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SUMMARY
The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to
be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic
biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exer-
cise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regula-
tors of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found
between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-
induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting in-
sulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are
related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2
are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning al-
gorithm integrating baseline proteomic signatures accurately predicts individualized metabolic respon-
siveness to exercise training.
INTRODUCTION

Exercise training (ET) is a cost-effective intervention for the pre-

vention and management of obesity and type 2 diabetes mellitus

(T2DM).1,2 In patientswith T2DM, regular exercise increases insu-

lin sensitivity and secretion, leading to improved glucose toler-

ance. While insulin sensitivity can be enhanced by a single bout

of exercise,3 long-term exercise interventions are required to

improve pancreatic beta cell function in patients with T2DM.4,5

It has been proposed that metabolic adaptations to exercise

involve complex organ crosstalk mediated by exercise-respon-

sive factors, known as exerkines, secreted from skeletal muscle,

adipose tissue, liver, gut, and other organs.6 In recent years,

research efforts have been focused on exerkines secreted by

skeletal muscle, referred to as myokines. The established myo-

kine par excellence, i.e., interleukin-6 (IL-6), is released during

muscle contractions, leading to improved glucose homeostasis

via autocrine, paracrine, and endocrine effects.7 In addition, skel-

etal muscle releases other factors including, but not limited to,

interleukin-15 (IL-15), interleukin-8 (IL-8), growth/differentiation

factor 15, myostatin (MSTN), apelin, and irisin, which have been
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This is an open access article under the CC BY-N
implicated in promoting lipolysis and browning of white adipose

tissue, increasing muscle mass, and improving glucose toler-

ance. Molecules secreted by other organs, such as adipose tis-

sue and liver, also play critical roles in mediatingmetabolic adap-

tations.8 For example, the effects of ET on glucose and lipid

homeostasis as well as insulin sensitivity were partly attributed

to increased circulating levels of adipocyte-secreted adiponectin

via enhancing fibroblast growth factor 21 (FGF21) sensitivity in

adipose tissue.9 Interestingly, FGF21 levels increase in response

to acute exercise but decrease after chronic exercise in obese

and prediabetic individuals, possibly due to improved FGF21

sensitivity.10,11 Indeed, the response to acute and chronic exer-

cise differs in a large number of circulating proteins,10 and this

inconsistency may partly reflect differences in metabolic adapta-

tions. A recent multi-omics study has described the acute exer-

kine response in healthy and insulin-resistant individuals.12 How-

ever, how exerkines coordinate spatially and temporally to confer

the chronic metabolic benefits of exercise remains poorly under-

stood. A targeted analyses of potential exerkines mediating the

effects of chronic exercise have yet to be performed in humans,

notably in individuals with impaired glucose tolerance.
rts Medicine 4, 100944, February 21, 2023 ª 2023 The Author(s). 1
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Figure 1. Proteomic changes in response to

12-week high-intensity interval training

(HIIT)

(A) Schematic diagram of the study design.

(B and C) Volcano plots of the change in individual

proteins after (B) 4 and (C) 12 weeks of HIIT

in overweight and obese men with prediabetes

(n = 36).

Orange and blue dots indicate proteins that

are significantly upregulated or downregulated,

respectively, as determined by paired Wilcoxon

rank-sum test, FDR < 0.05. Gray dots indicate

proteins without significant changes.
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Large inter-individual variability in the metabolic response to

exercise has been established by previous studies.13–15 From

7% up to 44% of individuals with prediabetes do not respond

favorably to exercise interventions in terms of metabolic out-

comes.16 Such heterogeneous results have been hypothetically

attributed to genetics, epigenetics, and physiological factors;

however, the underlying mechanisms remain elusive.17 A recent

study demonstrated that microbial species and associated me-

tabolites were differently modulated by a 12-week high-intensity

interval training (HIIT) program in metabolic ‘‘responders’’ and

‘‘non-responders,’’ while baseline microbiome features accu-

rately predicted metabolic responsiveness to the exercise inter-

vention.11 These findings disclosed a key role for gut microbiota

in conferring the metabolic benefits of exercise. However, addi-

tional investigations are required to further elucidate the molec-

ular mechanisms that drive the lack of metabolic response to ET

in individuals with prediabetes, as well as to discover baseline

circulating biomarkers that may discriminate between those

most likely to benefit from those who do not.

To address the above questions, we performed a targeted pro-

teomic analysis (688 inflammatory and metabolic proteins) in

serum samples from well-characterized medication-naive over-

weight and obese Chinesemenwith prediabetes before and after

chronic (12-week HIIT) exercise.We also determined the relation-

ship between serum proteins and clinical parameters to identify

potential mediators and predictors of metabolic outcomes.
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Furthermore, molecular responses were

compared between responders and non-

responders in terms of insulin resistance.

Finally, a machine-learning (ML) algorithm

that integrated baseline proteomics was

developed to predict individual respon-

siveness to ET.

RESULTS

Cohort characteristics
Thirty-six medication-naive overweight

and obese men with prediabetes under-

went 12-week HIIT (Figure 1A). After the

exercise intervention, body weight and

adiposity were reduced, together with

significant improvements in insulin sensi-

tivity, glucose tolerance, and lipid profiles
(Table S1). Considering the important role of circulating proteins

as potential transducers of the metabolic benefits of exercise,

we next explored the proteomic changes in response to

12-week HIIT in our cohort.

