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Introduction

Ever since non-invasive neuroimaging became available, 
research has tried to identify potential brain differences 
associated with autism. It became quickly apparent that no 
focal brain differences could be reliably identified across 
studies. Rather, the brains of autistic people seemed to be 

Difference in default mode network 
subsystems in autism across childhood  
and adolescence

Joe Bathelt1  and Hilde M Geurts2

Abstract
Differences in the default mode network are among the most replicated brain-level findings in autistic individuals. 
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Lay abstract
Neuroimaging research has identified a network of brain regions that are more active when we daydream compared to 
when we are engaged in a task. This network has been named the default mode network. Furthermore, differences in 
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characterised by diffuse differences across large-scale 
brain systems comprising functionally coupled yet physi-
cally distant brain regions (Just et al., 2012; Kana et al., 
2014). One such brain system that has been repeatedly 
implicated in autistic individuals is the default mode net-
work (DMN; Padmanabhan et al., 2017). The DMN 
includes portions of the frontal cortex, the posterior mid-
line and the inferior parietal lobule (Buckner & DiNicola, 
2019). All DMN regions are part of the association cortex 
and show a protracted development that extends into the 
third decade of life (Buckner, 2012). The DMN was first 
identified in neurotypical participants as a network that 
showed reduced metabolic activity when participants 
where engaged in a task and, in contrast, became more 
active in the absence of task constraints (Binder et al., 
1999; Gusnard et al., 2001). Further studies showed that 
DMN activity was not merely reflective of background 
metabolic activity, but was tied to specific cognitive pro-
cesses. The current understanding suggests that the DMN 
is central for processing that requires internal representa-
tions, such as retrieval from autobiographical memory or 
self-referential reflection (Andrews-Hanna et al., 2010). 
Many regions of the DMN have been implicated in pro-
cesses relevant to theories of autism, specifically the 
Theory of Mind (ToM) deficit theory (Baron-Cohen et al., 
1989; Wing & Gould, 1979) and neural dysconnection 
syndrome theories (Frith, 2004; Geschwind & Levitt, 
2007; Jones et al., 2009; Just et al., 2012; Kana et al., 
2014). Regarding the reduced ToM theory, DMN regions, 
specifically the posterior cingulate cortex (PCC), medial 
prefrontal cortex (mPFC) and temporo-parietal junction 
(TPJ), have been implicated in self- and other-relevant 
processing, including in false belief and mentalising tasks 
(Carter et al., 2012; Castelli et al., 2002; Greicius et al., 
2004; Kuzmanovic et al., 2011; Saxe & Kanwisher, 2003; 
Spreng et al., 2009). Studies in both autistic children and 
autistic adults reported reduced activity and/or connectiv-
ity in task-related and resting-state functional magnetic 
resonance imaging (fMRI) in these regions (Kana et al., 
2015; Pantelis et al., 2015; von dem Hagen et al., 2013). 
Regarding dysconnection syndrome theories, the DMN 
contains some of the most highly connected and metaboli-
cally active regions across the whole brain (Leech & 
Sharp, 2013; Raichle et al., 2001). Any alterations to these 
hub regions are likely to lead to alterations in the global 
network architecture (van den Heuvel & Sporns, 2011).

Studies in recent years suggest that the DMN comprises 
three distinct yet closely connected subnetworks that serve 
dissociable cognitive processes (Andrews-Hanna et al., 
2010, 2014; Buckner & DiNicola, 2019). One of the sub-
networks is called the ‘medial temporal lobe (MTL) sub-
system’ and includes the ventral medial prefrontal cortex 
(vMPFC), posterior inferior parietal lobule (pIPL), retros-
plenial cortex (Rsp), parahippocampal cortex (PHC) and 
hippocampal formation (HF) (Andrews-Hanna et al., 
2010). The MTL subsystem has been implicated in memory 

processes, such as episodic memory retrieval (Andrews-
Hanna et al., 2014). Another subsystem termed the ‘dorsal 
medial prefrontal cortex (dMPFC) subsystem’ includes the 
dMPFC, temporo-parietal junction (TPJ), lateral temporal 
cortex (LTC) and temporal pole (TempP). This system has 
been implicated in mentalising and ToM (Andrews-Hanna 
et al., 2014). A third subsystem is made up of the anterior 
medial prefrontal cortex (aMPFC) and the PCC. This sub-
network forms a functional hub that ties the other DMN 
subsystems together (Andrews-Hanna et al., 2010) and is 
termed the ‘PCC-aMPFC core’.

