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Abstract

Neural Network (NN) models provide potential to speed up the drug discovery process and 

reduce its failure rates. The success of NN models requires uncertainty quantification (UQ) 

as drug discovery explores chemical space beyond the training data distribution. Standard 

NN models do not provide uncertainty information. Some methods require changing the NN 

architecture or training procedure, limiting the selection of NN models. Moreover, predictive 

uncertainty can come from different sources. It is important to have the ability to separately model 

different types of predictive uncertainty, as the model can take assorted actions depending on the 

source of uncertainty. In this paper, we examine UQ methods that estimate different sources of 

predictive uncertainty for NN models aiming at protein-ligand binding prediction. We use our 

prior knowledge on chemical compounds to design the experiments. By utilizing a visualization 

method we create non-overlapping and chemically diverse partitions from a collection of chemical 

compounds. These partitions are used as training and test set splits to explore NN model 

uncertainty. We demonstrate how the uncertainties estimated by the selected methods describe 

different sources of uncertainty under different partitions and featurization schemes and the 

relationship to prediction error.
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1. Background and motivation

Traditional drug discovery examines bioactivities between drug and protein via a high 

throughput screening experiment [1,2]. The process is time-consuming and expensive. Deep 

learning (DL) models try to capture intricate nonlinear relationships between input data 

(such as drug compounds) and the associated output (such as protein inhibition) for large 

scale computational screens [3]. The models then predict the properties of new compounds 

that help determine a feasible set of compounds for synthesis and evaluation. Computational 

screens save time and effort, and provide the potential to speed up the drug discovery 

process and reduce its failure rates [4,5]. However, drug discovery requires exploring 

chemical space beyond the training data distribution. Predictions on unknown regions are 

prone to pathological failure. The success of adopting DL methods across a range of 

drug-design settings requires better communication of uncertainty [6,7]. Detecting regions of 

chemical space with high uncertainty could help design the experiments to expand a model’s 

applicability domain.

Recent studies have emphasized the importance and challenges of uncertainty quantification 

(UQ) in deep learning for drug discovery. Mervin et al. (2020) [8] reviewed classic and 

modern UQ methods and discussed their usage for drug design (e.g, including the empirical, 

frequentist and Bayesian approaches). The study points out that the chemoinformatic data 

being modeled is overall heavily biased with respect to the amount, degree of diversity and 

distribution of data points. There are issues surrounding data quality and assay variability 

[9], as well as the skewed proportion of protein-target complexes [10,11] and the imbalance 

between active and inactive compound-target labels [12]. Hence, most models for drug 

discovery are not able to provide realistic probability estimates while providing single 

point predictions. A common misleading phenomenon is in the classification models where 

the predictions for two classes, such as labels of ‘activity’ and ‘inactivity’, come from 

probability-like fractions. One example is the softmax function used in the last layer of a 

neural network model, which gives an output value between zero and one. These function 

values only mean to separate output classes, not to provide confidence of the prediction. 

Applying explicit uncertainty quantification methods could provide an alternative confidence 

measure to the classification probability estimates.

Uncertainty of deep learning could come from two sources: data (aleatoric) uncertainty 

and model (epistemic) uncertainty [13]. The data uncertainty reflects a lack of confidence 

due to the imprecision of molecular measurements. The aleatory concept involves unknown 

outcomes that can differ each time one runs an experiment under similar conditions [14]. 

Data collected for the drug discovery process could have experimental variabilities due to 

natural biological changes in the samples, measurement fidelity, instrumentation, sampling 

procedures, etc. The data uncertainty is irreducible to the model and is an inherent property 

of their distribution.

In contrast, model uncertainty measures the uncertainty in model parameters given the 

training data. Particularly, inadequate knowledge contributes to the model uncertainty. This 

is often the case for the chemoinformatic data where there is a limited number of drug 

compounds available with unbalanced activity classes for a complex biological process. UQ 
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methods for deep neural networks (NN) that evaluate how changes in model parameters 

effect the NN predictions are aimed at capturing the model uncertainty. Bayesian neural 

networks (BNN) [15,16] quantify posterior uncertainty on NN model parameters (i.e. 

weights) and express predictions in terms of expectations with respect to this posterior 

distribution [17]. Other methods generate a set of point predictions and use its mean and 

variance to represent the optimal prediction and its corresponding uncertainty. Monte-Carlo 

dropout [18] passes a test sample multiple times through the NN model and generate a 

collection of such predictions. For each iteration, the model assigns the value zero to a 

fraction of randomly selected weights. Similarly, deep ensemble [19] and bootstrap [20] 

train multiple models and compute the mean and spread of the ensemble.

