM 
Predd 

ANN 
Predd 

Expt RSM 
Predd 

ANN 
Predd 

Expt RSM 
Predd 

ANN 
Predd 

1 15 20 1.49 ±
0.05  

1.48  1.48 1.40 ±
0.09  

1.40  1.40 0.076 ±
0.01  

0.071  0.074 3.67 ±
0.55  

3.77  3.75 

2 7.9 20 1.56 ±
0.04  

1.56  1.56 1.31 ±
0.07  

1.31  1.30 0.095 ±
0.03  

0.092  0.095 3.94 ±
0.39  

3.94  3.94 

3 15 20 1.50 ±
0.05  

1.48  1.48 1.38 ±
0.09  

1.40  1.40 0.061 ±
0.03  

0.071  0.074 3.67 ±
0.55  

3.77  3.75 

4 15.0 34.1 1.50 ±
0.05  

1.49  1.50 1.41 ±
0.07  

1.42  1.41 0.108 ±
0.03  

0.107  0.111 3.65 ±
0.19  

3.68  3.65 

5 15.0 20 1.48 ±
0.07  

1.48  1.48 1.41 ±
0.04  

1.40  1.40 0.072 ±
0.03  

0.071  0.074 3.83 ±
0.48  

3.77  3.75 

6 20 30.0 1.49 ±
0.03  

1.49  1.49 1.43 ±
0.03  

1.42  1.43 0.076 ±
0.01  

0.076  0.076 3.74 ±
0.23  

3.73  3.65 

7 10 30.0 1.53 ±
0.02  

1.54  1.53 1.37 ±
0.06  

1.36  1.37 0.109 ±
0.00  

0.111  0.109 3.92 ±
0.23  

3.89  3.93 

8 15 20 1.47 ±
0.07  

1.48  1.48 1.41 ±
0.04  

1.40  1.40 0.066 ±
0.03  

0.071  0.074 3.83 ±
0.48  

3.77  3.75 

9 10 10 1.55 ±
0.05  

1.54  1.56 1.33 ±
0.03  

1.33  1.33 0.075 ±
0.01  

0.079  0.081 3.47 ±
0.45  

3.52  3.47 

10 22.1 20 1.53 ±
0.16  

1.53  1.52 1.39 ±
0.04  

1.39  1.39 0.057 ±
0.01  

0.056  0.057 3.76 ±
0.28  

3.72  3.76 

11 15 5.9 1.52 ±
0.04  

1.53  1.52 1.37 ±
0.09  

1.38  1.36 0.080 ±
0.02  

0.076  0.080 3.26 ±
0.14  

3.18  3.09 

12 20 10 1.55 ±
0.03  

1.54  1.55 1.39 ±
0.11  

1.39  1.38 0.062 ±
0.02  

0.065  0.062 3.31 ±
0.15  

3.38  3.17 

13 15 20 1.47 ±
0.07  

1.48  1.48 1.41 ±
0.04  

1.40  1.40 0.078 ±
0.01  

0.071  0.074 3.83 ±
0.48  

3.77  3.75 

WAC – Water absorption capacity; OAC – Oil absorption capacity; SC – Swelling capacity; SI – Solubility index; Expt – experimental; RSM Predd – RSM predicted; ANN 
Predd – ANN predicted; all the parameters were expressed in g/g. 
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modelling and optimization of process variables of kodo millet flour. 
Two methodologies namely RSM and ANN models have been applied 
simultaneously in many studies for a clear interpretation of the process 
by previous studies (Pradhan et al., 2021). Hence, both RSM and ANN 
models are used to obtain best combination for commercial application 
of treated flour. However, the effect of cold plasma studies on the 
functional properties of millets is scarce. And also, studies have not been 
reported on applying ANN – GA to model and optimize the functional 
properties of kodo millet using cold plasma. Hence, the objectives of this 
study are: (a) to determine the effect of process parameters (treatment 
time and plasma voltage) using multipin cold plasma electrical 
discharge on the functional properties of kodo millet flour; b) to opti-
mize the process parameters of the multipin cold plasma treatment on 
kodo millet flour to obtain the desired functional properties; (c) to 
compare and evaluate the performance of models of RSM and ANN – GA 
used to optimize the plasma-treated kodo millet flour. 