The DMN plays a central role in brain theories of autism, 
but the subsystem composition and its development have 
only recently came to the fore. Different subsystems of the 
DMN may play particular role in the aetiology of autism 
given that some regions are directly tied to the core symp-
toms of autism, for example, the role of the TPJ for mental-
ising, while other regions may only be peripherally related 
to autism via a broader cognitive phenotype, for example, 
memory processes supported by the MTL subsystem. Two 
previous studies highlight the regional heterogeneity of the 
DMN in autism. Assaf and colleagues (2010) showed 
reduced connectivity within DMN subcomponents. In con-
trast, Lynch and colleagues (2013) reported increased con-
nectivity between parietal and temporal regions in autistic 
children. Alterations in particular connections may have 
knock-on effects on the modular organisation of the DMN. 
Furthermore, shifts from general hyperconnectivity to 
hypoconnectivity in autism between childhood and adoles-
cence (Uddin et al., 2013) may also affect the modular 
organisation of the DMN. Therefore, the current investiga-
tion aimed to investigate potential differences in DMN sub-
system composition in autism. Moreover, we focused on 
age-related differences as the modular structure of the 
DMN has been suggested to arise between childhood and 
early adulthood (Buckner & DiNicola, 2019). We had three 
main expectations. First, we expected reduced connectivity 
for regions of the dMPFC subsystem based on the link 
between this subsystem and mentalising (Carter et al., 
2012; Castelli et al., 2002; Greicius et al., 2004; Kuzmanovic 
et al., 2011; Saxe & Kanwisher, 2003; Spreng et al., 2009). 
Second, we expected higher connectivity based on reports 
of altered DMN organisation in autism (Cherkassky et al., 
2006; Kennedy & Courchesne, 2008; Weng et al., 2009). 
Third, we expected a less modular organisation character-
ised by lower modularisation index (Rubinov & Sporns, 
2011) and higher between-module connectivity in younger 
(i.e. children) compared to older (i.e. adolescents) partici-
pants (Buckner & DiNicola, 2019).

Materials and methods

Participants

The current analysis made use of publicly available data 
from the Autism Brain Imaging Data Exchange (ABIDE, 
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Martino et al., 2014; ABIDE-II, Martino et al., 2017). Both 
the ABIDE and ABIDE-II database contain data from par-
ticipants with a diagnosis of autism spectrum condition 
(abbreviated as ASC from here on) and a comparison group 
of individuals without a diagnosis (abbreviated as CMP 
from here on).1 We only included male participants under 
18 years of age to reduce the variability in the sample 
(Alaerts et al., 2016; Kozhemiako et al., 2020; Lawrence 
et al., 2020). Furthermore, we did not include acquisition 
sites with an eyes-open resting-state protocol to keep the 
acquisition consistent across the included sample. The ini-
tial sample after applying these criteria comprised 299 par-
ticipants in the ASC group and 266 in the CMP group. To 
mimise the influence of low-quality scans, we excluded 
scans that were rated as low quality by human experts 
(n = 88) or fell outside of the recommend range on image 
quality metrics (frame-wise displacement (FD) > 0.5 mm: 
n = 46; DVARS > 5%: n = 24). Furthermore, we excluded 
participants at the extreme of the distribution for full-scale 
IQ (<5%ile (standard score < 83): n = 27; >95%ile (stand-
ard score > 130): n = 21). The final sample comprised 401 
participants (ASC: n = 193, CMP: n = 208; see Table 1 for 
sample characteristics) from 14 acquisition sites. To inves-
tigate the association between symptom scores and DMN 
structure, we focused on the Social Responsiveness Scale 
total score (SRS, z-scaled raw scores) and the ADOS-G 
total scores (z-scaled raw score) because these measures 
were available for the largest sub-sample of participants in 
the ASC group (SRS: n = 102, age: 11.31 ± 3.045; ADOS: 
n = 94, age: 12.58 ± 2.803 (mean ± SD)).

