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INTRODUCTION

Antimicrobial resistance (AMR) is becoming one of the 
greatest challenges to public health worldwide. Infec-
tions by antimicrobial-resistant organisms can result in 
failure of treatment, increased medical costs, prolonged 
hospital stays, and an increased socioeconomic burden 
[1]. Antimicrobial usage remains heavy in Korea, even 
after much effort to reduce their use [2,3]. The AMR bur-
den in Korea is large, especially due to healthcare-asso-
ciated infections caused by multidrug-resistant organ-
isms (MDROs) [4].

The discovery of antimicrobials was an epochal ad-
vance in 20th century medicine, but the efficacy of most 

antimicrobials is decreasing progressively with continu-
ously evolving AMR; this could terminate in a ‘post-an-
tibiotics era’ in which common infections may be lethal 
with no available treatment options [5]. In August 2016, 
the Korean Ministry of Health and Welfare established 
the Korean National Action Plan on AMR [6]. The action 
plan has six objectives: (1) to promote the prudent use 
of antimicrobial medicines; (2) to prevent the spread of 
AMR; (3) to strengthen the surveillance system; (4) to im-
prove awareness; (5) to strengthen research and develop-
ment; and (6) to enhance international collaboration. Pru-
dent antimicrobial prescriptions, based on evidence and 
the current epidemiology of AMR, is the key to solving the 
AMR problem, which is an urgent public health concern.
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We reviewed the current epidemiology of MDROs 
in Korea, focusing on Gram-negative bacilli (GNB), be-
cause the recent sharp rise in the isolation of carbap-
enemase-producing Enterobacteriaceae (CPE) in many 
Korean healthcare facilities has rendered the infec-
tion-control situation in Korea gloomier, in addition 
to already prevalent carbapenem-resistant Acinetobacter 
baumannii (CRAB) [7]. To make matters worse, the recent 
increase in colistin resistance is extremely worrisome 
because colistin is the last line of defense against CPE 
and CRAB [8].

RECENT ANTIMICROBIAL RESISTANCE RATES 
OF GRAM-NEGATIVE BACILLI

Accurate nationwide surveillance of antimicrobial-resis-
tant bacteria is becoming more important to establish 
the optimal treatment guidelines for empirical therapy. 
The Korean Nosocomial Infections Surveillance System 
[9], Korean Nationwide Surveillance of Antimicrobial 
Resistance [10], Korean Network for Study on Infectious 
Disease, and Korean Antimicrobial Resistance Monitor-
ing System (KARMS) have all played roles in Korea [7]. 
KARMS was launched by the Korean Center for Disease 
Control and Prevention (KCDC) in 2002 and reported 
on the prevalence and characteristics of MDROs from 31 
secondary or tertiary hospitals within a finite period. In 
2016, the Global Antimicrobial Resistance Surveillance 
System in Korea was established according to the World 
Health Organization standards for a global surveillance 
program to combine patient, laboratory, and epidemio-
logical surveillance data [11].

Table 1 summarizes the recent KARMS data on En-
terobacteriaceae [7]. In 2015, the resistance rates of Esch-
erichia coli to ampicillin (72%), ampicillin-sulbactam 
(45%), cefotaxime (35%), fluoroquinolone (48%), genta-
mycin (29%), and cotrimoxazole (39%) were high, while 
the resistance rates to piperacillin-tazobactam (5%), 
cefoxitin (9%), imipenem (< 0.1%), and amikacin (1%) 
were low. For Klebsiella pneumoniae, the resistance rates 
to third-generation cephalosporins are similar to those 
of E. coli, while the resistance rates to piperacillin-tazo-
bactam (21%) and amikacin (5%) are higher, and those 
to gentamicin (19%) and fluoroquinolone (34%) are low-
er, than for E. coli. The resistance rate of K. pneumoniae 

to tigecycline was 8%. AMRs to major antimicrobials 
showed no notable change in Enterobacteriaceae be-
tween 2013 and 2015.

Table 1 summarizes the recent KARMS data for 
non-glucose-fermenting GNB [7]. In 2015, the resis-
tance rates of A. baumannii imipenem were very high 
for piperacillin (86%), piperacillin-tazobactam (82%), 
cefotaxime (84%), cefepime (83%), imipenem (85%), ami-
kacin (60%), gentamycin (75%), ciprofloxacin (87%), and 
cotrimoxazole (64%). Only tigecycline (4%) and colistin 
(< 0.1%) remain active in A. baumannii. For Pseudomo-
nas aeruginosa, the degree of resistance to piperacillin 
(27%), piperacillin-tazobactam (25%), ceftazidime (19%), 
cefepime (18%), aztreonam (23%), imipenem (35%), ami-
kacin (13%), gentamycin (18%), and ciprofloxacin (34%) 
was less than that for A. baumannii. Colistin activity is 
also preserved in P. aeruginosa. A. baumannii is one of 
the main nosocomial pathogens in intensive care units 
[4], and the dramatic spread of CRAB has resulted in a 
lack of adequate therapeutic options, except for colistin 
[12]. Multidrug-resistant features of A. baumannii are a 
leading threat to immunocompromised hosts and have 
resulted in high mortality [13].