2. Materials and methods 

Kodo millet was purchased from the Indian Institute of Millet 
Research, Hyderabad, Telanagana, India. Kodo was initially dried, 
cleaned and dehulled. Dehulled millet was milled in an impact 
(hammer) mill to obtain flour (Indosaw Products Pvt. ltd., Ambala, 
Haryana, India) and passed through ASTM mesh no 70 to get fine par-
ticle sizes (Cordelino et al., 2019). Grinded flour was sealed in zip lock 
covers and stored for analysis. 

2.1. Plasma experimental set up 

Multipin cold plasma reactor (Ingenium Naturae Private Limited, 
Gujarat, India, IN-HVLT MP) was used for conducting experiments with 
the following specifications: Current 5 mA, input voltage 230 V, and 
frequency 50 Hz, and fixed and output voltage maximum of 60 kV. The 
cold plasma reactor with top view is drawn in Fig. 1. The reactor consists 
of discharging area having 1.85 × 2.50 cm2 and high voltage upper 
electrode consists of total 63 pins. Both electrodes in plasma reactor 
made with stainless steel for ensuring long life. Generation of plasma 
occurs with combination of ambient air and normal atmospheric pres-
sure. 1–2 mm layer of millet flour was kept in sample pan under plasma 
reactor. Constant distance (3 cm) was placed in both the electrodes for 
all the treatments. Voltage below 10 kV and treatment times of below 10 
min and above 30 min for both output voltages did not show any sig-
nificant change during preliminary studies on hydration properties. As 
distance kept constant at 3 cm, maximum voltage obtained with con-
stant distance was 20 kV. Henceforth, flour was treated at two output 
voltages 10 kV and 20 kV. 

2.2. Experimental design 

A Box behnken factorial design from the design expert software 
(Version 11.0.5.0, Start-Ease Inc.) was used to get the combination of 
independent variables and the number of experimental runs. A total of 
17 experiments were conducted according to the experimental design 
shown in Table 1a. All the experiments were conducted in triplicate and 
each experiment was carried out using 15 g of kodo millet flour. 

2.3. Modelling and optimization 

2.3.1. Response surface methodology (RSM) 
Modelling and optimizing the various combinations of process var-

iables to acquire maximum values of dependent variables, RSM was 
used. In order to predict the optimized values for independent variables, 
2nd order polynomial regression model was used to analyse the exper-
imental data. The equation was given as follows. 

Y = bo +
∑k

l=1
bexl +

∑k

m=1
bff x2

m +
∑∑

e<f
bef xlxm (1) 

The graphical analysis, regression analysis, and experimental design 
were developed in Design Expert software (version 10.0.3.0., Stat-Ease 
Inc.). 

where Y is the response predicted values, xl and xm are the real values 
of independent variables and bo, bff, bef, and be are the regression co-
efficients for quadratic, interaction, and linear, terms, respectively, and. 
Statistical analysis, validation of developed regression model, signifi-
cance of regression coefficients in the equation, and significance of the 
independent variables effect were evaluated using analysis of variance 
(ANOVA). 

2.3.2. Artificial neural network – Genetic algorithm (ANN – GA) 
MATLAB fitting of neural network and toolboxes contains genetic 

algorithm (The Math Works, Inc., Natick, MA, version R2015a) were 
used for modelling and optimization of responses, combined ANN – GA. 
ANN consists of input layer, hidden layer, and output layer for every 
dependent response were determined. Two number of neurons was 
considered in the input layer such as voltage (A) and time (B). The 
hidden layer neurons were obtained by trial and error method at 12 
neurons to get the maximum R2 and minimum MSE values. The training 
for each and every response such as WAC (R1), OAC (R2), SI (R3) and SC 
(R4) were conducted separately, and hence, the only one neuron output 
layer was achieved. 

The output and input data sets are translated to coded form for easy 
handling and convenience before proceeding for ANN training. The 
codes used for input data were in between − 1 and +1. Similarly for 
output data were in between 0 and +1. The cold plasma treatment 
process for kodo millet flour was designed using box behnken with two 
input parameters. Hence, four different training were performed for 
every response. Each training was performed for 13 data set of three 
neurons with only one output neuron and all the data sets were desig-
nated in to training, testing and validation for every response. Linear 
function (purelin) in output layer and hyperbolic sigmoid (tansig) in 
hidden layer was used as transfer functions. Levenberg–Marquardt back 
propagation (trainlm) algorithm was used for 58.33 % training, 25 % 
validation and 25 % testing of total data. 

To obtain high maximum R2 and low MSE, network is trained 
accordingly. After training, Equation (2) was used for generating the 
weights and bias values and there after predicting the values of the re-
sponses (Xj) with the developed model.  

