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Abstract: Background: Ischemic heart disease is a major global health problem with
significant morbidity and mortality. Several cardiometabolic variables play a key role in
the incidence of adverse cardiovascular outcomes. Objectives: The aim of the present
study was to apply a machine learning approach to investigate factors that can predict
acute coronary syndrome in patients with a previous episode. Methods: We recruited
652 patients, admitted to the hospital for acute coronary syndrome, eligible if undergoing
immediate coronary revascularization procedures for ST-segment-elevation myocardial
infarction or coronary revascularization procedures within 24 h. Results: Baseline pulse
wave velocity appears to be the most predictive variable overall, followed by the occurrence
of left ventricular hypertrophy and left ventricular end-diastolic diameters. We found
that the potential of machine learning to predict life-threatening events is significant.
Conclusions: Machine learning algorithms can be used to create models to identify patients
at risk for acute myocardial infarction. However, great care must be taken with data quality
and ethical use of these algorithms.
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1. Introduction
Ischemic heart disease (IHD) is a major global health problem with significant mor-

bidity and mortality, accounting for 20% of all deaths in Europe [1,2]. The etiology of IHD
is identified as a consequence of the interaction between several risk factors, including
lifestyle and genetic risk factors [3]. One of the most common causes of acute myocar-
dial infarction (AMI) is obesity, which is widely recognized as one of the most important
modifiable causes of cardiovascular (CV) morbidity and mortality [4], mainly due to its
adverse effects on metabolic components [5]. It is most commonly defined through the
“body mass index” (BMI) and plays a key role in metabolic syndrome (MetS) according
to the American Heart Association/National Heart, Lung and Blood Institute criteria [6].
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Recent reports have identified some subpopulations with different BMI and metabolic
characteristics, differing in weight and healthy or unhealthy metabolic profile [7,8], with
different risks of type 2 diabetes mellitus and cardiovascular disease [9]. Other reports
also confirm a close correlation between older age and higher risk of CVD in this type
of population [10]. Although IHD is one of the most studied cardiovascular diseases,
its complex mechanism is still a matter of debate due to its different characteristics in
different populations. Acute coronary syndrome (ACS) seems to occur four times more
often in younger men than in younger women (under 60 years old), and vice versa; after
75 years old, women represent the majority of patients [11]. The current literature shows
a non-direct relationship between metabolic profile and cardiovascular events; on the
contrary, it seems that various cardiometabolic variables play a key role in the incidence
of adverse cardiovascular outcomes [1,12–15]. Conflicting results are described in the
metabolically unhealthy obese (MUO) population, which seems to have a higher incidence
of CV diseases with a higher risk of mortality and morbidity compared to the metabolically
healthy obese (MHO) population, and the latter confers an increased risk of heart failure,
but not of acute myocardial infarction. To our knowledge, the effects of the metabolic
phenotype on CV recurrence are unknown in patients with a previous AMI treated with
coronary revascularization procedures. Previous research indicates several predictors of
AMI, from demographic to socioeconomic, geographic, gender-related, and psychological
factors [16,17]. The aim of this research was to investigate the risk factors for acute coronary
syndrome, in particular those related to body mass index, in patients with previous ACS
by using a machine learning approach.

2. Materials and Methods
2.1. Population

We recruited 652 patients (Table 1), admitted to the University Hospital “G. Martino”
of Messina, hospitalized for acute coronary syndrome (ACS). Patients were eligible if they
met the criteria for ACS, proposed by the Joint European Society of Cardiology/American
College of Cardiology Committee [1,5], and if they underwent immediate coronary revas-
cularization procedures (primary PCI) for ST-elevation myocardial infarction (STEMI),
coronary revascularization procedures (early PCI) within 24 h for myocardial infarction
without ST elevation (nSTEMI), or diagnostic coronary angiography following coronary
artery bypass graft surgery (CABG).

Exclusion criteria were well-known coronary artery disease or previous ACS, PCI
following CABG, cardiogenic shock, atrial fibrillation, peripheral artery disease, severe
cardiac valve disease, and prosthetic aorta.