Apart from data uncertainty and model uncertainty, Malinin and Gales (2018) presented 

distributional uncertainty as a separate source of uncertainty [21]. Distributional uncertainty 
occurs when the test data is foreign to the model due to mismatch between the training 

and test distributions. Applicability domain (AD) estimates whether a model’s prediction for 

a chemical compound is applicable based on the model’s training set properties. Distance-

based methods used to evaluate AD play a similar role as distributional uncertainty modeling 

methods [22].

Residual estimation with an I/O kernel (RIO) [23] directly estimates prediction residuals 

using modified Gaussian Processes (GP). GP models offer a mathematically grounded 

approach to reason about the predictive uncertainty [24]. RIO uses a new composite I/O 

kernel that makes use of both inputs and outputs of the NN, meaning that the method 

examines both the distance to the nearest training data and the prediction errors on the 

training set. It provides predictive uncertainty estimation without modifying the NN training 

or formulation. Hie et al., 2020 [7] demonstrated that RIO uncertainty estimation enables 

successful iterative learning across a broad spectrum of experimental scales for biological 

discovery and design.

It is important to have the ability to separately model the different types of predictive 

uncertainty, as the model can take assorted actions depending on the source of uncertainty 

[21]. In this article, we present a carefully designed experiment with publicly available 

drug data to gain insights into uncertainty quantification methods. We employ the calculated 

end-point binding free energy with MM/GBSA (the molecular mechanics generalized Born 

surface area) as the response values for the NN models. Note that MM/GBSA is one of 

a number of different methods used in computational drug discovery [25]. The simulated 

MM/GBSA scores are not from the experimental measurements, and hence reduce the 

aleatoric uncertainty, which allows the study to focus on modeling epistemic uncertainty. 

We select the UQ methods that examine different sources of uncertainty. Additionally, 

they can be directly applied to any standard NN without having to modify the model 

training formulation. We use the ATOM Modeling PipeLine (AMPL) [26] developed 

by the Accelerating Therapeutics for Opportunities in Medicine (ATOM) Consortium to 

provide a rigorous pipeline for training and evaluating drug discovery oriented NN models. 

We demonstrate how the selected UQ methods provide uncertainty estimations on point 

predictions of NN models. Since the goal of UQ is to detect unanticipated imprecision of 

model predictions, we inspect how the UQ methods reflect prediction errors.

Fan et al. Page 3

Artif Intell Chem. Author manuscript; available in PMC 2023 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This paper is organized as follows. First, we collect related work in Section 2. Next, we 

describe the selected uncertainty quantification methods and how they present different 

sources of uncertainty in Section 3. In Section 4, we explain the preparation of the chemical 

compound inputs, NN model building and the experimental design to evaluate the UQ 

methods. Finally, we present the experimental results in Section 5 and conclude our findings 

in Section 6.

2. Related work

There has been significant demand in quantifying prediction uncertainty for DNN models, 

especially for drug discovery where mistakes may be expensive. Hie et al. (2020) 

[7] leveraged Gaussian process-based uncertainty prediction to identify and validate 

experimental compounds with nanomolar affinity for diverse kinases and whole-cell growth 

inhibition of Mycobacterium tuberculosis. They showed that the GP uncertainty estimation 

enables successful iterative learning across a broad spectrum of experimental scales. Scalia 

et al. (2020) [27] compared scalable UQ methods, including MC-dropout, Deep Ensembles 

and bootstrapping, for graph convolutional neural networks (GCNN), designed for deep 

learning-based molecular property prediction. They introduced a set of quantitative criteria, 

including ranking-based methods and uncertainty calibration methods, to capture different 

uncertainty aspects. Wang et al. (2021) [22] combine both distance-based and Bayesian 

UQ approaches together for improved uncertainty quantification in QSAR (Quantitative 

Structure-Activity Relationship) regression modeling. The hybrid method quantitatively 

assesses the ranking and calibration ability of the selected UQ methods, including 

applicability domain (AD) methods, mean-variance estimation of the graph convolutional 

neural networks [27] and deep ensembles [19].