fMRI processing

Preprocessing. The current analysis was based on pre-
processed data made available by the Preprocessed 

Connectome Project to ensure the replicability of the 
findings (http://fcon_1000.projects.nitrc.org/indi/abide/). 
We used data processed using fMRIPrep, a state-of- 
the-art fMRI processing pipeline fMRIPrep v1.2.5 
(PRID:SCR_016216). To briefly summarise the process-
ing step, the T1-weighted (T1w) image was corrected for 
intensity non-uniformity (INU) using N4BiasFieldCor-
rection (ANTs 2.2.0) and used as T1w-reference through-
out the workflow. The T1w-reference was then 
skull-stripped using antsBrainExtraction.sh (ANTs 
2.2.0), using OASIS as the target template. Brain sur-
faces were reconstructed using recon-all (Dale et al., 
1999; FreeSurfer 6.0.1, RRID:SCR_001847), and the 
brain mask estimated previously was refined with a cus-
tom variation of the method to reconcile ANTs-derived 
and FreeSurfer-derived segmentation of the cortical 
grey-matter of Mindboggle (Klein et al., 2017; 
RRID:SCR_002438). Spatial normalisation to the ICBM 
152 Nonlinear Asymmetrical template version 2009c 
(Fonov et al., 2009; RRID:SCR_008796; see ‘Considera-
tions regarding standard space transformation’ in the 
Supplementary Materials) was performed through non-
linear registration with antsRegistration (Avants et al., 
2007; ANTs 2.2.0, RRID:SCR_004757), using brain-
extracted versions of both T1w volume and template. 
Brain tissue segmentation of cerebrospinal fluid (CSF), 
white matter (WM) and grey matter (GM) was performed 
on the brain-extracted T1w using FAST (Zhang et al., 
2001; FSL 5.0.9, RRID:SCR_002823).

For each BOLD run per subject, the following pre-
processing was performed. First, a reference volume and 
its skull-stripped version were generated using a custom 
methodology of fMRIPrep. The BOLD reference was 
then co-registered to the T1w reference using bbregister 
(FreeSurfer) which implements boundary-based registra-
tion (Greve & Fischl, 2009). Co-registration was config-
ured with 9 degrees of freedom to account for distortions 
remaining in the BOLD reference. Head-motion param-
eters with respect to the BOLD reference (transformation 
matrices, and six corresponding rotation and translation 
parameters) are estimated before any spatiotemporal fil-
tering using mcflirt (Jenkinson et al., 2002; FSL v5.0.9). 
The BOLD time series were resampled onto their origi-
nal, native space by applying a single, composite trans-
form to correct for head-motion and susceptibility 
distortions. The BOLD time series were resampled to 
MNI152NLin2009cAsym standard space, generating a 
preprocessed BOLD run in MNI152NLin2009cAsym 
space. Several confounding time series were calculated 
based on the preprocessed BOLD: FD, DVARS and three 
region-wise global signals. FD and DVARS were calcu-
lated for each functional run, both using their implemen-
tations in Nipype (following the definitions by Power 
et al, 2014). Global signals were extracted within a CSF 
and a WM mask defined in the anatomical image for con-
found regression.

Table 1. Overview of sample characteristics (ASC: n = 193; 
CMP: n = 208).