Table 1. Demographic, clinical, and biochemical characteristics of the study population stratified
by metabolic and obesity status. We also described cardiovascular risk factors, the extent of coronary
artery disease, coronary revascularization procedures, and medication use following revascularization.

TOTAL
(652 pts)

MHNW
(358 pts)

MUNW
(168 pts)

MHO
(40 pts)

MUO
(86 pts) p-Value

Demographic characteristics

Male sex (%) 74.8 77.4 71.3 70.0 72.7 0.365

Age (year) 64.0 64.1 64.3 63.2 63.5 0.924

Cardiovascular risk factors

Smokers (%) 38.6 40.2 42.1 35.0 26.1 0.062

Hypertension (%) 65.7 58.4 71.3 62.5 86.4 <0.001

Diabetes mellitus (%) 28.0 19.0 44.9 12.5 38.6 <0.001
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Table 1. Cont.

Clinical parameters

Systolic BP (mmHg) 142.6 139.0 149.7 133.6 146.3 <0.001

Diastolic BP (mmHg) 79.6 78.2 79.6 81.2 84.8 0.001

Heart rate (beats/min) 71.9 71.3 72.4 69.8 74.3 0.320

Ejection fraction (%) 53.8 54.3 52.3 56.5 54.3 0.316

E/A 0.3 0.2 0.4 0.1 0.4 0.09

Extent of coronary artery disease at baseline

No significant coronary artery disease (%) 9.8 12.8 2.8 20.8 6.8

0.005
1-vessel disease (%) 36.9 37.0 39.9 35.0 31.8

2-vessel disease (%) 24.5 24.2 27.0 20.0 22.7

3-vessel disease (%) 28.8 26.1 30.3 25.0 38.6

Coronary revascularization at baseline

Single drug-eluting stent (%) 43.6 41.0 48.9 45.0 43.2 0.386

Multiple drug-eluting stents with
overlapping (%) 12.0 12.2 12.4 7.5 12.5 0.843

Coronary artery bypass graft surgery (%) 10.5 9.8 11.2 10.0 12.5 0.568

Biochemical markers

Total cholesterol (mg/dL) 181.7 179.5 185.7 184.6 181.3 0.461

HDL cholesterol (mg/dL) 44.9 49.0 36.4 52.0 42.1 <0.001

LDL cholesterol (mg/dL) 107.0 108.1 107.3 107.4 101.3 0.565

Triglycerides (mg/dL) 146.5 111.7 209.3 107.0 181.9 <0.001

Fasting glucose (mg/dL) 126.4 114.7 151.8 104.4 134.2 <0.001

Creatinine (mg/dL) 1.0 1.0 1.0 0.9 0.9 0.746

C reactive protein (mg/dL) 10.5 8.5 11.4 12.4 15.4 0.280

Medication following coronary revascularization

Antiplatelet therapy (%) 99.5 99.4 99.6 99.2 100.0 0.954

Statins (%) 99.3 99.7 99.4 98.9 99.5 0.944

Diuretics (%) 28.3 27.4 27.7 28.6 29.7 0.554

ACE inhibitors (%) 97.4 97.6 96.6 98.1 97.3 0.898

Beta-blockers (%) 95.5 95.2 95.1 96.5 95.3 0.789

2.2. Variables Measurements

Variables investigated were blood pressure, metabolic profile, and body mass index.
Also, transthoracic echocardiography was performed for each patient. Blood pressure
(BP) was obtained in the supine position after five minutes of quiet rest with an aneroid
sphygmomanometer, and definite values were obtained as the means of three consecutive
measurements obtained every 3 min. Patients with a clinical SBP > 140 mm Hg and/or
DBP > 90 mm Hg were defined as hypertensive. Body mass index (BMI) was obtained
as body weight (kilograms) divided by the squared height (meters) and further subdi-
vided into the normal weight category if BMI was <25 kg/m2, overweight if BMI was
25.1–29.9 kg/m2, and obese if BMI was >30 kg/m2. Metabolic status was measured as
the circumferences of the waist and hips while the patient was standing and with his
arms relaxed. We also examined fasting serum samples for glucose and lipid profiles.
Then, according to the definition of metabolic syndrome (MetS) of International Diabetes
Federation, we defined the disease if three of five components were registered: (1) blood
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pressure (BP)
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ences of the waist and hips while the patient was standing and with his arms relaxed. We 

also examined fasting serum samples for glucose and lipid profiles. Then, according to 

the definition of metabolic syndrome (MetS) of International Diabetes Federation, we de-

fined the disease if three of five components were registered: (1) blood pressure (BP) ≧ 