Serum proteomic changes in response to 12-week HIIT
To identify plasma proteins that were altered in response to HIIT,

we compared the serum levels of 688 proteins at baseline versus

4 and 12 weeks after HIIT using Olink’s antibody-based prote-

omics platform (Table S2). HIIT induced changes in 89 circulating

proteins (22 upregulated and 67 downregulated) after 4 weeks

(12.9% of total proteins, false discovery rate [FDR] < 0.05; Fig-

ure 1B) and 247 proteins (75 upregulated and 173 downregu-

lated) after 12 weeks (35.9% of total proteins, FDR < 0.05; Fig-

ure 1C) compared with baseline. Growth hormone 1 (GH1)

exhibited the highest upregulation (week 12, log2 fold change

[FC] = 1.03, FDR < 0.05), whereas pro-apoptotic factors such

as BH3-interacting domain death agonist (BID) were among

the proteins with the highest downregulation (week 12, log2

FC = �1.30, FDR < 0.05). Next, to assess the specificity of this

technology, we tested the reproducibility of 15 inflammatory pro-

teins assessed by Olink technology in 19 individuals using a

different platform (i.e., Mesoscale Discovery [MSD]). Eleven out

of 15 assays were highly correlated, and 4 out of 15 were moder-

ately correlated, suggesting a high reproducibility between the

two technologies (Figure S1).



Figure 2. Longitudinal trajectories of proteomic changes in response to 12-week HIIT

(A) Clustering of longitudinal trajectories using circulating proteins.

(B) A subset of significant proteins (FDR < 0.05) that showed the highest change in response to 12-week HIIT (in terms of log2 fold change [FC]) in overweight and

obese men with prediabetes (n = 36) are shown in the heatmap.

Data are represented asmean log2 FC relative to baseline. Proteins were grouped by clusters. Significant proteins were determined by pairedWilcoxon rank-sum

test, FDR < 0.05.
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Different trajectories of serum proteomic changes in
response to 12-week HIIT
To better understand the changes induced by 12-week HIIT, pro-

teins that significantly changed during 12-week HIIT (FDR < 0.05)

were further examined using cluster analysis. Six main clusters

of longitudinal trajectories were identified that delineated different

patterns in response to the exercise intervention (Figure 2A) and a

subset of significant proteins (FDR< 0.05) that showed the highest

change (in termsof log2FC) ineachcluster are shown inFigure2B.

Cluster 1

Proteins in cluster 1 (n = 55, FDR < 0.05 at week 12) increased in

the first 4 weeks of HIIT and continued to increase until the end of

the intervention, although to a lesser extent. GH1 showed the

highest upregulation, followed by cluster of differentiation 93

(CD93) (week 12, log2 FC = 0.44, FDR < 0.05), a receptor ex-

pressed in myeloid and endothelial cells that contributes to the

removal of apoptotic cells,18 and SPARC-related modular cal-

cium-binding protein 2 (SMOC2) (week 12, log2 FC = 0.47,

FDR < 0.05), a matricellular protein relevant to bone homeosta-

sis.19 Furthermore, proteins that stimulate hematopoiesis such

as erythropoietin (EPO) and colony-stimulating factor 3 (CSF3),

aswell asmyokines (i.e., IL-15, IL-6, IL-8/CXCL8) implicated in en-

ergymetabolism and angiogenesis, also presented this trajectory.

Cluster 2

Proteins in cluster 2 (n = 15, FDR < 0.05 at week 12) presented a

delayed increase in response to 12-week HIIT compared with

proteins in cluster 1. A large portion of the molecules in cluster
2 are involved in inflammation, including the anti-inflammatory

cytokine IL-10.

Cluster 3

Cluster 3 contained proteins (n = 54, FDR < 0.05 at week 12) that

decreased in the first 4 weeks of HIIT and continued to decrease

to the same degree until the end of the intervention. The stron-

gest decreases were observed in BID and the enzyme catalyzing

muscle glycogen synthesis (muscle glycogen synthase [GYS1])

(week 12, log2 FC = �1.32, FDR < 0.05). Many other proteins

had the same trajectory including kynurenine-oxoglutarate

transaminase 1 (KYAT1), an enzyme involved in tryptophan

metabolism,20 and interleukin-1 beta (IL-1b).

Cluster 4

Cluster 4 was enriched in proteins (n = 12, FDR < 0.05 at week 4)

that decreased after the first 4 weeks of HIIT and returned to

baseline by the end of the intervention. Two appetite-stimulating

hormones, agouti-related protein (AGRP; week 4, log2 FC =

�0.33, FDR < 0.05) and ghrelin (GHRL; week 4, log2 FC =

�0.34, FDR < 0.05), exhibited the strongest decreases in this

cluster.

Cluster 5

Cluster 5 was abundant in proteins (n = 23, FDR < 0.05 at week

12) that decreased in the first 4 weeks of HIIT but did not return to

baseline by the end of the intervention. Well-known hormones

such asMSTN (week 12, log2 FC =�0.46, FDR < 0.05) and leptin

(LEP; week 12, log2 FC = �0.50, FDR < 0.05) presented this

pattern.
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Figure 3. Ingenuity pathways analysis (IPA) for serum proteins altered during 12-week HIIT

(A) IPA analysis using proteins that significantly changed in response to 12-week HIIT. Z score is the activation score for a pathway, which reflects howmuch the

pathway is activated (orange) or deactivated (blue) due to the changes in the expression of proteins involved in those pathways. -log (B-H p value) refers to

Benjamini-Hochberg adjusted p value <0.05 .

(B–D) IPA of diseases and biological functions of significant proteins, which are displayed as nodes (proteins) and edges (biological relationship between

nodes). The color intensity of each node represents the direction of change in response to 12-week HIIT, with red (upregulated), and blue (downregulated).

The edges connecting the genes to the respective functions represent the predicted relationships, with blue representing inhibition, orange representing

activation, gray representing effect not predicted, and yellow indicating finding inconsistent/contradictory with state of downstream molecule, respec-

tively.
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Cluster 6

Cluster 6 contained proteins (n = 43, FDR < 0.05 at week 12) that

required more time to respond to exercise, exhibiting a signifi-

cant reduction by the end of the intervention. Of these, mesence-

phalic astrocyte-derived neurotrophic factor (MANF) showed the

highest decrease (week 12, log2 FC = �1.19, FDR < 0.05). In

addition, some pro-apoptotic markers such as caspase-3

(CASP3) and diablo homolog (DIABLO) followed this pattern.