Mean SD Min Max  

Age (years)
 ASC 12.34 3.013 5.53 18.00
 CMP 12.66 2.282 6.36 18.00
FIQ (scaled score)
 ASC 107.04 11.669 84 129.50
 CMP 110.36 10.639 84 129.00
FD (mm)
 ASC 0.18 0.098 0.03 0.49
 CMP 0.15 0.090 0.04 0.49
DVARS (%)
 ASC 3.36 0.705 1.35 4.73
 CMP 2.87 0.678 1.36 4.55

ASC: autism spectrum condition; CMP: comparison; SD: standard 
deviation; FIQ: Full-Scale IQ; FD: frame-wise displacement (according 
to Power et al. (2014)); DVARS: derivative of the variance.
Please note that only male participants were included in the sample for 
this analysis.

http://fcon_1000.projects.nitrc.org/indi/abide/
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Calculation of DMN connectivity. Prior to time-series extrac-
tion, the effect of 32 nuisance signals (CSF, WM, rotation 
and translation in three directions, their temporal deriva-
tive, squared temporal derivative and squared term, see 
Satterthwaite et al., 2012) and the first five principal com-
ponents of the 5% most variable voxels (CompCor; 
Behzadi et al., 2007) was regressed from each voxel. Fur-
thermore, the data were filtered using a band-pass filter 
(0.008–0.1 Hz), spatially smoothed (6 mm FWHM) and 
de-trended using nilearn v0.5.2 (Abraham et al., 2014; 
RRID:SCR_001362). Subsequently, the time series for 
regions of interest (ROIs) within the DMN was extracted 
by averaging the signal within spheres (radius: 8 mm) cen-
tred at the DMN coordinates from a seminal study on 
DMN subnetworks (Andrews-Hanna et al., 2010; see 
Table 1, see ‘Considerations regarding ROI defintion’ in 
the Supplementary Materials). Next, the same regressors 
that were used to correct nuisance signals at the voxel level 
were regressed from the ROI time series (Abraham et al., 
2017) and the correlation between the time series residuals 
of all pairwise combinations of ROIs was calculated. For 
statistical analysis, correlations were transformed using 
Fisher’s r-to-z transform.

The data quality may differ between ROIs, which could 
confound the connectivity analysis. To investigate differ-
ences in signal quality between the ROIs, we calculated 
the BOLD SNR according to the definition by Kruger and 
Glover (2001) as implemented in MRIQC v0.15.1. There 
was no significant difference in SNR between ROIs (one-
way analysis of variance (ANOVA): F(10, 3278) = 0.79, 
p = 0.640). We also checked if the interaction between ROI 
and acquisition site was associated with SNR to account 
for differences in SNR between acquisition sites but did 
not find a significant interaction (ANOVA: site × ROI: 
F(110, 3157) = 0.529, p > 0.999).

To characterise the structure of the DMN subdivisions, 
we focused on a network measure called modularity. 
Within network science, modularity is the degree to which 
a network can be divided into separate modules that show 
higher connectivity between the nodes within that module 
than with the rest of the network. Modularity can be char-
acterised through the modularity index which is based on 
the ratio of within- versus between-module connections 
for a given module division of the network. Higher modu-
larity index values indicate a greater modular organisation 
of the network. The modularity index was calculated based 
on the weighted, undirected connectivity matrices as 
described by Rubinov and Sporns (2011). The module 
solution identified by Andrews-Hanna et al. (2010) was 
used for this purpose (Figure 1 and Table 2).

Statistical analysis. To account for non-normality and large 
variability in the data, we performed permutation-based 
statistical analyses. For this purpose, we created 1000 
bootstrap samples of the original data and of data with 