130/85 mmHg or drug treatment for elevated blood pressure; (2) a waist circumference 

(WC) ≧ 90 cm (in men) and ≧80 cm (in women) or BMI ≧ 30 kg/m2; (3) fasting plasma 150 mg/dL or drug treatment for elevated triglycerides; (5) serum
high-density lipoprotein (HDL) < 40 mg/dL (in men) and <50 mg/dL (in women) or drug
treatment. Transthoracic echocardiography (TTE) was performed by expert sonographers
who evaluated the patients without knowing their blood pressure or other clinical data.
This involved VIVID 7 ultrasound machines (GE Technologies, Milwaukee, WI, USA) with
an annular phased array 2.5 MHz transducer, as recommended by the American Society of
Echocardiography.

2.3. Population Categories

In order to categorize all participants according to the presence or absence of MetS
or obesity, we divided them into four groups: metabolically healthy and normal weight
(MHNW), metabolically unhealthy but normal weight (MUNW), metabolically healthy but
obese (MHO), and metabolically unhealthy and obese (MUO). Written informed consent
was obtained from each participant before initiating any study-related procedure.

2.4. Study Outcomes

Patients were followed from coronary revascularization for 7 years. Clinical out-comes
were evaluated by monitoring major adverse cardiovascular events (death, fatal, or non-
fatal re-infarction with or without PCI and stroke), seen as cumulative cardiovascular (cCV)
events for all statistical analyses. Procedure-related AMI within 24 h was excluded in the
endpoint.

2.5. Machine Learning: General Principles

Machine learning (ML) was employed to predict the clinical outcomes of patients
included in the dataset based on the input data collected. The clinical outcome prediction
was represented by the occurrence of a hospital admission within a 7-year follow-up.
The presence/absence of the above-mentioned event requires a classification task, for
which suitable models should be implemented and applied. For such models, the best
performances were selected according to the accuracy of the prediction (i.e., the number
of correct predictions with respect to the “real” values of the outcome). However, other
parameters, including the time needed to train the models and the best fit hyperparameters,
will be mentioned in the results.

For all the models, the dataset was divided into 70% of data employed for model
training (i.e., the training set) and 30% for model testing (i.e., the test set). All the models
were evaluated on 10-fold cross-validation, in order to reduce overfitting, ensuring that the
model possessed enough generalizability to further unknown data.

In terms of the variables used for the analysis, a general linear model (GLM) was
first set up. The variables with significance in this first analysis, featuring a p-value below
p = 0.10, were checked for multicollinearity and further selected for application in the
models.

The whole ML analysis was carried out under the open-source R language using the
software RStudio, version 2022.12.0 Build 353 for Windows, available with the GNU Affero
General Public License. All the models were run on a laptop equipped with AMD Ryzen 5
3500U with Radeon Vega Mobile Gfx at 2.10 GHz.

2.6. Machine Learning Models

For the present work, three models suitable for classification purposes were employed
to predict each of the outcomes. Given the prior knowledge of the output values, the
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models selected were “supervised models” and included classification and regression trees
(CARTs), random forest (RF), and support vector machines (SVMs). The models are briefly
presented below.

2.6.1. CART

Classification and regression trees (CARTs) are popular, powerful ML models. Their
bedrock relies on the deconstruction of the overall dataset into smaller groups, via binary
splits of the sample, repeated, one exploratory variable at a time. CARTs outperform
other models in their speed of execution and their adaptation to nearly all kinds of data
(cross-sectional, longitudinal, and survival data), without requiring to be distributed in a
Gaussian fashion. At the same time, they can be used both for classification (as in this case)
and regression purposes. On the other hand, they are quite sensitive to small data changes
and present limited interpretability.