There has been notable progress made on predictive uncertainty for deep learning through 

the formulation of neural networks. One class of approaches stems from the combination 

of a Bayesian approach and neural networks [16,19,28–30]. All such methods require 

significant modifications to the model infrastructure and training procedure. Malinin 

and Gales (2018) developed Prior Networks for modeling predictive uncertainty, which 

explicitly models distributional uncertainty [21]. Tang and de Jong (2019) [31] developed 

marginalized graph kernel specifically for computing similarity between molecules. The 

framework employs GP regression to perform prediction on the atomization energy of 

molecules. Moreover, drug discovery tasks often evaluate novel molecules by entering areas 

in the feature space that are not previously represented in training data. Han et al. (2021) 

[32] measured the data distributional shift as the model reliability of graph neural networks 

(GNN).

In this work, we focus on measuring the point-prediction uncertainties of the standard neural 

network regression models with fully connected layers that require feature vectors as their 

input. We investigate a set of the UQ methods separately, which examine different sources 

of uncertainty. These methods also provide UQ estimations without requiring specific NN 

formulations, allowing broader applications.
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3. Uncertainty quantification methods for neural networks

We select uncertainty quantification approaches for deep neural networks that do not limit 

the choice of model. Consider a neural network model with L layers. We denote Wi as 

the NN’s weight matrices for each layer i = 1, 2, …, L. We denote yi as the observed output 

corresponding to input xi, i = 1, 2, …, n, where n is the number of data points. Let X, y be 

the input and output sets and let the training dataset D = X, y = xi, yi i = 1
n . The predictive 

probability of a NN model can be parameterized as

P y x, D = ∫ P y x, ω
Data

p ω D dω
Model

. (1)

In a Bayesian framework the predictive uncertainty of a NN model P y ∣ x, D  trained 

on a finite dataset D will result from data (aleatoric) uncertainty and model (epistemic) 

uncertainty as shown in 1. The posterior distribution over responses y given a set of model 

parameters ω describes a model’s estimates of data uncertainty, and the posterior distribution 

over the parameters given data describes model uncertainty [21].

3.1. Monte-Carlo dropout (MC-dropout)

Deep neural networks contain multiple nodes and layers that try to learn complicated 

relationships between the inputs and outputs. Dropout is a method used to prevent overfitting 

and lower generalization error for NN models [33]. Dropout means temporarily removing a 

node from the network along with all its incoming and outgoing connections, which we can 

simply set zero on the weight of the node. The choice of which nodes to drop is random. In 

most cases, we choose a fixed value to indicate the fraction of the nodes to drop. Gal and 

Ghahramani (2016) further applied the concept to generate ensembles for evaluating model 

uncertainty.

Let Wi be a random matrix for each layer i and set ω = Wi i = 1
L . In Equations 1 obtaining 

the true posterior p ω ∣ D  using Bayes’ rule is intractable, and it is necessary to use either 

an explicit or implicit variational approximation q ω  [34–36]. Monte-Carlo (MC) dropout 

utilizes the q ω  as a distribution over matrices whose columns are randomly set to zero 

(called dropout). Furthermore, the integral in Equations 1 for the predictive probability is 

also intractable for neural networks. MC dropout employs sampling to approximate it. As 

shown in Equations 2 each term in the sum is approximated by Monte-Carlo integration with 

a single sample ω i q ω  to obtain an unbiased estimate[18].

P y ∣ x, D ≈ 1
n ∑i − 1

n P y ∣ x, ω i , whereω i q(ω) . (2)

Training a neural network with dropout is as training a collection of thinned networks 

with extensive weight sharing. The process does not change the dropout NN model itself. 

In testing we use the original model by simply cutting off the node’s weights. MC 
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dropout estimates the predictive mean and predictive uncertainty by collecting the results 

of stochastic forward passes through the NN model.

3.2. Applicability domain (AD)

The Applicability Domain (AD) assessment is based on the numerical vector representation 

of chemical compounds in the training set. We select two AD methods that are distance-

based and suitable for novelty (or outlier) detection.