Yj = purelin [WOH × tansig (UIH × Xj + TH) + TO]                           (2) 

where Xj, Yj are the experimental input and predicted output responses. 
The UIH and WOH are the weights between the input and hidden layers 
and the hidden and output layers, respectively. The TH and TO are the 
bias values of the hidden and output layer neurons, respectively. 

Further, GA was employed to developed model to optimize the input 
parameters. The fitness function (f) was adopted to optimize all the 
dependent parameters for maximizing values using the Equation (3) 
(Pradhan, Abdullah, & Pradhan, 2020). 

GA was selected as the population type with double vector, creation 
function with feasible population, fitness scaling function with rank, 
selection function with roulette wheel function, crossover function with 
scattered, migration with forward migration, and mutation function 
with adaptive feasibility respectively. 

Moreover, the size of the population was selected as 200 because of 
the repetition of GA loop, and less than 200 iterations were came. The 
crossover fraction was selected as 0.8 and the remaining functions were 
set as by default for the achieving best optimization result. All selected 
parameters were based on their properties reported by previous re-
searchers (Abdullah, Pradhan, Aflah, & Mishra, 2020; Patra, Abdullah, 
& Pradhan, 2021; Pradhan et al., 2021). The fitness function (f), which 
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was used in the ANN – GA optimization process, is given below.  

f = - (P1 + P2 + P3 + P4)                                                                (3) 

where, P1, P2, P3 and P4 are the ANN – GA predicted responses WAC, 
OAC, SI and SC, respectively, and the negative sign indicates the 
maximization of the given function in the GA. 

2.4. Functional properties 

2.4.1. Water and oil absorption capacity: 
1 g of millet flour was measured for both WAC and OAC. 10 ml of 

(water/oil) was added to flour and kept for 30 min resting. The contents 
were centrifuged at 3000 g for 15 min. the weight of water and oil 
absorbed by flour was recorded. The water and oil absorption capacity 
was determined and calculated by using Equations (4 & 5) mentioned in 
previous study. (Ramashia, Gwata, Meddows-Taylor, Anyasi, & Jideani, 
2018). 

WAC =
B
A

(4)  

OAC =
C
A

(5) 

Where A = Sample weight (g). 
B = Weight of flour absorbed by water (g). 
C = Weight of flour absorbed by oil (g). 

2.4.2. Solubility index and swelling capacity: 
Millet flour (0.5 g – SI, 0.1 g – SC) was weighed and mix with 10 ml of 

distilled water. The contents were kept in water bath at 60 ◦C for 0.5 h. 
The solution was centrifuged at 1600 g for 10 min. The supernatant of 5 
ml quantity was dried and measured. For SC, the contents were kept at 
60oC with continuous shaking for 0.5 h. After centrifuge at 1600 g for 
15 min, the water bound to flour was measured. Solubility index and 
swelling capacity was estimated and calculated by using Equations (6 & 
7) reported in previous study. (Kusumayanti, Handayani, & Santosa, 
2015). 

SI =
E
D

x 2 (6)  

SC =
F
D

(7) 

Where D = Sample weight in dry basis (g). 
E = Soluble starch weight (g). 
F = Precipitate weight (g). 

2.4.3. Differential scanning calorimeter (DSC) 
Differential scanning calorimeter (NETZSC; Maia 200F3, USA) was 

used to measure the gelatinization temperature of kodo millet flour with 
plasma treatment. 10–15 mg of flour was placed in Aluminium sample 
holder (pan and lid) and nitrogen used as a purge gas. The temperature 
range used to find out the peak temperatures at 30 to 150 ◦C with 10 ◦C 

/min heating rate. 

2.4.4. Fourier transform Infrared spectrometry (FTIR) 
FTIR spectrometry (Bruker, Alpha E FTIR, Germany) with attenuated 

total reflectance (ATR) was used for measuring infrared spectra for 
treated KMF. Before taking every measurement, the background has to 
be set. Wavenumbers ranged from 500 to 4000 cm− 1 with 32 scans per 
each sample was used to measure the transmittance (%) in spectra. 

2.4.5. X-ray diffraction (XRD) analysis 
X-Ray diffractometer (AXS D8 Advance with Davinci Design, Bruker, 

Germany) used to analyze the diffractograms of treated KMF with 40 
mA, 40 kV and 2θ angle (5–50◦), 4◦/min scanning rate and 0.02 step 
size. 