2.6.2. Random Forest

Random forests (RFs) are very popular ML models that can be applied to both regres-
sion and classification tasks. They also rely on decision trees for training, but a much higher
amount, making up a “forest” of trees. Like the “classical” decision trees, they do not need
any particular data preparation prior to the application of the model; they can process
binary, categorical, and numerical features without any need for scaling, normalization, or
standardization. The advantages they have with respect to the “classical” decision trees
include the performance of implicit on-the-run feature selection and the provision of more
accurate indicators of feature importance. Finally, they are unlikely to perform overfitting
and they are relatively quick to train and versatile, but their interpretability is questionable.

2.6.3. SVM

Support vector machines (SVMs) are robust, popular methods for prediction, both
adapted to classification and regression purposes. When receiving a set of training ob-
servations, with a labeled category, the SVM algorithm builds a model assigning new
observations to one category or another, mapping the training observations to points in the
space, aimed at maximizing the gap between the categories. New observations are then
mapped and predicted based on the side of the gap they fall on. To perform this, different
kinds of classifications are possible, including linear (the most popular and simplest one) or
non-linear ones, mapping inputs into high-dimensional feature spaces, with the application
of dedicated kernels (radial, polynomial, sigmoid, etc.). For the present study, in order
to manage the trade-off between prediction accuracy, computational load, and execution
speed, we evaluated the performances of linear and radial basis function (RBF) kernels
using a grid search for hyperparameter tuning.

3. Results
During the 7-year follow-up period, patients underwent two follow-up visits in the

first year and annual visits thereafter. The incidence rate of the assessed endpoint varied
among the different metabolic and obesity status groups: 8.4 per 100 patient-years in the
MHNW (metabolically healthy normal weight) group, 14.6 per 100 patient-years in the
MUNW (metabolically unhealthy normal weight) group, 12.5 per 100 patient-years in the
MHO (metabolically healthy obese) group, and 20.4 per 100 patient-years in the MUO
(metabolically unhealthy obese) group. These findings highlight a higher incidence of the
endpoint in metabolically unhealthy and obese patients, suggesting a potential impact of
metabolic status and obesity on long-term outcomes after revascularization. We find that
variables associated with hospital admission included metabolic obesity, obesity, metabolic
healthy normal weight (MHNW), height, weight, pulse wave velocity (PWV), first stent
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length, intervascular (IV) septum size, posterior wall size, E/A ratio (the ratio between
early and late transmitral flow), and the presence of metabolic syndrome at baseline. In
terms of the models employed, the results related to the test set accuracy are displayed in
Table 2.

Table 2. Performances of the different models trained on the test set data.

Metrics CART RANDOM FOREST SVM

LINEAR RBF

Accuracy (%) 82.18 85.15 73.76 82.18

Sensitivity (%) 14.29 37.50 11.54 11.54

Specificity (%) 87.23 89.25 82.95 92.61

Time elapsed (s) 37.84 173.17 2.55 19.22

Hyperparameter (s) cp = 0.041 mtry = 3 cost = 5
SVs = 82

Cost = 1
Gamma = 1
SVs = 124

Performances of the different models trained on the test set data (CART: classification and regression tree; cp: cost
complexity parameter; mtry: number of predictors that will be randomly sampled at each split when creating the
tree models; RBF: radial basis function; SV: support vector; SVM: support vector machine).

Random forest was seen to perform the best, correctly classifying data in 85.15% of
cases in a relatively short amount of time (less than 3 min with the above-mentioned
computational availability). However, if we consider sensitivity and specificity as other
parameters of interest, then random forest holds an excellent 89.25% of specificity; however,
it falls to 37.50% in terms of sensitivity, failing in classifying as positive most of the real
positive cases despite the excellent performances reported with the training set, where all
individuals were correctly classified. This lack of performance in the test set was seen in
all the models and is likely due to different factors, among which is the relatively scarce
number of real positive cases in the test set, which is deemed an intrinsic issue of the
present dataset.

Focusing on the “best model” in this task, random forest was seen to perform the best
when the mtry parameter, i.e., the number of predictors randomly sampled at each split
when creating the tree models, was set to be equal to 3 (see Figure 1).