3.2.1. Empirical distance distribution (AD-DD)—For distance-based novelty 

detection we need a threshold to decide whether or not the unseen object is actually novel 

[37]. The empirical distance distribution of the training set molecules can help establish a 

threshold, using the 1 − α quantile (for α = 0.01, 0.05 or 0.1) of the k-nearest neighbors within 

the training set distance distribution [38]. We collect the mean distances from every data 

point to its k-nearest neighbors in the training set. We fit a normal distribution on these mean 

distances and obtain its total mean, μknn, and standard deviation, σknn. For a new chemical 

compound x, we compute its mean distance to its k-nearest neighbors in the training set 

d‾knn x . The score of the applicability domain using the empirical distance distribution is the 

rectified Z-score of the mean k-nearest neighbor distance of the new point based on the 

distribution of the training set:

ρD x = max 0, dknn x − μknn

σknn
. (3)

3.2.2. Local density (AD-LD)—Denote the distance of a data point x to its kth -nearest 

neighbor in the training set NNk
train x  as x − NNk

train x . The local density is inversely 

related to the distance. The higher the local density is, the lower the distance is to the 

neighbors. The score of the applicability domain using local density [39] is:

ρL(x) =
1
k ∑i = 1

k x − NNi
train(x)

1
k2 ∑i = 1

k ∑j = 1
k NNi

train(x) − NNj
train NNi

train(x)
. (4)

The denominator is the average distance from the nearest neighbors NNtrain x  to their 

nearest neighbors in the training set NNtrain NNtrain x .

3.3. Residual estimation with an I/O kernel (RIO)

Residual estimation with an I/O kernel (RIO) is a Gaussian processes (GP) method designed 

to be applied on top of any trained NN model [23]. RIO quantifies the uncertainty in the 

point-predictions of NN models without retraining or modifying any component of them.

Let ŷi be the point prediction of a NN model given xi. RIO models the residuals between 

observed outcomes y and NN predictions ŷ using GP with a composite kernel. The residuals 

ri i = 1
n  between observed outcomes and NN predictions on the training dataset D is
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ri = yi − y i,  for i = 1, 2, …, n . (5)

Let r be the vector of all residuals and ŷ be the vector of all NN predictions. RIO trains 

a GP with a composite kernel assuming r N 0, Kθ X, ŷ , X, ŷ + σn
2I , where N denotes a 

multivariate Gaussian distribution with mean 0 and covariance matrix Kθ X, ŷ , X, ŷ + σn
2I , 

and σn
2 is the noise variance of observations. The composite kernel Kθ X, ŷ , X, ŷ  is an n × n

covariance matrix at all pairs of training points whose elements are:

kθ xi, y i , xj, y j = kθin  xi, xj + kθout  y i, y j , for i, j = 1, 2, …, n . (6)

This kernel design enables the evaluation on both the novelty of a data point and the 

prediction residual. The composite kernel is the sum of two kernels, one for the NN 

input data and the other for the NN output data. RIO applies the composite kernel as 

the covariance function of GP. The GP optimizes the hyperparameters of the covariance 

function, θin and θout, by maximizing the log marginal likelihood log p r ∣ X, ŷ .

4. Experimental design

We randomly select 9000 drug compounds available from the ChEMBL database [40,41], 

a large, open-access bioactivity data source. The drug compounds are presented in 

the SMILES (simplified molecular-input line-entry system) strings, which describes the 

structure of the chemical compounds in the dataset. We use two featurization schemes 

to map the SMILES strings into model input features. We first compute the chemical 

descriptors using Molecular Operating Environment (MOE) software [42]. Many MOE 

descriptors were strongly correlated with each other due to the fact that they scaled with 

molecular size, as measured by the total number of atoms, denoted as a_count [43]. We 

replace all descriptors, d, having Pearson correlation r (d, a_count) > 0.5 with the computed 

d/a_count to remove the dependency. We further eliminate descriptors that are duplicated, 

have constant values or are linear functions of other descriptors. The final set of the MOE 

descriptors contain 306 features. The other featurization scheme that we also compute is the 

extended connectivity fingerprint (ECFP4). We use RDKit [44] to generate the ECFP4 bit 

vectors with length 1024.