Taken together, the above findings demonstrated that hundreds

of proteins changed in response to 12-week HIIT, mainly delin-

eating six different trajectories. To further understand the biolog-

ical significance of these changes, we next performed pathway

enrichment analysis.

Ingenuity pathway analysis (IPA) in response to 12-week
HIIT
IPA was performed among the significantly altered serum pro-

teins during 12-week HIIT. In the early phase of HIIT (the first

4 weeks), the ‘‘EPO signaling pathway’’ was the only pathway

identified as activated (Figure S2A). Conversely, seven path-

ways were significantly downregulated including the ‘‘hepatic

fibrosis signaling pathway.’’ Likewise, analysis of diseases

and biological functions revealed an increase in ‘‘quantity of
4 Cell Reports Medicine 4, 100944, February 21, 2023
myeloid cells’’ (Figure S2B), whereas several functions including

‘‘activation and migration of leukocytes’’ (Figure S2C) as well as

‘‘generation of reactive oxygen species’’ were decreased

(Figure S2D).

After 12 weeks of HIIT, 7 pathways were identified as activated

(Figure3A),withmostof themplayingakey role inmetabolism (i.e.,

‘‘peroxisome proliferator-activated receptor (PPAR) signaling,’’

‘‘IL-15 production,’’ and ‘‘liver X receptor (LXR)/retinoid X receptor

(RXR) pathway’’). Conversely, 30 pathways with a high number

implicated in inflammatory (e.g., ‘‘NF-kB,’’ ‘‘Toll-like receptor

signaling,’’ and ‘‘pyroptosis signaling’’) and apoptotic responses

(e.g., ‘‘death receptor signaling,’’ ‘‘apoptosis signaling,’’ and ‘‘tu-

mor necrosis factor receptor 1 (TNFR1) signaling’’) were inhibited.

Analysis of diseases and biological functions demonstrated

increased ‘‘angiogenesis’’ (Figure 3B), whereas ‘‘activation and

recruitment of leukocytes’’ (Figure 3C) aswell as ‘‘apoptosis’’ (Fig-

ure 3D) showed a decrease.

Serum proteomic changes associated with changes in
metabolic outcomes
To identify potential mediators for the metabolic benefits of ex-

ercise, we analyzed the relationship between exercise-induced

proteomic and metabolic changes using regression analyses



Figure 4. Proteomic changes associated

with metabolic outcomes in response to

12-week HIIT

(A–D) Changes in serum proteins after 12-week

HIIT associated with changes in (A) fasting insu-

lin, (B) homeostatic model assessment for insulin

resistance (HOMA-IR), (C) fasting glucose, and

(D) 2h oral glucose tolerance test (OGTT) glucose

in a linear regression model adjusted for age and

D weight and D fat mass. Number of biological

observations for each graph (n = 36). Orange and

blue dots indicate proteins that are positively or

negatively associated with metabolic outcomes

(p < 0.05), respectively, whereas gray dots indi-

cate not significant proteins (p > 0.05).
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adjusted for age, D weight, and D percentage of fat mass.

We identified changes in 11 and 21 proteins that were posi-

tively associated and 1 and 2 that were negatively associated

with D fasting insulin and D homeostatic model assessment

for insulin resistance (HOMA-IR), respectively (p < 0.05;

Figures 4A and 4B). Interestingly, proteomic changes posi-

tively associated with changes in both outcomes included

those of trefoil factor family member 2 (TFF2), a protein

secreted by the gut and involved in metabolism;21 Fas cell sur-

face death receptor (FAS), a pro-apoptotic receptor activated

in adipocytes from obese mice;22 and protein-arginine deimi-

nase type-2 (PADI2), an enzyme promoting the secretion of

pro-inflammatory cytokines in macrophages.23 In addition,

we identified 9 and 194 proteomic changes that were posi-

tively and 13 and 4 that were negatively associated with D

fasting glucose (FG) and D 2h OGTT glucose (2hG), respec-

tively (p < 0.05; Figures 4C and 4D). The proteomic changes

positively associated with D FG included those of canopy

FGF signaling regulator 2 (CNPY2), an angiogenic growth

factor expressed in the liver and pancreas and modulated

by FGF21,24,25 and well-known proteins associated with

cardiometabolic diseases including plasminogen activator

inhibitor-1 (PAI-1/SERPINE1) and soluble epoxide hydrolase

(sEH/EPHX2). Likewise, changes in circulating levels of endo-
Cell Report
thelial adhesion molecules (e.g.,

E-selectin [SELE] and intercellular adhe-

sion molecule 1 [ICAM-1]) were posi-

tively associated with changes in 2hG.

Serumbaseline proteins associated
with changes in metabolic
outcomes
We also identified baseline serum protein

levels that predictedmetabolic responses

to 12-week HIIT using regression ana-

lyses adjusted for age, weight, and per-

centage of fat mass at baseline. We iden-

tified 1 protein that positively associated

with D fasting insulin and D HOMA-IR,

while 55 and 54 showed negative associ-

ation, respectively (p < 0.05; Figures 5A

and 5B). Baseline proteins that associ-
ated negatively with changes in fasting insulin included mole-

cules implicated in cardiovascular disease (CVD) such as the

receptor for advanced glycation end products (AGER); tyrosine

kinase with immunoglobulin-like and EGF-like domains 1

(TIE1), an angiopoietin receptor expressed in endothelial cells

and associated with a pro-atherogenic phenotype;26 and

SELE. In addition, we identified 9 and 5 proteins that associated

positively and 44 and 93 that associated negatively with D FG

and D 2hG, respectively (p < 0.05; Figures 5C and 5D). Notably,

the protein with the strongest positive association (in terms of p

value) with changes in FG and glucose tolerance was pancreatic

secretory granule membrane major glycoprotein GP2 (GP2), a

secreted protein expressed in zymogen granules of pancreatic

acinar cells as well as plasma membrane of M cells in the intes-

tinal epithelium.27

Exercise induced differential changes of serumproteins
in responders and non-responders
Participants presented a substantial inter-individual variation in

terms of fasting insulin and HOMA-IR in response to the

12-week HIIT intervention.11 Therefore, the participants were

further classified into responders (Rs; n = 28) and non-re-

sponders (NR; n = 8) depending on whether they could or could

not demonstrate a decrease in HOMA-IR greater than 2-fold
s Medicine 4, 100944, February 21, 2023 5