Clin. Pract. 2025, 15, x FOR PEER REVIEW 6 of 13 
 

 

baseline. In terms of the models employed, the results related to the test set accuracy are 

displayed in Table 2. 

Table 2. Performances of the different models trained on the test set data. 

Metrics CART RANDOM FOREST SVM 

 LINEAR RBF 

Accuracy (%) 82.18 85.15 73.76 82.18 

Sensitivity (%) 14.29 37.50 11.54 11.54 

Specificity (%) 87.23 89.25 82.95 92.61 

Time elapsed (s) 37.84 173.17 2.55 19.22 

Hyperparameter (s) cp = 0.041 mtry = 3 
cost = 5 

SVs = 82 

Cost = 1 

Gamma = 1 

SVs = 124 

Performances of the different models trained on the test set data (CART: classification and regres-

sion tree; cp: cost complexity parameter; mtry: number of predictors that will be randomly sampled 

at each split when creating the tree models; RBF: radial basis function; SV: support vector; SVM: 

support vector machine). 

Random forest was seen to perform the best, correctly classifying data in 85.15% of 

cases in a relatively short amount of time (less than 3 min with the above-mentioned com-

putational availability). However, if we consider sensitivity and specificity as other pa-

rameters of interest, then random forest holds an excellent 89.25% of specificity; however, 

it falls to 37.50% in terms of sensitivity, failing in classifying as positive most of the real 

positive cases despite the excellent performances reported with the training set, where all 

individuals were correctly classified. This lack of performance in the test set was seen in 

all the models and is likely due to different factors, among which is the relatively scarce 

number of real positive cases in the test set, which is deemed an intrinsic issue of the pre-

sent dataset. 

Focusing on the “best model” in this task, random forest was seen to perform the best 

when the mtry parameter, i.e., the number of predictors randomly sampled at each split 

when creating the tree models, was set to be equal to 3 (see Figure 1). 

 

Figure 1. Accuracy performances, varying the mtry hyperparameter, for random forest in predicting 

the outcome based on the training set data. 

Figure 1. Accuracy performances, varying the mtry hyperparameter, for random forest in predicting
the outcome based on the training set data.



Clin. Pract. 2025, 15, 72 7 of 12

This means that the model is quite simple overall and explores just a very small subset
of the features contained in the dataset, with most of the features included in it deemed not
predictive for the specific classification task required.

However, artificial intelligence is now becoming easier and easier to interpret, even
by people without particular skills in information technology (IT) and close subjects. The
research on the so-called explainable artificial intelligence (explainable AI, or XAI) is rapidly
growing, and even the medical sector is interested in this scaling up of data interpretation.
Of course, XAI also makes use of approaches and tools, which are out of the scope of the
present article; however, the clinician might strongly benefit from a brief interpretation of
the obtained results.

One of the first evaluations to be performed in this sense is related to the study around
the variable importance in outcome prediction. The analysis performed gave the results
shown in Figure 2.
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Figure 2. Variable importance, as a percentage of the overall relative weight, for the random forest
model. MHNW: metabolically healthy normal weight; PWV Basal: pulse wave velocity at baseline;
E/A: ratio of early (E) to late (A) ventricular filling velocities (a marker of diastolic function).

As displayed in the figure, the basal value of the pulse wave velocity (PWV) appears to
be largely the most predictive variable overall, followed by the occurrence of left ventricular
hypertrophy and left ventricular end-diastolic diameters. The basal value of pulse wave
velocity is recorded as the velocity at which the mechanical wave propagates along the
arterial wall. PWV represents a useful surrogate marker for arterial vessel stiffness. With
respect to the other models trained and whose parameters are not shown here due to their
worse performances compared to random forest, the latter does give a lower importance to
the E/A ratio, i.e., the ratio between early and late transmitral flow. This parameter does
not appear to be as predictive as supposed by the CART, giving an important insight for
the clinician in the interpretation of the available data, possibly also influencing the choice
of certain exams in the basal clinical characterization of an individual with early suspected
evidence for a possible future cardiovascular event that might lead to hospital admission.