2.4.6. Scanning electron microscopy (SEM) 
The micrographs of plasma treated KMF was observed in scanning 

electron microscopy (JEOL JSM- 6480 LV, EDS: Oxford Instruments, 
Japan) at 5 µm particle size, 5000x magnification, accelerated voltage 
15 kV. 

2.5. Statistical analysis 

Various statistical parameters of developed models from RSM and 
ANN – GA were compared. The parameters such as average mean square 
error (MSE), root mean square error (RSME), normal mean square error 
(NMSE), normal root mean square (NRMSE), absolute deviation (AAD), 
mean percentage error (MPE), and coefficient of determination (R2) 
using the formulas given in the Equation (8–14). The model with less 
MSE, RSME, NSME, NRSME, AAD, and higher R2 was selected as the best 
model for the response expression. 

MSE =

∑
(XP − Xa)

2

n
(8)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(XP − Xa)
2

n

√

(9)  

NMSE =
MSE
Xm

(10)  

NRMSE =
RMSE

Xm
(11)  

AAD =

∑
|XP − Xa|

n
(12)  

MPE =
100

n
∑

⃒
⃒
⃒
⃒
(XP − Xa)

Xp

⃒
⃒
⃒
⃒ (13)  

R2 = 1 −
∑

(XP − Xa)
2

∑
(XP − Xm)

2 (14) 

Table 1b 
Second order polynomial equations of treated kodo millet flour.  

Coefficients WAC  OAC  SI  SC  

RSM ANN  RSM ANN  RSM ANN  RSM ANN 

A  − 0.01004    0.029264    − 0.01246    − 0.07686  
B  − 0.01275    0.015682    0.010927    0.178311  
AB  − 0.01086    0.000377    − 0.00518    − 0.00404  
A2  0.032251    − 0.0249    0.001587    0.031024  
B2  0.014542    − 0.00293    0.010562    − 0.16762  
R-Square  0.9202  0.9306 R-Square  0.9214  0.9307 R-Square  0.9197  0.9226 R-Square  0.9087  0.9220 
Adj R-Square  0.8633  Adj R-Square  0.8653  Adj R-Square  0.8623  Adj R-Square  0.8434  
Pred R-Square  0.6775  Pred R-Square  0.6741  Pred R-Square  0.7674  Pred R-Square  0.6831  
R VALUE  0.9593  0.9647 R VALUE  0.9599  0.9647 R VALUE  0.959  0.9605 R VALUE  0.9532  0.9602  
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3. Results and discussion 

Two models such as response surface methodology and artificial 
neural network were used for modeling and numerical optimization and 
genetic algorithm for optimization of treated kodo millet flour. 

3.1. Response surface methodology 

3.1.1. Fitting of RSM model 
Two parameters (independent) such as voltage, and treatment time 

and their effect on the four dependent variables (WAC, OAC, SI and SC) 
for cold plasma treated kodo millet flour were tabulated in Table 1a. 
Second order polynomial equations of R2, adj R2 and pred R2 for kodo 
millet flour after treatment were presented in Table 1b. The results from 
ANOVA of all four dependent parameters for the developed model 
indicated the models are acceptable with required R2, pred R2, and adj 
R2. R2 value higher than 0.8 for a generated regression model is desir-
able as reported by previous studies (Sin, Yusof, Hamid, & Rahman, 
2006). Moreover, necessary statistical parameters such as MSE, RSME, 
AAD, and MPE of the desirable model must be minimum (Abdullah 
et al., 2020). The models developed models for all variables (dependent) 
have an R2 greater than 0.9 with minimum MSE, RSME, AAD, and MPE. 
All the dependent variables showed that lack fit were not significant. 
Besides, all the dependent parameters have an insignificant lack of fit. 
These results show that the developed model indicated that was well 
fitted. 

3.1.2. Cold plasma effect on water absorption capacity 
From Equation (15), process variables such as voltage (A) and time 

(B) at p < 0.05, had a significant negative effect on the WAC. The 
interaction term AB had a negative effect and does not show any sig-
nificant effect, and both the quadratic terms A2 and B2 (p < 0.001; p <
0.05) showed a significant increase in WAC. From supplementary (sup.) 
Fig. 1a, the WAC decreased with time 20 min and after 20 min signifi-
cant rise in WAC. On the other side, WAC with voltage also decreased 
upto15 kV and subsequent increase after 15 kV. Similar studies reported 
that rise in WAC of kodo millet flour might due to abundance of various 
hydrophilic compounds in flour particularly, carbohydrates, proteins, 
and more over residues of polar amino acids showed higher attraction to 
H2O molecules (Godswill, Somtochukwu, & Kate, 2019).  