Figure 5. Baseline proteins associated with

exercise-induced metabolic outcomes

(A–D) Baseline serum proteins associated with

changes in (A) fasting insulin, (B) HOMA-IR,

(C) fasting glucose, and (D) 2h OGTT glucose in a

linear regression model adjusted for age, weight,

and fat mass. Number of biological observations

for each graph (n = 36). Orange and blue dots

indicate proteins that are positively or negatively

associated with metabolic outcomes (p < 0.05),

respectively, whereas gray dots indicate not sig-

nificant proteins (p > 0.05).
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technical error. Responders and non-responders did not differ

in clinical parameters at baseline and displayed a similar reduc-

tion in weight and adiposity as well as similar increase in cardio-

respiratory fitness (Table S3). Notably, responders showed

a striking 41.51% and 47.18% decrease in fasting insulin

and HOMA-IR index, respectively, whereas non-responders

showed a lack of improvement in both outcomes. In parallel,

we detected differential changes in 23 proteins between re-

sponders and non-responders (p < 0.05; Figure 6A). Of these,

TFF2 and FAS exhibited an opposite trend of changes between

responder and non-responder groups. In addition, pancreatic

a-amylase (AMY2A), a digestive enzyme involved in the meta-

bolism of starch and glycogen,28 and TIE1 were exclusively up-

regulated in non-responders, whereas their levels did not

change in responders.

Finally, we also investigated whether proteomic differences at

baseline could be integrated into a ML algorithm to predict indi-

vidualized exercise responsiveness. To this end, a random forest

algorithm integrating baseline serum proteomic data was built

using the discovery cohort and achieved an area under the

receiver operating characteristic curve (AUROC) of 0.87 (Fig-

ure 6B). The performance of this model was further evaluated

in the validation cohort and achieved an AUROC value of 0.79

for the discrimination between responders and non-responders
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(Figure 6C). We compared the perfor-

mance of the random forest with other

MLmodels. In this regard, the random for-

est performs best, and the logistic regres-

sion model performs slightly better than

the generalized linear model (Figure S3).

One of the most informative proteins

contributing to this classifier was major

histocompatibility complex class I poly-

peptide-related sequence A_B (MICA/B)

(Figure 6D), a stress-induced ligand for

the natural killer (NK) group 2D receptor

found on cell lineages with NK activity as

well as gamma delta and alpha beta

T cells.29,30 Notably, lipocalin 2 (LCN2), a

secretory glycoprotein associated with

obesity and insulin resistance,31 was

elevated in responders compared with

non-responders at baseline (p < 0.05).

Conversely, MICA/B levels were
increased in non-responders compared with responders,

although it did not reach statistical significance (Figure 6E).

DISCUSSION

The present study provided characterization of inflammatory and

cardiometabolic molecules responsive to chronic exercise in a

cohort of 36 medication-naive overweight and obese men with

prediabetes. Our Olink-based quantitative proteomic profiling

revealed dynamic changes in hundreds of molecules and

signaling pathways during the 12-week HIIT intervention,

including regulators of metabolism, cardiovascular system,

inflammation, and apoptosis. Proteins involved in gastro-intesti-

nal (GI) mucosal immunity were strongly associated with

metabolic outcomes of exercise intervention. Particularly, exer-

cise-induced changes in TFF2 were positively associated with

changes in insulin resistance and fasting insulin, whereas base-

line levels of GP2 were positively associated with changes in FG

and 2hG. We also observed a highly heterogeneous response to

chronic exercise with respect to insulin sensitivity, which was

accompanied by differential changes in 23 serum proteins,

including TFF2. Finally, anML algorithm integrating baseline pro-

teins was developed and accurately predicted personalized

metabolic responsiveness.



Figure 6. Differential changes of serum proteins in exercise responders and non-responders

(A) Significantly altered serum proteins (p < 0.05, unpaired Wilcoxon rank-sum test) between responders and non-responders. Log2 FC was defined as the ratio

between levels after exercise to those at baseline.

(B and C) The receiver operating characteristic (ROC) curves and area under curve (AUC) of the proteomics-based algorithm for the discrimination between

responders and non-responders in (B) discovery cohort (n = 19) and (C) validation cohort (n = 29).

(D) Feature importance contributing to this classifier.

(E) The differentially abundant proteomic biomarkers (p < 0.1, by unpaired Wilcoxon rank-sum test) between responders and non-responders at baseline with

significance calculated as �log10 (p value). Red: enriched in non-responders; blue: enriched in responders.
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This study examines the molecular effects of chronic exercise

in individuals with prediabetes using a large-scale quantitative

analysis of serum proteins. Previous studies performed metabo-

lite profiling in response to chronic exercise in healthy young and

obese individuals.32,33 Likewise, a recent study shed light on

baseline proteins that may predict exercise responsiveness in

terms of cardiorespiratory fitness.34 However, in the latter study,

there was no assessment of proteins after the exercise interven-

tion, andmetabolic outcomeswere not investigated, highlighting

the need for a human study that examines proteomic changes in

relation to metabolic adaptations.