Another important consideration that could be derived regards the “computational
load” for such models. In all cases, they were run on a modern, although average-priced
laptop, an instrument that is affordable for most end-users. This choice for a bench testing
strategy was performed to evaluate the feasibility of running such models on general-
purpose machines, so that the results obtained can be scalable to nearly any domain,
including everyday clinical practice. Referring to this, random forest, despite being the
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slowest model to provide results given its relative complexity with respect to the CART
and SVM, completed the task within 3 min from its launch, proving the ability to perform
a fair estimation of the outcome even in very short amounts of time, highlighting its
usability even in non-laboratory settings or in disadvantaged places around the globe,
where computational resources are often a major limitation to AI exploitation. In cases
where superior performances in terms of computational speed are required, several research
infrastructures devoted to calculation can be reached through dedicated agreements, such
as, for example, the SoBigData++ (https://plusplus.sobigdata.eu/) infrastructure, hosted
at the National Research Council of Italy, granting faster response times and optimal
computational performances overall.

4. Discussion
In recent years, many studies have shown machine learning (ML) applications in

medical research [18,19]. In fact, ML can be used as a standalone application, but even more
proficiently, alongside traditional risk scores to predict the occurrence of acute events [20];
to follow disease trajectories [21], allowing for precise risk stratification; or in decision
support systems (DSSs) [22], to the benefit of the clinician. With respect to the current
literature, although our best performing model is deeply affected by quite a low sensitivity,
which is a major drawback for prediction purposes in the clinical setting—especially with
AMI, being that such a result was probably affected by the much lower occurrence of “posi-
tive” cases in our dataset—our findings are confirmed by many reports in the literature
about the association between pulse wave velocity (PWV), left ventricular hypertrophy
(LVH), left ventricular end-diastolic diameter (LVEDD), and the increased risk of AMI,
confirming their role in the incidence of acute coronary syndrome [23,24]. Studies have
shown that PWV, a non-invasive measure of arterial stiffness, is strongly correlated with
cardiovascular disease and mortality. It is believed to be a marker of the aging process,
increasing in older people, and is associated with the development of atherosclerosis and
hypertension [25]. Many reports also showed PWV as an independent predictor of cardio-
vascular events. In particular, it was found to be a significant predictor of AMI, stroke, and
heart failure [26], even more than the known traditional risk factors such as blood pressure
and cholesterol levels [27]. Many studies also hypothesized to define PWV cut-off values
to improve individual risk stratification [28,29]. A study on 136 consecutive patients who
were diagnosed with ST-segment-elevation coronary syndrome and treated with primary
percutaneous coronary intervention showed that PWV values recorded within 48 h after
acute MI were able to predict LVEF changes at 6 months from ACS, thereby obtaining
important information during the follow-up [30,31]. According to the literature, left ven-
tricular hypertrophy, as we can show in our study, seems to be correlated with a higher
risk of AMI [32,33]. Similar to the organ damage caused by many cardiovascular diseases
such as hypertension and diabetes, it also underlines microvascular injury, leading in turn
to major cardiovascular events such as acute myocardial infarction, making it a strong
predictor of CVD [34,35]. Furthermore, in a sub-study of the DANAMI 3-trial on 764 STEMI
patients treated with primary percutaneous coronary intervention, it was demonstrated
that LVH is independently associated with a larger infarct size, less myocardial salvage, a
higher incidence of microvascular obstruction, a lower LVEF, and a higher risk of all-cause
mortality and the incidence of heart failure [36]. Although it is known that LVH is mostly
associated with CAD in hypertensive patients, the literature also reports an association
between CAD and normotensive patients, considering LVH as a pro-inflammatory factor
that would promote atherosclerosis in all vascular systems, such as coronary and carotid
arteries. Therefore, LVH can be a marker in patients with ischemic heart disease, devel-
oping arrhythmia due to atherosclerosis, endothelial dysfunction, or remodeling [37,38].

https://plusplus.sobigdata.eu/
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End-diastolic diameter, as a predictor of cardiovascular events [39], was demonstrated to
be predictive for AMI and hospitalization from the machine learning analysis. In a study of
1459 patients admitted for acute coronary syndrome, diastolic function, left ventricular end-
diastolic pressure, and diameter seems to have a significant prognostic influence in patients
with ACS regarding future readmission due to congestive heart failure. Nevertheless, the
role of LVEDD calculation in outcome prediction is not debatable; however, further studies
are needed to investigate the thorough task of treatment strategies in post-infarcted patients.
Furthermore, another study confirms that left ventricular remodeling (LVR) development
was associated with a higher risk for adverse composite outcomes and HF rehospitalization,
especially in patients with STEMI with multivessel disease [40].