scrambled outcome-predictor associations. In each boot-
strap sample, we fitted a general linear model (GLM) with 
predictors of age (continuous), group (ASC, CMP) and 
their interaction (age × group). Furthermore, the model 
contained full-scale IQ as a nuisance regressor. Please note 
that we did not include acquisition site as a nuisance 
regressor, because site was confounded with age (one-way 
ANOVA: F(19, 381) = 17.24, p < 0.001, η 2 0 46= . , 
ω2 0= .43 ). Instead, we accounted for between-site differ-
ences in image quality. We obtained p values by compar-
ing the bootstrapped median regression coefficient to the 
distribution of coefficients obtained with the scrambled 
data. We applied false discovery rate (FDR) correction 
using the Benjamini–Hochberg method to account for 
multiple comparisons across ROIs. For comparisons of 
summed connection strengths, we applied Bonferroni cor-
rection. All reported p values are corrected for multiple 
comparisons. While age was treated as a continuous vari-
able for all statistical analyses, we split the ASC and CMP 
group into an older and a younger group for visualisation 
purposes using median splits in each group (ASC younger: 
n = 96, age: mean = 9.89, SD = 1.705; ASC older: n = 96, 
age: mean = 14.81, SD = 1.759; CMP younger: n = 104, 
age: mean = 10.23, SD = 1.459; CMP older: n = 104, age: 
mean = 15.09, SD = 1.599).

To investigate the association between autism symp-
toms and DMN connectivity, we used separate GLMs with 
symptom score as the outcome and DMN measures as the 

Figure 1. Illustration of DMN ROIs. The colour indicates the 
subsystem associated with each node.
aMPFC: anterior medial prefrontal cortex; dMPFC: dorsal medial 
prefrontal cortex; HF: hippocampal formation; LTC: lateral temporal 
cortex; MTL: medial temporal lobe; PCC: posterior cingulate cortex; 
PHC: parahippocampal cortex; pIPL: posterior inferior parietal lobe; 
RSP: retrosplenial cortex; TempP: temporal pole; TPJ: temporal parietal 
junction; vMPFC: ventral medial prefrontal cortex.
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predictor (modularity index, between-module connection 
strength, MTL module connection strength, dMPFC mod-
ule connection strength, core module connection strength). 
We also included full-scale IQ, the four image quality fac-
tors (see ‘Results’ for a description) and age (linear, 
squared) as predictors of no interest. We applied the same 
bootstrap resampling method as described above to evalu-
ate the model.

The code to reproduce the analyses is available on the 
Open Science Framework website (https://osf.io/y835k/? 
view_only=bdedc67a1a044589918ad6b528353e6b).

Results

The number of participants per acquisition site did not differ 
between the groups (ASC compared to average: χ 2 =17 17.
, p = 0.578; CMP compared to average: χ 2 =17 39. , 
p = 0.564). The groups showed no significant difference in 
age (Welch-corrected t test: t(393.12) = −1.08, p = 0.279, 
d = −0.11). There was a difference in full-scale IQ scores 
with slightly lower scores in the ASC group 
(t(388.23) = −2.97, p = 0.001, d = 0.34). There was also a dif-
ference in image quality as indicated by more FD 
(t(389.44) = 3.4, p = 0.001, d = 0.34) and higher DVARS 
(t(393.62) = 2.35, p = 0.019, d = 0.24) in the ASC group. In 
addition, there was a higher number of movement outliers in 
the ASC group, defined as a movement score (FD or 
DVARS) above the 95th percentile across groups (FD: ASC: 
n = 11; CMP: n = 9, χ 2 0=19. , p = 0.168; DVARS: ASC: 
n = 13, CMP: n = 7, χ 2 0= =19 7 34. . , p = 0.007). To account 
for differences in image quality, we ran a principal compo-
nent analysis on the 30 image quality metrics generated by 
MRIQC v0.14 (see Supplementary Materials for full list). A 
four-factor solution provided the best account of the image 
quality data (see Supplementary Materials for details). To 
check that the image quality factors removed between-site 

confounds, we compared the performance of support vector 
machine (SVM) classification tasked with predicting acqui-
sition site from the DMN connectivity values. We trained 
the SVM models in a random selection of two-thirds of the 
data and tested the performance in the held-out third. Using 
the native connectivity values, the accuracy of the predic-
tion in unseen data was 0.26 (accuracy adjusted for unequal 
class sizes). When regressing the quality values, the accu-
racy dropped to 0.16. In contrast, when using ‘site’ as a cat-
egorical regressor, the accuracy was 0.17.