WAC = 1.480673 – 0.01004A – 0.01275B – 0.01086AB + 0.032251A2 +

0.014542B2                                                                                   (15)  

3.1.3. Cold plasma effect on oil absorption capacity 
From Equation (16), process variables such as voltage (A) and time 

(B) (p < 0.001; p < 0.01), had a significant increase in OAC. Likewise, 
the interaction term AB had no significant effect (positive) up on OAC. 
On contrary, the quadratic terms A2 (p < 0.01) showed a significant 
negative impact on OAC and B2 does not show any significant effect 
(negative correlation) on OAC. From sup. Fig. 1b, it was showed that the 
significant rise in OAC while increasing time. Similar manner increased 

OAC observed at voltage upto16 kV, thereafter gradual reduction in 
OAC above 16 kV. The non-polar amino acids and other structures of 
protein present in flour may lead to increase in OHC. Previous works 
reported that the presence of non-polar amino acids, protein content and 
the bulk density of the protein powder influence the OHC of wheat flour. 
There was no significant change in OHC may be due to modifications in 
the flour protein structures of wheat grain and with plasma treatment 
(Chaple et al., 2020).  

OAC = 1.406309 + 0.029264A + 0.015682B + 0.000377AB – 0.0249A2 – 
0.00293B2                                                                                    (16)  

3.1.4. Cold plasma effect on solubility index 
From Equation (17), process variables such as voltage (A) (p < 0.05), 

had observed reduction in SI and time (B) (p < 0.05), had a positive 
effect on the estimation of SI. The interaction term AB had a negative 
correlation on SI. However, the quadratic terms A2 showed a positive 
impact on SI and B2 (p ≤ 0.01) had a significant positive effect on SI. 
From sup. Fig. 1c, the significant rise of SI along with increase time and 
voltage up to 16 kV. SI was gradually decreased when voltage exceeds 
16 kV. The oxidation of starch and molecular degradation caused by 
active species of plasma especially ROS and RNS thus made the more 
solubility was reported in earlier studies (Bie et al., 2016).  

SI = 0.07068 – 0.01246A + 0.010927B – 0.0518AB + 0.001587A2 +

0.010562B2                                                                                   (17)  

3.1.5. Cold plasma effect on swelling capacity 
From Equation (18), process variables such as voltage (A) (p < 0.05) 

had shown a negative correlation against SC and on contrary, time (B) 
(p < 0.001), had a positive effect on the SC significantly. On other hand, 
the interaction term AB had no significant effect (negative correlation) 
on it. The quadratic term A2 did not have significant positive impact on 
SC but quadratic term B2 (p ≤ 0.01) showed a significant decreased 
effect on SC. Sup. Fig. 1d, observed that the gradual increase of SC lead 
to significant effect with increase in time. Beyond 16 kV voltage, there 
was a decreased trend observed in SC. The starch granules became weak 
due to presence of binding forces resulted in increased swelling power 
(Obadi et al., 2018).  

SC = 3.765821 – 0.07686A + 0.178311B – 0.00404AB + 0.031024A2 – 
0.16762B2                                                                                    (18)  

3.2. Artificial neural network – genetic algorithm 

3.2.1. Model fitting 
The experimental data (with 12 data points) obtained using 

Box–Behnken design was initially divided randomly into 3 sets: 7, 3, and 
3 (approximately 58.33 %, 25 %, and 25 % of data sets) for training, 
validation, and testing, respectively. Training determines the network 

Table 2a 
Training, testing and validation of ANN Model.  

WAC OAC SI SC 

Training Testing Validation Training Testing Validation Training Testing Validation Training Testing Validation 

2 1 5 3 1 2 1 2 3 1 3 6 
4 3 10 4 6 5 5 9 4 2 11 8 
6 9 13 7 12 11 6 13 8 4 12 13 
7   8   7   5   
8   9   10   7   
11   10   11   9   
12   13   12   10    
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parameters, validation indicates the robustness of the network param-
eters, and testing controls the error in the network parameters (Patra 
et al., 2021; Abdullah, Pradhan, Pradhan, & Mishra, 2021). From 
Table 2a, WAC runs 2, 4, 6, 7, 8, 11 and 12 were used for training, runs 5, 
10 and 13 were used for validation and finally runs 1, 3 and 9 were used 
for testing. The weights and bias values obtained after training were 
given for water absorption capacity in Eqs. (19)–(22), which were used 
to predict the output data. Error histogram and post-training perfor-
mance of water absorption capacity of generated artificial neural 
network model was given in sup. Fig. 2a. 