Numerous proteins changed in response to 12-week HIIT, with

the number of upregulated proteins being lower than the downre-

gulated ones. This may be explained by the functional properties

of the included proteins, as inflammatory markers are often

increased in obese/overweight individuals, and ET can coun-

teract these changes.35,36 Notably, the strongest changes in the

upregulated proteins were observed in molecules involved in

metabolism. GH1, a hormone secreted by the anterior lobe of

the pituitary gland that stimulates lipolysis in adipose tissue and

free fatty acid oxidation in the liver,37 presented the strongest up-

regulation, followed by other lipolytic factors such as IL-6 and IL-

15.38,39 IL-6 is upregulated in obese individuals and patients with
T2DM.40 While serum IL-6 is elevated by acute exercise, both

decreased and increased levels of circulating IL-6 have been

observed in participants with different types of chronic ET.41–44

Our findings are in agreement with a previous report that indicates

that vigorous chronic exercise, contrary to light and moderate

chronic exercise, increases circulating levels of IL-6.44 A potential

explanation for these findings may be the increased muscle-

derived IL-6 with high-intensity ET. It should be noted that

although IL-6 is considered a pro-inflammatory cytokine, mus-

cle-derived IL-6 is associated with anti-inflammatory proper-

ties.45,46 Furthermore, loss of visceral adipose tissue following ex-

ercise is dependent on IL-6.38 On the other hand, our results on

IL-15 confirm previous studies in women indicating that this cyto-

kine increases in response to chronic exercise, in particular with

resistance training.47,48 Notably, lipolytic factors are key mole-

cules bridging the anti-inflammatory effects of exercise andmeta-

bolism since a reduction in visceral adipose tissue decreases the

secretion of pro-inflammatory cytokines and deleterious adipo-

kines.49 Previous studies have demonstrated a pro-inflammatory

state in individuals with prediabetes and T2DM.40,50,51 In this re-

gard, plasma profiling of patients with newly diagnosed T2DMus-

ing the Olink technology indicated increased inflammatory

markers (i.e., oncostatin M, IL-16, IL-18, CCL4, E-selectin)
Cell Reports Medicine 4, 100944, February 21, 2023 7
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compared with healthy controls.40 Conversely, our findings

demonstrated the decrease of these pro-inflammatory markers

as well as other cytokines such as IL-1b following 12-week

HIIT. Decreased levels of IL-1b, which has been associated with

the pathogenesis of CVD and T2DM,52–54 were also observed af-

ter a 12-month HIIT program in patients with T2DM.55 In parallel,

we observed a marked reduction of pro-apoptotic pathways and

molecules including BID, CASP3, and DIABLO. Whereas BID is a

pro-apoptotic gene belonging to the Bcl-2 protein family, DIABLO

leads to the activation of caspases, which are the effector of

apoptosis.56 Of note, apoptosis of adipocytes is a process that

links obesity and metabolism.57 In mice fed on a high-fat diet

(HFD), the inhibition of BID prevented the infiltration of macro-

phages in adipose tissue.57 Moreover, ET reduced apoptotic

and inflammatorymarkers in adipose tissue of obese rats.58 How-

ever, as we cannot determine the tissue source of these circu-

lating proteins, further research should investigate whether

changes in adipose tissue remodeling may explain the exer-

cise-induced reduction in circulating apoptotic and inflammatory

markers.

Our study also revealed that several appetite stimulating hor-

mones, such as GHRL and AGRP, were decreased in the early

phase of HIIT but returned to baseline by end of the intervention.

In contrast, appetite-suppressing hormones such as LEP did not

return to baseline. In plasma samples of patients with T2DM,

levels of AGRP and LEP were increased, while GHRL was

decreased, comparedwith healthy controls.40 Conflicting results

have been reported regarding the effect of ET on GHRL, which

may depend on the isoform of GHRL analyzed, i.e., total, acyl-

ated, or non-acylated.59,60 Otherwise, accumulating evidence

has demonstrated that chronic exercise reduced circulating

levels of LEP in prediabetic and diabetic individuals,61 which is

usually accompanied by improvements in LEP sensitivity in the

brain.62 Another well-known hormone that exhibits a similar

change with LEP in response to 12-week HIIT is MSTN, a myo-

kine that inhibits muscle growth and is associated with insulin

resistance.63 In agreement with our findings, circulating levels

of MSTN decreased after resistance training in sedentary men

and women.48,64 Additionally, a marked reduction of MANF

was also observed after 12-week exercise intervention. MANF

is a secreted protein expressed in tissues involved in the

neuro-endocrine axis and has recently been associated with in-

sulin resistance in patients with prediabetes.65 Our results

describe the remarkable changes of MANF in response to ET,

which warrants further studies to address the potential role of

this exercise-responsive factor on metabolic adaptations.

To a lesser extent, molecules regulating the cardiovascular

system were also affected by 12-week HIIT. Red blood cell vol-

ume (RBCV) and total blood volume (BV) expansion is a funda-

mental adaptation of chronic exercise leading to an increased

capacity for oxygen (O2) delivery and aerobic metabolism.66

In this regard, hypovolemia is a prevalent characteristic of pa-

tients with diabetes that may contribute to the reduced exercise

tolerance observed in this population.67 The observation of

increased circulating levels of EPO in our study suggests that

12-week HIIT stimulated erythropoiesis, plausibly resulting in

RBCV and BV expansion in individuals with prediabetes. In

addition, we found increased angiogenesis and angiogenic fac-
8 Cell Reports Medicine 4, 100944, February 21, 2023
tors, including IL-8, vascular endothelial growth factor D

(VEFGD), and SMOC2, which may contribute to a higher capil-

lary density in skeletal muscle,68 possibly increasing the pe-

ripheral capacity to extract O2 from the circulation, another

step in the O2 cascade that can be impaired in our study

population.