The analysis of connection strengths indicated signifi-
cantly lower connection strength in the older compared to 
younger participants, particularly for connections between 
subsystems (see Figure 2(a) and (b)). The association 
between age and connection strength was stronger in the 
ASC compared to the CMP group as indicated by signifi-
cant age × group interactions. The largest interaction 
effects were observed for between-module connections 
(see Figure 2(b)).

The analysis of summed connection strength between 
subsystems indicated a significant age × group interaction 
with greater reduction in connection strength in the ASC 
group (age: p < 0.001, group: p = 0.656, age × group: 
p = 0.012; see Figure 2(c)). This interaction was also 
observed when excluding motion outliers (age: p < 0.001, 
group: p = 0.768, age × group: p = 0.048). The connection 
strength of the MTL subsystem was lower in older partici-
pants in both groups (age: p = 0.004, group: p > 0.999, 
age × group: p = 0.064; see Figure 2(c)). This effect was 
also observed when excluding motion outliers (age: 
p < 0.001, group: p > 0.999, age × group: p = 0.128). The 
dMPFC subsystem showed a significant association of age 
with connection strength (dMPFC: age: p = 0.028, group: 
p > 0.999, age × group: p = 0.072; see Figure 2(c)). The 
age effect in the dMPFC subsystem remained when 
excluding motion outliers (age: p = 0.028, group: p = 0.508, 

Table 2. Labels, coordinates and subsystem membership of DMN ROIs in the current analysis taken from Andrews-Hanna et al. 
(2010).

Region x x z Subsystem

Ventral medial prefrontal (vMPFC) 0 26 −18 MTL Subsystem
Posterior inferior parietal lobe (plPL) −44 −74 32 MTL Subsystem
Retrosplenial cortex (Rsp) −14 −52 8 MTL Subsystem
Parahippocampal cortex (PHC) −28 −40 −12 MTL Subsystem
Hippocampal formation (HF) −22 −20 −26 MTL Subsystem
Dorsal medial prefrontal cortex (dMPFC) 0 52 26 dMPFC Subsystem
Temporal parietal junction (TPJ) −54 −54 28 dMPFC Subsystem
Lateral temporal cortex (LTC) −60 −24 −18 dMPFC Subsystem
Temporal pole (TemP) −50 14 −40 dMPFC Subsystem
Anterior medial prefrontal cortex (aMPFC) −6 52 −2 PCC-aMPFC Core
Posterior cingulate cortex (PCC) −8 −56 26 PCC-aMPFC Core

DMN: default mode network; ROIs: regions of interest; vMPFC: ventral medial prefrontal cortex; MTL: medial temporal lobe; plPL: posterior 
inferior parietal lobe; Rsp: retrosplenial cortex; PHC: parahippocampal cortex; HF: hippocampal formation; dMPFC: dorsal medial prefrontal cortex; 
TPJ: temporo-parietal junction; LTC: lateral temporal cortex; TemP: temporal pole; aMPFC: anterior medial prefrontal cortex; PCC: posterior 
cingulate cortex.

https://osf.io/y835k/?view_only=bdedc67a1a044589918ad6b528353e6b
https://osf.io/y835k/?view_only=bdedc67a1a044589918ad6b528353e6b
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age × group: p = 0.276). There were no significant age or 
age × group effects for the core system (age: p = 0.052, 
group: p = 0.996, age × group: p = 0.044). There was no 
significant association between connection strength in any 
module and SRS scores (n = 102, between: β = 0 0. 6  
(−0.104, 0.215), p > 0.999; MTL: β = 0 0. 6  (−0.094, 
0.213), p > 0.999; core: β = 0.12  (−0.296, 0.039), 
p > 0.999; dMPFC: β = 0 0. 5  (−0.132, 0.231), p > 0.999; 
median (5%ile, 95%ile) based on 1000 bootstrap permuta-
tions). There was also no association between connection 
strength and ADOS scores (n = 94; between: β = 0.15  
(−0.028, 0.342), p = 0.292; MTL: β = 0.16  (−0.010, 
0.339), p = 0.236; core: β = −0.15  (−0.334, 0.042), 
p > 0.999; dMPFC: β = 0.19  (0.0049, 0.351), p = 0.136).