UA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.59471 − 4.44029
− 4.84890.005576
2.53206 − 4.13018
1.871821 − 4.46699
− 4.85074 − 0.11595
3.682589 − 3.16175
2.834384 − 3.92426
− 4.404791.996104
− 0.34296 − 4.85978
4.2812512.447735
− 1.58407 − 4.55396
2.017433 − 4.67318

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)  

THA =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.993654
3.969162
− 3.0916
− 2.1938
1.336898
− 0.68783
0.167625
− 1.3199
− 2.17124
2.966334
− 4.00195
4.587474

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)     

TOA = [0.09983] (22) 

OAC runs 3, 4, 7, 8, 2, 5 and 11 were used for training, runs 1, 6 and 
12 were used for validation and finally runs 5, 9 and 12 were used for 
testing. The weights and bias values obtained after training were given 
for oil absorption capacity in Eqs. (23)–(26), which were used to predict 
the output data. Error histogram and post-training performance of oil 
absorption capacity of generated artificial neural network model was 
given in sup. Fig. 2b. 

UB =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 2.13118 − 4.34041
4.653071.413812
4.8452580.360692
4.0860962.525124
4.8492590.008394
− 3.15309 − 3.70224
4.8450680.227237
− 3.804243.018254
4.804971 − 0.67474
2.795647 − 3.96789
− 4.166692.54633

2.333004 − 4.33386

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(23)  

TH B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.865711
− 3.95331
− 3.07667
− 2.27938
− 1.31674
0.073726
0.435896
− 1.30943
2.18748
3.076782
− 3.93724
4.777131

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(24)  

W B = [ − 0.06877 − 0.49605 − 1.06262 0.451493 0.593644 − 0.76347
− 0.28245 − 0.37569 0.425664 0.446138 0.505143 − 0.4295]

(25)  

TO B = [ − 0.10799] (26) 

SI runs 1, 5, 6, 7, 10, 11 and 12 were used for training, runs 3, 4 and 8 
were used for validation and finally runs 2, 9 and 13 were used for 
testing. The weights and bias values obtained after training were given 
for solubility index in Eqs. (27)–(30), which were used to predict the 
output data. Error histogram and post-training performance of solubility 
index of generated artificial neural network model was given in sup. 
Fig. 2c. 

UC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 4.17532.253175
2.3288124.334823
− 2.34567 − 4.26125
4.1212072.531036
− 3.18619 − 3.64544
2.084526 − 4.42852
− 1.138194.740746
3.3775933.470586
− 4.67133 − 0.23947
4.549718 − 1.68199
− 3.88674 − 2.96263
− 4.00227 − 2.67739

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)  

THC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.969055
− 3.88971
3.113399
− 2.229

1.432547
− 0.6638
0.096963
1.334031
− 2.44626
3.084328
− 3.85758
− 4.88269

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(28)  

WC = [0.248546 − 0.54324 1.048601 0.331394 − 0.70007

− 0.77222 0.335066 0.234839 0.096795 0.142094 0.566386

− 0.05296] (29)  

TOC = [ − 0.66005] (30) 

SC runs 1, 2, 4, 5, 7, 9 and 10 were used for training, runs 6, 8 and 13 
were used for validation and finally runs 3, 11 and 12 were used for 
testing. The weights and bias values obtained after training were given 
for swelling capacity in Eqs. (31)–(34), which were used to predict the 

WA = [0.905217 0.166432 0.060521 − 0.38616 − 0.3217 0.546673 0.039283 0.364819 0.48904 − 0.73252 − 0.41739 − 0.59743] (21)   
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output data. Error histogram and post-training performance of swelling 
capacity of generated artificial neural network model was given in sup. 
Fig. 2d. 