We utilize the molecular mechanics generalized Born surface area (MM/GBSA) continuum 

solvent approach to rescore the binding affinities of the chemical compounds [45,46]. Note 

that there are other approaches used in computational drug discovery [25]. The computed 

MM/GBSA scores are not from experimental measurements but rather estimate binding 

affinity between a compound and a target protein. The target protein used for this study is 

the main spike protein for SARS-CoV-2. Applying them as the responses of the NN models 

reduces their aleatoric uncertainty. Since the aleatoric uncertainty is irreducible to the model, 

making it more controllable could help observing other uncertainty sources. We have also 

observed that the MOE descriptors are highly correlated to the MM/GBSA scores in the 

randomly selected 9000 drug compounds. Among the total 306 MOE features there are 22 

features having correlation larger than 0.5 as shown in Table 1.
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To better understand how the uncertainty quantification methods work for the protein-ligand 

binding prediction in the drug discovery tasks, we make use of the known correlation 

between the MOE descriptors and the MM/GBSA scores to design the experiments. 

We visualize the correlation in the dataset using the t-distributed stochastic neighbor 

embedding (t-SNE). We project the top 22 correlated MOE features employing ten principle 

components before computing the two coordinates of the t-SNE, according to the suggested 

usage of the method [47]. Fig.1 displays the two-dimensional t-SNE scatter plot of the 

dataset.

It appears that the dataset consists of five clusters. The color on the data points represents 

the MM/GBSA scores where a more negative value indicates stronger binding. Cluster 2, 3 

and 4 marked on the plot contain data points with large negative MM/GBSA scores, while 

cluster 1 and 3 contain more high value MM/GBSA scores. Fig. 2 shows the distribution of 

the MM/GBSA scores for each cluster.

We split the dataset into training set and test set based on the clusters. The numbers of 

the data points in the clusters are 2132, 2455, 3252, 1154 and 7, respectively, from cluster 

1 to cluster 5. We exclude cluster 5 due to its small size. We randomly select 1000 data 

points in each cluster as the training set, another 100 data points as the validation set and 

the rest as the test set. We apply the same splits to both the MOE features and the ECFP 

features, creating eight splittings of training, validation and test sets (from four clusters and 

two featurization methods). We include all of the 306 MOE features in the dataset as the 22 

high correlation features discussed earlier are for visualization purposes only.

We train the Neural Network models using a data-driven modeling pipeline, AMPL, 

developed by our group at the ATOM Consortium [26]. The underlying models were 

implemented with the DeepChem package [48]. The architecture of the neural networks 

consists of one, two or three fully connected hidden layers. Each layer contains varying 

numbers of rectified linear unit (ReLU) nodes. During training and evaluation we randomly 

drop out 30% of nodes to avoid overfitting. To optimize the performance of neural networks, 

we run hyperparameter searches, varying the numbers of hidden layers, numbers of nodes 

per layer, and learning rates. We evaluate an average of 1500 regression models for each 

training set and select the best model for further analysis on quantifying the point-prediction 

uncertainties. We select the best model parameters based on validation set performance 

following standard machine learning practices. We evaluate the performance of regression 

models using the coefficient of determination (R2)[49] defined as

R2 = 1 − ∑i = 1
n yi − yi

2

∑i = 1
n yi − yi

2

where yi is the actual MM/GBSA score for a compound i, y‾ is the average value of the actual 

scores and ŷi is the predicted value of yi. An R2 close to 1 implies an almost perfect case 

when modeled values nearly match the observed values. An R2 equal to 0 implies a baseline 

model, which always predicts the mean. A negative R2 indicates that a model has worse 

predictions than the baseline.

Fan et al. Page 8

Artif Intell Chem. Author manuscript; available in PMC 2023 August 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5. Experimental results

5.1. Model performance

The best regression model after hyperparameter tuning, measured by R2 scores, is kept for 

each cluster and each type of chemical representation (MOE or ECFP). Tables 2 and 3 

collect the separated test set performances of the best model trained on each cluster. Recall 

that we take 1000 randomly selected data points from each cluster for model training. We 

use the rest of the data points as the test set in the cluster to show how each model perform 

on single clusters.

We found that the models trained on MOE descriptors perform better than the ones trained 

on ECFP. The clusters used for the training and test sets are created from the most correlated 

MOE descriptors. Since the clusters are not explicitly separated by their ECFP distances, 

there would be more similarity between the training and test sets in ECFP. It is surprising 

that the ECFP models do more poorly in the cross cluster prediction task.