The modularity index show a significant age × group 
interaction with a lower modularity in younger participants 
with ASC but similar modularity in the ASC and CMP 

group at older ages (age: p = 0.001, group: p = 0.086, 
age × group: p = 0.001; see Figure 2(d)). The age and inter-
action effects remained when excluding motion outliers 
(age: p = 0.001, group: p = 0.122, age × group: p = 0.007). 
There was no significant association between the modular-
ity index and SRS scores or ADOS scores (SRS: n = 102, 
β = −0.12  (−0.288, 0.057), p = 0.889; ADOS: n = 94, 
β = −0.14  (−0.324, 0.046), p = 0.921).

Discussion

This study investigated differences in DMN subnetworks in 
autism across childhood and adolescence. The results indi-
cated more pronounced decreases in connection strength in 
the ASC group, particularly for connections between DMN 
subnetworks (Hypothesis 1). Also contrary to our expecta-
tion, the differences in the ASC group were tied to 

Figure 2. Differences in DMN connections. (a) Average adjacency matrix in younger (left) and older (right) participants in the ASC 
(top) or CMP (bottom) group. White boxes indicate the boundaries of subnetworks (green: MTL subsystem; yellow: PCC-aMPFC 
core; blue: dMPFC subsystem). Please note that age was treated as a continuous variable in the main analysis. The age split is only 
shown for illustration purposes. (b) Results of the statistical analysis. The upper matrix shows significant age effects with FDR-
corrected p values in the lower triangle and the standardised regression coefficient ( )β  in the upper triangle. The lower matrix 
shows the age × group interaction. (c) Regression results for the association between age and connection strength in the ASC (red) 
and CMP (grey) group per region. The regression lines and confidence intervals were based on 5000 bootstrap samples drawn from 
the original data. (d) Regression results for the association between age and modularity in the ASC (red) and CMP (grey) group.
btw: between module; MTL: MTL subsystem; dMPFC: dMPFC subsystem; core: PCC-aMPFC subsystem.
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differences in between-subnetwork connection strength 
rather than differences in the dMPFC subsystem (Hypothesis 
2). In line with our expectation (Hypothesis 3), the results 
indicated a less modular organisation as indicated by more 
between-subnetwork connections and a lower modularisa-
tion index in autism, but mostly in younger participants.

In line with previous studies, the results of the current 
analysis indicated higher connectivity within the DMN in 
younger autistic children (Glerean et al., 2015; Lynch 
et al., 2013; Moseley et al., 2015). This difference was 
attenuated in adolescents. The strongest decreases in con-
nection strength were observed in between-subnetwork 
connections, which was also reflected in a higher modular-
ity index with age. Previous studies in a similar age range 
provided inconsistent results with some studies reporting 
higher connectivity and others reporting lower connectiv-
ity in the DMN (Assaf et al., 2010; Cheng et al., 2015; 
Jung et al., 2014; Monk et al., 2009; Supekar et al., 2013; 
Washington et al., 2013; Weng et al., 2009). These incon-
sistencies have been attributed to differences in the age 
composition of samples. Uddin and colleagues (2013) sug-
gested that functional connectivity differences in ASC 
shift from relative hyperconnectivity in early development 
towards relative hypoconnectivity in adolescence and 
adulthood. Consistent with this suggestion, this study indi-
cated higher DMN subnetwork connectivity in childhood 
in autism that shifts towards lower connectivity and greater 
DMN modularity in adolescence. There was no indication 
for DMN hypoconnectivity in adolescence, instead DMN 
subnetwork connection strength appeared similar in the 
ASC and neurotypical groups towards the end of the 
included age range (18 years). Potential hypoconnectivity 
as suggested by Uddin and colleagues may arise in later 
development (>18 years). Alternatively, the reduction in 
hyperconnectivity in the ASC group may suggest a delayed 
developmental pattern. A recent authoritative review on 
the DMN (Buckner & DiNicola, 2019) suggests that the 
modularisation of the DMN subsystems is an activity-
dependent developmental process. According to this 
model, the proto-DMN is less specialised and more dis-
tributed in early typical development. Activity within the 
MTL subsystem is driving the subsequent specialisation 
towards the MTL and dMPFC subsystems that serve spe-
cific processes. The results of the current analysis of 
greater between-subnetwork connectivity and age-by-
group differences within the MTL subsystem may suggest 
that the development of DMN subsystem modularisation 
may unfold differently in autism. However, a younger age 
range in the neurotypical group would be required to 
investigate the developmental delay hypothesis.