UD =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 3.75535 − 3.14433
3.840377 − 3.05022
0.488754 − 4.82231
4.856106 − 0.14392
4.826028 − 0.47633
− 2.56504 − 4.11781
2.9770023.836292
4.7728480.869371
− 1.276624.712935
− 4.51758 − 1.7569
3.5824633.269056
− 4.56032 − 1.65096

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(31)  

THD =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4.777303
− 3.89537
− 3.08804
− 2.19692
− 1.29212
0.44191
0.361868
1.2831

− 2.14135
− 3.08975
3.967796
− 4.84933

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(32)  

WD = [0.510167 − 0.12319 − 0.27937 0.362828 − 0.46989 − 0.21889
− 0.83235 0.080834 0.835196 − 0.44547 − 0.06046 0.699726]

(33)  

TOD = [0.13094] (34) 

A neural network model consists of a single input, and hidden and 
output layers. It is necessary to finalize the number of neurons in the 
hidden layer to build the best ANN model for the prediction of the 

responses. This was confirmed by repeatedly training the network until 
minimum MSE and maximum R was achieved. After repeated training, 
the number of neurons in the hidden layer was selected as 12, since it 
had a minimum MSE of 0.000071, 0.000087, 0.000021, and 0.003929 
and maximum R of 0.9647, 0.9647, 0.9605, and 0.9602 for training, 
testing, validation, and all data sets, respectively. 

3.3. Optimization 

After modeling of both RSM and ANN – GA, these models were 
optimized. 

3.3.1. Numerical optimization 
The combination with maximum desirability was selected as the 

optimum condition for the cold plasma treatment of millet flour. The 
selected optimum condition was voltage of 20 kV and treatment time of 
17.1 min. The WAC, OAC, SI and SC of treated kodo millet flour at this 
recommended optimum combination were 1.50845 g/g, 1.40447 g/g, 
0.05907 g/g and 3.67574 g/g, respectively. 

3.3.2. GA optimization 
To improve functional properties like WAC, OAC, SI, SC, indepen-

dent variables (voltage and treatment time) were optimized by GA. The 
optimization was carried out using individual and mean fitness values to 
attain MSE and RSME. The optimization cycle was extended even after 
mutation and if the desired output was not reached, then whole popu-
lation was repeated for production, mutation and crossover for the next 
generation. The graph between the number of generations and the 
fitness value was shown in Fig. 2. The figure shows till 12th generation, 
no change in the fitness value, and the mean fitness value calculated as 
− 7.47395. The optimization was successful at conditions of 17.1 kV 
voltage and 23.3 min treatment time. At these optimized conditions, the 
predicted values of WAC, OAC, SI and SC were obtained as 1.5129 g/g, 
1.5002 g/g, 0.0616 g/g and 4.388 g/g, respectively. 

Both the numerical and GA optimization was validated by con-
ducting experiments at the obtained optimum conditions and verifying 

Fig. 2. The fitness variation in terms of generations during optimization of genetic algorithm.  
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no significant difference between the predicted and experimental 
responses. 

3.3.3. Comparing optimized results 
The models developed from both RSM and ANN and their predicted 

values were compared statistically using different parameters such as 

AAD, R2, MSE, NSME, RSME, NRSME, and MPE, and all were presented 
in Table 2b. Both the models have showed better predictability for all 
the statistical parameters. However, ANN model indicated higher R2 

values than RSM upon comparison. And remaining parameters such as 
AAD, MSE, NSME, RSME, NRSME, and MPE are minimum values for the 
ANN model than RSM model. These obtained results revealed that ANN 

Fig. 3. a) Thermographs of untreated, optimized RSM and ANN – GA of kodo millet flour b) Infrared spectra of untreated, optimized RSM and ANN – GA of kodo 
millet flour. 

Table 2b 
Summary of all statistical parameters (AAD, MSE, RSME, NMSE, NRSME, MPE and R2) of variable parameters.  

Coefficient WAC OAC SI SC  

RSM ANN RSM ANN RSM ANN RSM ANN 

AAD  0.00783  0.00657  0.00815  0.00875  0.00397  0.00326  0.06034  0.06943 
MSE  0.00008  0.00007  0.00009  0.00010  0.00002  0.00003  0.00431  0.00747 
RMSE  0.00877  0.00853  0.00969  0.01009  0.00473  0.00507  0.06566  0.08644 
NMSE  0.00005  0.00005  0.00007  0.00007  0.00029  0.00033  0.00117  0.00203 
NRMSE  0.00581  0.00565  0.00699  0.00728  0.06056  0.06485  0.01783  0.02348 
MPE  0.52101  0.43743  0.58309  0.63055  5.35311  4.24018  1.66096  1.99149 
R2  0.92023  0.93060  0.92143  0.93074  0.91965  0.92263  0.90867  0.92204 

All the parameters were expressed in g/g. 
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model is far better than RSM model in predicting the responses (Jisha 
et al., 2008; Pradhan et al., 2021). Hence, ANN – GA model is much 
suitable for improving the functional properties of kodo millet flour. 