Both clinical and animal data indicate that ET may beneficially

modulate the gut microbiome. For instance, elite endurance ath-

letes are characterized by a more diverse microbiome, with high

abundance of health-associated microbial species such as Ak-

kermansia, and increased levels of short chain fatty acids

(SCFAs) compared with sedentary controls.69,70 Likewise, ET

modulates gut microbiota composition in mice by increasing

the numbers of beneficial microbial species.71 In addition, recent

publications indicate that the gut microbiota play a key role in

mediating the beneficial effects of exercise on cardiovascular

as well as metabolic adaptations. For instance, gut microbiome

mediated the beneficial effects of exercise on cardiac function

followingmyocardial infarction inmice.72 On the other hand, Veil-

lonella, a lactate-metabolizing microbiome, was increased after

exercise in two independent cohorts of marathoners and

Olympic trial rowers. In parallel, mice treated with Veillonella

increased treadmill run time.73 Veillonella species metabolize

lactate into SCFAs, which in turn enhance mitochondria oxida-

tive capacity and improve aerobic metabolism.74 Similarly, we

recently found that the gut microbiota may play a key role in

conferring the metabolic benefits of exercise. Exercise-induced

changes in gut microbiota composition were associated with the

metabolic improvements after the exercise intervention. In addi-

tion, transplantation of fecal human microbiota from individuals

that had improved insulin sensitivity after 12-week HIIT amelio-

rated glucose intolerance and insulin resistance in obese recip-

ient mice.11 In this line, our regression analyses showed that ex-

ercise-induced changes in TFF2, a protein primarily expressed in

neck cells of the stomach and duodenum Brunner’ gland and

involved in innate and adaptive immunity,75 positively correlated

with changes in insulin resistance and fasting insulin. The main

function of TFF2 is to protect the GI mucosa from internal and

exogenous aggressions of the epithelium.76 Considering that

the mucosal immune response plays a key role in modulating

the composition and function of gut microbiota,77 TFF2 may

partly mediate the metabolic effects of exercise by inducing

changes in themicrobiota. In addition, basal levels of GP2, a pro-

tein expressed in gut immune cells,78 were positively associated

with changes in FG and 2hG, independently of body weight and

adiposity. Notably, GP2 has been shown to be upregulated at the

specific inflamed region in the gut.79 It is reasonable to speculate

that individuals with higher levels of GP2 at baseline may also

exhibit pro-inflammatory composition of the gut microbiome.

Given that subtle differences in microbial signatures may lead

to different metabolic responses to ET,11 further studies should

investigate the role of TFF2 in the exercise-gut microbiota-meta-

bolic response axis as well as validate the predictive value of

GP2 for glycemic responsiveness to exercise.

Different factorsmaydetermine theeffectivenessofa lifestyle in-

terventions in diabetesprevention including genetics, epigenetics,

andphysiological conditions.17Specific genetic patterns including

variations in metabolic genes such as adiponectin receptor 1 and
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muscle expression of genes involved in mitochondrial biogenesis

may lead to differential responses to exercise.14,80 On the other

hand, physiological factors such as high basal liver fat and visceral

fat have been associated with metabolic resistance to lifestyle in-

terventions.81 Notably, we previously demonstrated that

12-weekHIIT induced a heterogeneousmetabolic response asso-

ciated with a maladaptation of the gut microbiota in non-re-

sponders.11 In addition, our current findings showed that 23

proteins, including TFF2, differentially changed between re-

sponders and non-responders. The increase in TFF2 observed in

non-responders might modulate the microbiome via regulating

genes involved in innate host antimicrobial defense,75 while

changes in gut microbiota composition may also possibly

contribute to increased levels of TFF2. Additional research is

needed to understandwhether TFF2 is associatedwith the delete-

rious changes observed in the microbiota of non-responders.

Furthermore, 12-week HIIT induced increased levels of AMY2A

in non-responders. Regarding this finding, acarbose, an oral

a-amylase inhibitor that acts by slowing down the intestinal ab-

sorption of glucose, is used in the management of T2DM.82,83 In

addition, acarbose improves insulin sensitivity in subjects with

impaired glucose tolerance.84 Therefore, exercise-induced upre-

gulation of AMY2A in non-responders may additionally contribute

to the lackof improvement in insulin sensitivity. Finally, it isworth to

mention that the lack of response in a metabolic outcome is not

necessarily reflected in other variables such as cardiorespiratory

fitness (i.e., VO2max) since responders and non-responders dis-

played similar improvements in VO2max in our study. Consistently,

in theHART-D study, individualswith diabetes exhibited improved

metabolic parameters following an exercise intervention indepen-

dently of the changes in VO2max.
85 Of relevance, VO2max response

to ET is, to a large extent, determined by hematological and

cardiac adaptations,86,87 whereas skeletal and adipose tissue

adaptations are the important contributors to metabolic improve-

ments.9,88 Circulating proteins are particularly attractive as bio-

markers to predict the metabolic response to ET. In our protein

biomarker analyses, baseline levels of circulating proteins accu-

rately discriminated between those individuals that benefited

from the exercise intervention in terms of metabolic adaptations

from those who did not. MICA/B was one of the most informative

proteins to this classifier. Interestingly, MICA/B contributes to the

detectionofdamaged, infected, or transformed intestinal epithelial

cells ina process independent of traditionalmajor histocompatibil-

ity complex (MHC) class I antigen processing.89 Therefore, these

results may further support the assumption of a pro-inflammatory

compositionof thegutmicrobiome innon-responders. Futureclin-

ical interventions may apply the present ML algorithm to identify

exercise non-responders, facilitating that alternative strategies

can be implemented in those individuals. For instance, dietary

modifications specifically targeting the gut microbiota, as recently

described,90 may maximize the metabolic benefits of exercise in

these individuals.

In conclusion, the present study provides a detailed prote-

omic map of serum proteins in response to chronic exercise

including potential transducers of the metabolic benefits of

exercise. These findings, together with the recognition of a

baseline proteomic signature that predicts individualized

metabolic responsiveness to ET, may facilitate the clinical im-
plementation of personalized exercise interventions for dia-

betes prevention.

Limitations of the study
Our investigation is limited by a small sample size and restric-

tive inclusion criteria for study participants (only men were

included), which constrains the generalizability of these results

to women and other populations. Female participants were not

included mainly due to the large fluctuations in several sex hor-

mones at this age range (20–60 years old) and the menstrual

period of females, which may influence the attendance and

compliance to our 12-week HIIT and the interpretation of

data. In the future, we will certainly expand our pilot study to

include men and women and other types of exercise to test

whether our findings can be extrapolated to both sexes.