There are some limitations to this study. Between-site 
variability is the most challenging limitation of this study. 
As age and site were confounded, we could not follow the 
analyses which are typically run with the ABIDE data sets. 

However, our approach to account for signal quality 
removed some of the differences between sites. Yet, in 
addition to variation in technical aspects, the samples from 
different sites likely vary in other respects. Autism is 
extremely variable with many factors that may introduce 
variation such as pharmacological or behavioural interven-
tion, age of onset, overall disability and symptom profile 
that could not be controlled in the current analysis. Large 
data collection efforts that acquire neuroimaging and phe-
notypic data from multiple sites with a harmonised proto-
col will be needed to account for this heterogeneity, such 
as the ongoing European Autism Interventions – A 
Multicentre Study for Developing New Medications (EU 
AIMS) initiative. Second, to reach a sufficient number of 
participants, we had to rely on cross-sectional data, which 
limits the conclusions that can be drawn about develop-
mental trajectories. Future longitudinal studies are needed 
to investigate individual trajectories to firmly establish the 
development of the DMN subnetworks in autism. Second, 
the current analysis was based on data collated from sev-
eral studies with no harmonisation of the acquisition pro-
tocol, which may introduce confounds. Third, this study 
focussed on autistic males. Sex has been found to influ-
ence connectivity, including connectivity of the DMN 
(Floris et al., 2018; Ypma et al., 2016). Differences in 
DMN development in autistic females remain to be inves-
tigated in future research. Fourth, the available phenotypic 
characterisation of the ASC group was limited and only 
available for half of the autism group. Future dedicated 
studies that combine out-of-scanner behavioural testing 
and potentially task fMRI assessments will be best suited 
to establish these associations.

In summary, the current analysis investigated differ-
ences in DMN subsystem organisation in autism across 
childhood and adolescence. The results indicated a devel-
opmental trend towards greater modularisation of the 
DMN, mostly driven by a reduction in between-subnet-
work connectivity. We suggest that this may reflect a 
delayed maturation of the DMN in autistic males. These 
results may inform future studies on the brain-level aetiol-
ogy of autism across development.
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Note

1. A note on nomenclature: We use the term of ‘autism spec-
trum condition’ throughout this article because the tradition-
ally used term ‘autism spectrum disorder’ carries unjustified 
negative connotations. With regard to the label ‘comparison 
group’, we were aiming for the most accurate description 
of the group of participants without a diagnosis. The term 
‘comparison group’ is used because the term ‘control group’ 
is reserved for experimental settings in which the researcher 
has control over the group assignment. The analysis pre-
sented in the article was based on groups that were recruited 
based on their diagnosis and were not randomly assigned. 
Therefore, it would not be accurate to use the term ‘control’ 
to describe the group without a diagnosis. Furthermore, it 
was not assessed if the group without a diagnosis was in fact 
‘typically developing’ or ‘neurotypical’. For that reason, we 
prefer to not apply these labels.
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