3.4. Thermographs of kodo millet flour 

The DSC graphs of untreated, optimized RSM and ANN – GA treated 
kodo millet flour were shown in Fig. 3 a). Both RSM and ANN – GA 

optimized conditions used for treated kodo millet flour resulted in 
decreased peak temperatures. The reduction in peak temperature might 
be due to starch granules depolymerization or variation in ratio of 
amylose and amylopectin by plasma reactive nitrogen and oxygen spe-
cies. Similar results were reported that potato samples decreased the 
gelatinization of starch in potato when samples were treated with N2 
plasma 2 kPa for treatment times of 30, 45 and 60 min (Zhang, Chen, Li, 
Li, & Zhang, 2015). 

Fig. 4. a) Diffractograms of untreated, optimized RSM and ANN – GA of kodo millet flour b) Micrographs of untreated, optimized RSM and ANN – GA of kodo 
millet flour. 
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3.5. Infra red spectra of kodo millet flour 

IR spectra of untreated, optimized RSM and ANN – GA treated kodo 
millet flour and the peaks were observed at 995, 1075, 1147, 1640, and 
1709 cm− 1 corresponds to their groups were shown in Fig. 3 b). The 
peaks of both RSM and ANN – GA were revealed in increased absorption. 
The wide range of peak was at 3289 cm− 1 obtained from ANN – GA and 
other bonds at 2852 and 2920 cm− 1 and strong intermolecular bonds by 
reactive plasma species mainly RNS and ROS. These bonds are respon-
sible for starch depolymerization of components. Similar absorption 
peaks were reported by other researchers (Zhou, Yan, Shi, & Liu, 2019; 
Chaple et al., 2020). 

3.6. Diffractograms of kodo millet flour 

X-ray diffractograms of untreated, optimized RSM and ANN – GA 
treated kodo millet flour were shown in Fig. 4 a). Negative correlation 
was reported in crystallinity with voltage and treatment time for both 
RSM and ANN – GA. Moreover ANN – GA had less crystallinity than 
RSM. Reduction in crystallinity was due to action of reactive active 
species of the plasma broke down the starch granules. Previous re-
searchers were also reported similar results (Wongsagonsup et al., 2014; 
Zhang et al., 2015; Zhou et al., 2019; Sarangapani, Devi, Thirundas, 
Annapure, & Deshmukh, 2015). 

3.7. Scanning electron microscopy analysis (SEM) 

The images of untreated, optimized RSM and ANN – GA treated kodo 
millet flour particles were obtained from SEM shown in Fig. 4 b). 
Morphological structure of kodo millet flour particles (untreated and 
treated) was observed in microscope. The displayed micrographs of 
particles have basically round or spherical with smooth surface structure 
and most of these were undamaged in untreated flours whereas cracking 
of flour granule was very much visualised in both treated samples. It was 
clearly evident that rise in voltage and treatment time eventually 
causing broke down of granules. Reactive species obtained from plasma 
causes etching and proliferation into flour particle thus lead to depoly-
merisation of starch molecules and dissociation of cross linkages of 
starch molecules. Same was mentioned by researchers (Chen, 2014; 
Thirumdas, Saragapani, Ajinkya, Deshmukh, & Annapure, 2016; Lii, 
Liao, Stobinski, & Tomasik, 2002a, 2002b) that after the plasma treat-
ment, fissures in starch granules were formed and reported. 

4. Conclusion 

The hydration properties of kodo millet flour after plasma treatment 
were analyzed. The analyzed values were predicted and optimized by 
RSM and ANN – GA. Optimized values of RSM at 20 kV voltage and 17.9 
min for WAC, OAC, SI and SC were 1.5085 g/g, 1.4045 g/g, 0.0591 g/g 
and 3.6757 g/g, respectively. Whilst the ANN optimized values at 17.1 
kV voltage and 23.3 min for WAC, OAC, SI and SC were 1.5129 g/g, 
1.5002 g/g, 0.0616 g/g and 4.388 g/g respectively. Instrumental anal-
ysis like DSC, FTIR, SEM and XRD were also performed for both RSM and 
ANN optimized conditions, which revealed significant difference with 
untreated samples. RSM and ANN, both have shown good predictability. 
The obtained R2 value was higher in ANN and remaining parameters 
MSE, RSME, NSME, NRSME, AAD, and MPE values were minimum. This 
resulted that ANN had superior model than RSM with good accuracy and 
better performance. 
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