RESISTANCE MECHANISMS OF ENTEROBAC-
TERIACEAE

According to long-term surveillance by KARMS [7], the 
resistance of E. coli to ciprofloxacin has increased steadily 
since 2004. The cefotaxime-resistance rate has increased 
markedly since 2008, while the cefoxitin-resistance rate 
has decreased markedly since 2011. For K. pneumoniae, 
the ciprofloxacin- and cefotaxime-resistance rates have 
increased since 2004, but not much as in E. coli.

This continuous increase in the antimicrobial re-
sistant rates of E. coli to third- and fourth-generation 
cephalosporins since the mid-2000s could be due to the 
spread of the CTX-M type extended-spectrum-β-lact-
amase (ESBL)-producing sequence type (ST) 131 clone 
[14,15]. A recent molecular epidemiology study of ST131 
E. coli in Korea showed that the ST131 clonal group com-
prised 21% of all 268 E. coli isolates and 37% of 57 ST131 
isolates had H30Rx subclones, which showed a signifi-
cant association with ciprofloxacin and cefotaxime re-
sistance [16]. The spread of ESBL-producing E. coli to 
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the community is also problematic and the emergence 
of community-onset bacteremia caused by ESBL-pro-
ducing E. coli has been a concern in Korea [17]. A study 
that analyzed 213 E. coli isolates collected from the com-
munity found that 25.8% had CTX-M-type ESBL genes, 
mainly CTX-M-14 and CTX-M-15, and globally epidem-
ic ST131 clones were found in 27.2% of the E. coli isolates 
[18]. With the rapid expansion and dissemination of the 
ST131 clone in both healthcare facilities and the commu-
nity, fluoroquinolone resistance has also increased in E. 
coli because the ESBL-producing ST131 clone shares mu-
tations in the fluoroquinolone resistance-determining 
gyrA and parC regions [19].

In K. pneumoniae, ST11 is the most frequent clone; this 
is a single-locus variant of the international hyper-epi-
demic lineage ST258 [20]. The spread of this clone is an 
emerging threat because the coproduction of carbapen-
emase (K. pneumoniae carbapenemase 2 [KPC-2]) and 16S 
rRNA methylase (rmtB), in addition to ESBL, has severely 
limited antimicrobial therapy [20]. Unlike resistance to 
aminoglycosides, which is mainly mediated by amino-
glycoside modification, 16S rRNA methyltransferase 
production compromises very potent aminoglycosides 
with high-level resistance [21]. Resistance to cefoxitin is 
mediated by AmpC β-lactamase, resulting from overex-
pression of the chromosomal AmpC gene or acquisition 
of a plasmid-mediated AmpC (pAmpC) determinant 
[22]. Although K. pneumoniae with transferrable pAmpC 
genes was first detected in Korea in 1988 [23], the cefoxi-
tin-resistance rates of K. pneumoniae have decreased con-
tinuously since 2004 [7].

Carbapenem resistance in Enterobacteriaceae (CRE) 
can result from two different mechanisms. Some CRE 
that possess either AmpC β-lactamase or ESBL with 
concomitant porin mutations can render the organism 
non-susceptible to carbapenems. More importantly, 
some CRE may result from the production of carbapen-
emases that break down carbapenems. Carbapenemases 
belong to a heterogeneous group of β-lactamases [24]. 
The class A penicillinase KPC, class B metalloenzyme 
New Delhi metallo-β-lactamase (NDM), and class D 
oxacillinase (OXA)-type carbapenemases are found in 
Enterobacteriaceae worldwide [25]. With the global in-
crease in CRE over the past 10 years, the resistance rate 
to carbapenem in Enterobacteriaceae remains very low 
in Korea (Table 1). However, the number of CRE isolates 

increased markedly, from 16 in 2011 to 1,455 in 2016, 
since KCDC started to monitor CRE in 2010. CRE has 
also been reported from the community [26]. According 
to KCDC surveillance data, K. pneumoniae is the most 
common bacterial type of CRE (79.6% of all isolates in 
2015 and 83.2% in 2016) and carbapenemases were also 
detected in E. coli, Enterobacter spp., Citrobacter spp., Serra-
tia marcescens, and Klebsiella oxytoca [27]. As shown in Fig. 
1, the common Korean genetic types of CRE in 2016 were 
KPC (n = 1,029, 70.7%), NDM (n = 197, 13.5%), OXA-48 (n = 
139, 9.6%), Guiana-extended spectrum (n = 45, 3.1%), Ve-
rona integron-encoded metallo-β-lactamase (VIM; n = 
29, 2.0%), and imipenemase (IMP; n = 16, 1.1%) [27]. This 
situation is mostly due to the increased incidence of CPE 
due to an outbreak in major healthcare facilities, render-
ing it a recent public health issue of South Korea [27-29].