Another limitation refers to the confined protein panel (688 car-

diometabolic and inflammatory proteins), which does not pro-

vide a complete coverage of the human proteome. Moreover,

our proteomic analysis does not include a lean or obese control

group without exercise, which would have provided information

on proteins that change naturally within a 12-week period.

Therefore, future studies in different ethnic groups with large

sample sizes and inclusion of sedentary subjects are needed

to confirm the present findings and to explore the potential

relevance in clinical applications.
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Critical commercial assays

Human Insulin ELISA Kit Immunodiagnostics Cat# 31380

Olink Explore 384 Cardiometabolic &cardiometabolic II Olink N/A

Olink Explore 384 Inflammation & Inflammation II Olink N/A

Deposited data

Proteomics data Table S2 This paper N/A

Software and algorithms

R Software R Core Team https://www.r-project.org/

Mfuzz N/A https://www.bioconductor.org/packages/release/

bioc/html/Mfuzz.html (Continued on next PAGE) Ce

Ingenuity pathway analysis QIAGEN N/A

igraph N/A https://cran.r-project.org/web/packages/igraph/

index.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests for data should be directed to and will be fulfilled by the lead contact, Aimin Xu (amxu@hku.hk).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Olink raw proteomics data are provided in Table S2.

d This study reports original code deposited at (https://github.com/candeladiazcanestro/Proteomics).

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
This study was approved by the Institutional Review Board of the University of Hong Kong/Hospital Authority Hong KongWest Cluster

(UW 15-370) and endorsed the principles of the Declaration of Helsinki. Written informed consents were obtained from all participants.

Study participants
Overweight and obese Chinese men aged 20 to 60 years were recruited from the local community via flyers and online advertise-

ments, as previously described.11 A total of 36 subjects (28 responders and 8 non-responders) who completed the exercise

intervention and had samples at different time points were included in the longitudinal proteomic profiling. In addition, a total of

48 subjects (34 responders and 14 non-responders) who had baseline samples were included in the random forest model for pre-

dicting exercise responsiveness.

METHOD DETAILS

Participants selection
The inclusion criteria comprised: (i) non-smoking and Chinese men aged 20 to 60 years; (ii) overweight or obese as defined by Asian

criteria (bodymass index (BMI) > 23 kg/m2) andwith stable body weight (<5%weight change over the last 3months); (iii) prediabetes,
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defined by impaired glucose tolerance (2-h blood glucose R7.8 mmol/L and %11.0 mmol/L after a 75-gram (g) oral glucose chal-

lenge) and/or impaired fasting glucose (fasting blood glucoseR5.6 mmol/L and%6.9 mmol/L) following the American Diabetes As-

sociation guidelines;91 (iv) absence of any systemic, metabolic and cardiovascular diseases (CVD), as well as any infection within one

month prior to recruitment; and (v) not on any medication or specific diet. Exclusion criteria comprised: (i) acute illness or current ev-

idence of acute or chronic inflammatory or infectious diseases; (ii) any neurological, musculoskeletal or cardio-respiratory condition

that would entail risk during exercise or preclude the participant from adapting to an exercise program; (iii) specific diet program and/

or participation in regular exercise for more than 2 times per week in the latest 3 months prior to recruitment; and (iv) mental illness

rendering them unable to carry out exercise activities or understand the nature, scope, and possible consequences of the study.

HIIT protocol
The 12-week HIIT consisted of three sessions per week on non-consecutive days at the Active Health Clinic, Center for Sports and

Exercise, The University of Hong Kong, supervised by certified exercise specialists in a one-to-one manner, as previously

described.11 Compliance in the exercise session was highly encouraged and participants were required to take part in at least

85% of all the exercise sessions for inclusion into the study. The 70-min (min) high-intensity aerobic and resistance interval training

sessions consisted of a 10 min warm-up, followed by the participants being rotated through three high-intensity interval stations

involving treadmill, resistance/calisthenics, and stationary bike exercises, each lasting 10 min with 3–4 min recovery between sta-

tions. Each training session concluded with 10–15 min of cool-down and stretching exercises. Participants wore a wireless heart

rate telemetry sensor (Polar H7 heart rate sensor, Polar Electro Oy, Kempele, Finland) throughout the exercise sessions to monitor

their heart rate (HR) and to ensure that they were working at the appropriate intensity level. The intensity was adjusted according to

individual participant’s real-time HR telemetry and they were encouraged to work at 80-95% of maximal heart rate (HRmax). The

treadmill interval station consisted of 3–4 bouts of 2 min running at 85-95% maximal aerobic capacity (VO2max) separated by 30–

45 s (s) periods of active recovery at 50%VO2max, during which speed and incline were adjusted according to the participant’s fitness

level. The stationary bike station comprised 4-5 bouts of 45–60 s cycling efforts at 90-95% peak power output (Wpeak) interspersed

with 60–75 s active recovery at 30%Wpeak, during which resistance and cadencewere adjusted according to the participant’s fitness

level. The station of resistance and calisthenics exercises comprised 2-3 sets of several types of high-intensity exercises such as

squats, kettlebell swings, planks and burpees, and resistance with 30 s rest between each set. The intensity and work/rest ratio

of the resistance and calisthenics station progressed weekly over the 12-week training period in order to keep the exercises chal-

lenging and maintain appropriate high intensity interval training stimuli. Aside from ET, all recruited participants were instructed to

continue their normal routine with regard to their physical activity and diet.