So, we can confirm that the correlations among PWV, LVH, and LVEDD with the risk
of hospital admission for AMI are complex. All three parameters are markers of underlying
vascular damage that leads to health impairment. AMI is often an outcome of this harm.
However, the exact correlation among these measures is not straightforward, and their
relationship will be for the subject of further investigations. Other authors found a link
between PWV and LVH. In a study on patients affected by hypertension, PWV was found to
be a predictor of VH [25]. Another study found that there was a correlation between PWV
and left ventricular mass [28]. Furthermore, a correlation between VH and LVEDD appears
to be present, too. In fact, in a cohort of individuals with hypertension, LVH was found
to be a predictor of left ventricular diastolic dysfunction, as measured by LVEDD [41].
PWV, LVH, and LVEDD will help in identifying subjects who have a high risk for the
recurrence of cardiovascular events. Monitoring these patients who would benefit from
early intervention, such as lifestyle modifications, medication, or surgery, is the aim of the
physicians. However, further research is needed to confirm the predictive efficacy of the
combination of these measures on AMI recurrence. Figure 3 summarizes the model in a
simple way.
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Limitations and Future Directions

The results displayed in the present paper should be considered in light of some study
limitations. Despite the relatively large dataset considering the topic evaluated, the balance
between positive cases (i.e., the patients effectively requiring hospital admission within the
timeframe selected) and negative ones (i.e., those not requiring such intervention) was far
from optimal, as the patients admitted were just below 10% of the overall cases, representing
a significant problem for ML algorithms trying to perform a subject classification. In the
future, this might be overtaken by including a larger number of patients experiencing a
related hospital admission and applying approaches to limiting the class imbalance, like
the synthetic minority over-sampling technique (SMOTE) or random over-sampling (ROS).
Second, as happens in a good number of studies, the dataset is composed of patients from
a single clinical center. This might affect the overall generalizability of the results obtained,
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which might depend on the methodologies with which some of the parameters are acquired.
Future studies should therefore improve this aspect by enrolling patients from different
clinical centers and allowing an external validation of the results obtained using different
datasets. Finally, a more complete characterization of all the patients is required. Indeed,
as usually occurs in real clinical studies, the present dataset also includes a number of
missing values (overall proportion around 4%), which were replaced using validated, well-
established imputation methods like multiple imputation by chained equations (MICE),
often applied in ML. However, more complete datasets could even improve the reliability
of the data collected and the results obtained.

5. Conclusions
In conclusion, the correlation between pulse wave velocity, ventricular hypertrophy,

and left ventricular end-diastolic diameter has been studied in relation to the risk of hospital
admission for acute myocardial infarction.

These factors are significant predictors of cardiovascular events and all-cause mortality.
The use of non-invasive imaging techniques such as echocardiography has enabled the
accurate measurement of these parameters, making them valuable tools in the early diag-
nosis and prevention of acute myocardial infarction. With the advent of big data analytics
and the availability of electronic medical records, machine learning algorithms can be used
to identify patterns that may indicate an increased risk of acute myocardial infarction.
This may allow for early intervention and prevention of cardiovascular events, ultimately
leading to better patient outcomes. However, it is important to note that machine learning
algorithms are only as good as the data they are trained on. The quality and accuracy of the
data used to train these algorithms are critical to determining their effectiveness. It is also
essential that the use of machine learning be conducted ethically and with due regard for
patient privacy and autonomy. The potential of machine learning to predict life-threatening
events is significant, but careful consideration must be given to the quality of the data and
the ethical use of these algorithms.
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