Figure 1. Genetic types of carbapenemase-producing 
Enterobacteriaceae in South Korea, 2015 to 2016. (A) The 
reported number of carbapenemase-producing Entero-
bacteriaceae in Korea. (B, C) Genotype distribution of car-
bapenemase-producing Enterobacteriaceae in Korea. KPC, 
Klebsiella pneumoniae carbapenemase; NDM, New Delhi 
metallo-β-lactamase; OXA-48, oxacillinase-48; VIM, Verona 
integron-encoded metallo-β-lactamase; GES, Guiana-ex-
tended spectrum; IMP, imipenemase.

 

  

273

94 149
37 3 9

565

1,029

197
139

29 45 16

1,455

0

200

400

600

800

1,000

1,200

1,400

1,600

KPC NDM OXA-48 VIM GES IMP Total

2015 year
2016 year

Case number

48.3

16.6

26.4

6.5

0.5 1.6

2015 year

70.7

13.5

9.6

2
3.1

1.1

2016 year

KPC
NDM
OXA-48
VIM
GES
IMP

A

B C

www.kjim.org


251

Kim YA and Park YS. Treatment of MDR GNB in Korea

www.kjim.orghttps://doi.org/10.3904/kjim.2018.028

RESISTANCE MECHANISMS OF NON-GLU-
COSE-FERMENTING GRAM-NEGATIVE BACILLI

The resistance rate of A. baumannii to imipenem in-
creased to 85% in 2015 [7], representing a major public 
threat in Korea. Carbapenem is usually considered a 
treatment option for ESBL producers and the increased 
nationwide rate of prescription of carbapenems is cor-
related with the rapid rise in CRAB isolation since 2007 
[30]. OXA-type β-lactamases are the main resistance 
mechanism for CRAB and a drastic increase in Acineto-
bacter isolates with blaOXA-23 has been observed since the 
mid-2000s, whereas ISAba1-associated blaOXA-51, another 
contributor to CRAB, has decreased since the mid-2000s 
[31]. Many CRAB isolates are multidrug-resistant or ex-
tensively drug-resistant because they usually co-carry 
AMR through armA/aminoglycosides-modifying en-
zymes (aminoglycosides), DNA gyrase/topoisomerase IV 
(fluoroquinolones), and Ade-type efflux pumps (tetracy-
clines) [32]. Recently, the treatment of carbapenem-resis-
tant A. baumannii infection has been severely restricted 
because the agents of last resort, such as colistin and 
tigecycline, are losing their efficacy with the emergence 
of colistin resistance in A. baumannii. The colistin-re-
sistant gene of Acinetobacter spp. is usually located in 
the chromosome and the mechanisms of resistance 
are modification of lipid A by phosphoethanolamine 
via pmrAB two-component regulatory gene mutations 
(pmrA and pmrB) and loss of lipopolysaccharide via in-
activation of a lipid A biosynthesis gene (lpxA, lpxC, or 
lpxD) [8].

The resistance rate of P. aeruginosa to imipenem was 
35% in 2015, but no marked rise in resistance was ob-
served in P. aeruginosa from 2004 to 2015 [7]. Since the 
first report of VIM-2-producing P. aeruginosa in Korea 
in 2002 [33], metallo-β-lactamases have been the main 
mechanism for carbapenem-resistant P. aeruginosa in 
the IMP and VIM types [34]. The rates of amikacin- and 
gentamicin-resistant P. aeruginosa have declined con-
tinuously [7] and this is correlated with the Korea-wide 
reduction in aminoglycoside use [35]. Aminoglycosides, 
except amikacin, are considered old drugs, but they still 
play key roles in the treatment of infections, and have 
potent bactericidal activity against some CRE [36].