Collection of clinical data
Fasting serum sampleswere collected at baseline, 4 and 12weeks after the exercise program andwere conducted at 48-72 h after the

final exercise session to prevent the influence of the acute effects of exercise. 75-g oral glucose tolerance test (OGTT) was conducted

after 10-12 h overnight fasting. Blood samples were collected for the determination of plasma glucose and insulin levels at 0, 60 and

120min after taking the 75 g glucose solution (TRELAN-G75, Ajinomoto Pharmaceutical Co. Ltd., Tokyo, Japan). Glucose, serum lipid

profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL)

cholesterol, were determined with standard laboratory techniques on a Hitachi 717 Analyzer (Roche Diagnostics, Germany). Serum

insulin levels were measured with ELISA kits (Immunodiagnostics, Hong Kong, China). Insulin resistance index (HOMA-IR) (Wallace

et al., 2004) was calculated using homeostasis model assessment methods, defined as fasting insulin (mU/mL) x fasting glucose

(mmol/L)/22.5. Body composition was assessed via whole-body dual-energy X-ray absorptiometry (DXA) scans (Explorer S/N

91,075, Hologic Inc., Waltham, MA, USA). Strength and cardiovascular physical assessments were conducted at baseline and within

one week after completion of the 12-week intervention. Maximal voluntary muscle strength (chest press and leg press) was assessed

using the 1-RMmethod (Keiser A-300, Keiser Corp., Fresno, CA, USA) following themanufacturer’s instructions. An integrative cardio-

respiratory fitness test using the Balke treadmill protocol was performed on a motor driven, electronically controlled treadmill

(TrackMaster, Full Vision Inc., Newton, KS, USA) to assess VO2max before and after the exercise intervention.

Definition of responders and non-responders
Non-response to the exercise intervention was defined as a failure to demonstrate a decrease in HOMA- IR greater than the 2-fold

technical error.11

Olink Proteomics
Antibody-based technology (Olink Proteomics AB, Uppsala, Sweden) was used for proteomics profiling in serum samples. Specif-

ically, protein biomarkers were detected via the Olink Explore 384 cardiometabolic and inflammation panels. Briefly, the proximity

extension assay (PEA) technology uses DNA oligonucleotide-labelled antibody pairs to bind target proteins. After two matched an-

tibodies bind the target protein, the oligonucleotide pairs hybridize and are extended by DNA polymerase to create a unique DNA

barcode that is subsequently readout using next-generation sequencing. Since only correctly matched DNA string pairs could

generate detectable and quantifiable signals, the PEA technology exhibited high specificity and excellent sensitivity.92 After

excluding 46 proteins that were not detected in >50% of the samples and 3 proteins that were duplicated, the final analysis included
Cell Reports Medicine 4, 100944, February 21, 2023 e2
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688 proteins (352 from the cardiometabolic panel, 333 from the inflammatory panel and 3 included in both panels). The median intra-

assay coefficient of variability (CV) was 12.5%, as assessed by multiple replicates of a pooled sample included in the experiment.

Values were presented as normalized protein expression (NPX) units on a log2 scale.

Mesoscale Discovery (MSD)
We subsequently performed additional proteomics profiling using anMSD technology (MesoScale Discovery, Rockville, MD, USA) in

19 individuals from the study cohort to determine the reproducibility of our olink-based results. MSDprocedure follows that of a sand-

wich ELISA, with any analytes of interest captured on the electrode being detected with an analyte specific ruthenium-conjugated

secondary antibody. Values were presented as pg/ml on a log2 scale.

QUANTIFICATION AND STATISTICAL ANALYSIS

Main statistical analyses were performed with R software. Participants’ baseline characteristics and outcomes were expressed as

mean ± SEM. Data were tested for normal distribution with the Kolmogorov-Smirnov test and for homogeneity of variances with

the Levene’s test. Change from baseline was evaluated by paired Student’s t test. Difference between groups at baseline and after

intervention was evaluated by independent Student’s t test and ANCOVA model controlling for the baseline measurements, respec-

tively. The proteomics data were not normally distributed. The paired Wilcoxon rank-sum test was used to compare protein levels at

4- and 12-week vs baseline. The Benjamini-Hochberg false discovery rate (FDR) method, with a 5% FDR significance threshold, was

applied to control for multiple testing. Fuzzy c-mean clustering was performed using the R package ‘Mfuzz’ (v2.20.0) after log2-trans-

formation and Z score scaling of the data. Ingenuity pathway analysis (IPA, QIAGEN, Hilden, Germany) platform was performed to

search for enriched pathways using significant proteins. p values were corrected for multiple hypothesis using the Benjamini-

Hochberg method and pathways with FDR below 0.05 were considered significant. Linear regression analyses were performed to

determine the relationship between changes in metabolic parameters and (i) baseline levels of proteins and (ii) intervention-induced

changes in proteins (p < 0.05). Covariates in regression models included age, baseline or changes in body weight and body fat per-

centage. Differences in exercise-induced proteins changes between metabolic responder and non-responders were evaluated with

unpaired Wilcoxon rank-sum test (p < 0.05).

ML algorithm
The proteomic profiles at baseline of 48 subjects were used to build an ML algorithm for predicting exercise responsiveness, with R

caret package. Three ML models including (1) generalized linear regression, (2) logistic regression and (3) random forest were con-

structed using the baseline proteomics data. Samples were divided in two cohorts as performed in our previous manuscript.11 The

discovery cohort included 14 responders and 5 non-responders recruited between September 2016 and November 2016, whereas

the validation cohort included 20 responders and 9 non-responders that shared similar characteristics with the discovery cohort, but

were recruited between October 2018 and December 2018. A total of 32 differentially abundant proteomics biomarkers between re-

sponders and non-responders at baseline within the discovery cohort (n = 19, p < 0.1, Wilcoxon rank-sum test) were used for model

construction, with 5-repeated 10-fold cross validation and ROSE sampling strategy to account for the imbalance in the two classes.

The generalization of the random forest model was further tested in the validation cohort (n = 29). The area under the receiver oper-

ating characteristic curve (AUROC) was used as the main indicator of model performance.

ADDITIONAL RESOURCES

Complete clinical trial registration was deposited at ClinicalTrials.gov (NCT03240978), as previously described.11
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