TREATMENT OPTIONS FOR ANTIMICROBI-
AL-RESISTANT GRAM-NEGATIVE BACTERIA

There are relatively few treatment options for CRAB 
and CRE. Most reports are retrospective observation-
al studies. Because there are little published data from 
randomized controlled trials, more data on the antimi-
crobial treatment of CRAB or CRE are needed to make 
treatment recommendations. The mortality associated 
with invasive CRAB infection is high and is linked to 
comorbid disease severity and initial inappropriate an-
timicrobial therapy [37]. Moreover, infection with, or 
colonization of, antimicrobial-resistant Gram-negative 
bacteria is associated with a longer hospital stay and 
increased medical costs [38,39]. Although extensively 
drug-resistant (resistant to all but two or less classes) 
isolates have been reported, the majority of isolates re-
main susceptible to polymyxin (colistin or polymyxin 
B). Many retrospective studies and meta-analyses have 
shown that combination therapy confers a survival ad-
vantage over monotherapy [40-43].

POLYMYXINS

Polymyxins interact with lipid A in the Gram-negative 
bacterial outer membrane, leading to the leakage of cel-
lular contents and bacterial cell death. With increasing 
antibiotic resistance among important Gram-negative 
bacteria and the lack of new antibiotics, old antibiotics 
discovered in the 1950s have been reintroduced in re-
cent years [44]. Polymyxin B and colistin (polymyxin E) 
are two polymyxins that can be used. Colistin is admin-
istered as the inactive prodrug colistin methanesulfon-
ate (CMS), whereas polymyxin B is administered as an 
active drug. CMS requires a loading dose of up to 300 
mg (colistin base activity) because it has to be converted 
into colistin in the plasma and patients are otherwise 
exposed to suboptimal concentrations for several days. 
Although polymyxin B is not available in Korea, it has 
superior pharmacological characteristics for treating 
infections and rapidly and reliably achieves the desired 
plasma concentration of the active polymyxin [45,46]. 
Combination therapy with a second active agent or an 
agent that demonstrates synergy with colistin is recom-
mended. The two major complications associated with 
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polymyxins are nephrotoxicity and neurotoxicity. Ap-
proximately 50% of cases manifest variable degrees of 
nephrotoxicity due to colistin, although these are usu-
ally reversible.

CARBAPENEMS

Carbapenems are considered the drug of choice for 
treating infections caused by multidrug-resistant 
Gram-negative bacteria due to their excellent activity 
against these organisms and safety profile. However, 
there is concern about carbapenem use because of the 
increasing resistance to them. High-dose meropenem 
(6,000 mg/day) administered by prolonged (> 4 hours) 
infusion had a high probability of target attainment in 
Monte Carlo dosing simulations [47]. Although the phar-
macokinetic data appear favorable [48], therapy with car-
bapenem alone cannot be recommended because there 
are limited clinical data. Carbapenem-based combina-
tion therapy resulted in relatively low mortality in retro-
spective studies [42,49]. High-dose, extended infusion of 
a carbapenem as part of a combination regimen can be 
considered a viable treatment for carbapenem-resistant 
organisms.

TIGECYCLINE

Tigecycline is a glycylcycline antimicrobial and a semi-
synthetic derivative of minocycline. This newly devel-
oped antimicrobial inhibits protein synthesis and is 
bacteriostatic. Tigecycline is approved for the treatment 
of skin and skin structure infections, complicated in-
tra-abdominal infections, and community-acquired 
pneumonia. Outcomes with tigecycline monotherapy 
have not been favorable. High dosing of tigecycline, i.e., 
increasing the dose of tigecycline to 100 mg twice dai-
ly, should be considered because of the low likelihood 
of reaching target pharmacokinetic/pharmacodynamic 
parameters with the conventional dose of 50 mg twice 
daily. Tigecycline should be reserved for cases with no 
other treatment options due to its black-box warning of 
increased mortality [42].

COMBINATION THERAPY

Monotherapy for CRE is not better than inappropriate 
therapy, and combination therapy offers a survival ad-
vantage over monotherapy [42]. Moreover, monotherapy 
can lead to resistance and possible loss of that class of 
antimicrobials. The combinations associated with the 
lowest mortality rates contained a carbapenem [42]. Sev-
eral retrospective studies have documented lower mor-
tality rates after CRAB infection when more than one 
agent was given for therapy [40,41]. However, it is still 
controversial whether combined therapy is more effec-
tive than monotherapy [50].

CONCLUSIONS

AMR is increasing among Gram-negative bacteria in 
Korea. Treatment options for drug-resistant Gram-neg-
ative bacteria, such as CRE and CRAB, are limited. We 
are on the cusp of a post-antibiotics era. To optimize 
treatment, continued research on combination therapy 
and the dosing of antimicrobials is needed. New drug 
development, and prolongation of the activity of exist-
ing antimicrobials through appropriate use, have be-
come important strategies.
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