The results also indicate that the NN models perform the best in their own clusters, except 

on the model trained on cluster 3 with MOE descriptors. Data points in cluster 3 cover a 

wider range of the MM/GBSA scores. Interestingly the model trained on cluster 3 using 

MOE descriptors performed the best on cluster 1 with R2 at 0.685, while performed the 

second best on the test set from its own cluster with R2 at 0.580. We also observed that the 

models trained on cluster 2 and cluster 4 do not perform well on predicting data points in 

other single clusters. Overall, most models have worst performance on their test set, and best 

performance on their training set. This aligns with what we expect when designing the splits 

of the data. Chemical compounds outside a cluster tend to be more different from those in 

the cluster. It is a challenge to the model trained on a cluster to test its performance outside 

the cluster. Next, we investigate how the selected UQ methods capture such challenges.

5.2. Uncertainty evaluation

Since we use the t-SNE plot to generate the clusters where distances in the original data 

space are not preserved in the 2D feature space. The clusters in the plot may be shown to 

appear in non-clustered data.

Values generated by the AD method using empirical distance distribution (AD-DD) 

measuring the dissimilarities to the training set can help realize the actual distances. 

Figs. 3, 5, 7 and 9 display the uncertainty estimations of the point predictions using the 

four uncertainty quantification methods for the models trained on cluster 1,2,3 and 4, 

respectively. The AD-DD uncertainty values are significantly lower in the training clusters 

than in the rest of the chemical compounds, especially in cluster 1,2 and 3. When using the 

cluster 4 as the training set, AD-DD method does not give as distinctly smaller values for the 

training data. It appears that chemical compounds described by MOE descriptors in cluster 

4 are close to data points in cluster 2 and 3, indicating that the cluster covers a wide range 

of chemical compounds. Furthermore, data points represented by ECFP features in cluster 4 

spread out from each other, suggesting non-clustered data.
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Recall that distance-based novelty detection needs a threshold to decide whether a new 

compound is actually novel [37]. If we use a 95 % quantile of the k-nearest neighbor within 

the training set distance distribution as a threshold, the corresponding z-score is around 1.6 

in a standard normal distribution. We can use the value 1.6 for AD-DD values as a threshold 

to identify novel test compounds. We can see that this threshold distinguishes the training 

cluster 1,2 and 3 from their corresponding test set clusters.

The AD method using local density (AD-LD) highlights more data points with larger values 

than the AD-DD method. The distinctiveness between the training and the test sets using 

AD-LD is less significant than AD-DD. Only the models trained on cluster 1 with MOE 

descriptors gives significantly lower AD-LD values on the training cluster than the rest of 

chemical compounds. Moreover, the models trained with ECFP features yield lower ranges 

of AD-LD values, which indicates that data points in ECFP features spread out and may not 

form definite clusters.

Models using different compound representation may have opposite uncertainty values from 

MC-dropout. The model uncertainties (evaluated by MC-dropout) that appear high in one 

compound representations may be low in other compound representations. The third rows of 

the figures display the UQ values from MC-dropout used to present the model uncertainties. 

For the models trained on cluster 1 and cluster 3, MC-dropout gives opposite degrees of 

uncertainties when using different compound representations. As shown in Figs. 3 and 7 the 

MC-dropout method gives high uncertainty values with MOE descriptors while giving low 

uncertainty values with ECFP features for most predictions. To investigate which uncertainty 

values to trust, we compare the UQ values with the prediction errors in the Figs. 4 and 8, 

which display the actual MM/GBSA scores versus the predicted, colored by the UQ values. 

The distance from a data point to the diagonal indicate its prediction error. We found that 

the UQ values using MC-dropout on the MOE descriptors tend to be high on the prediction 

values that have data points far away from the diagonal and low on the predictions that 

are closer to the diagonal, indicating that MC-dropout on the MOE descriptors can reflect 

possible prediction errors. We also know that the models trained on the ECFP features do 

not perform well on the predictions. We may conclude that the UQ values from MC-dropout 

are more reliable on the MOE descriptors than on the ECFP features possibly due to 

better trained models with MOE descriptors. Furthermore, MC-dropout does not necessarily 

give lower uncertainties in the training than in the test set. There are high MC-dropout 

uncertainty values in the training clusters where the other three methods tend to have low 

uncertainty values (Figs. 7 and 8).

RIO method gives near constant uncertainty values to the majority of the chemical 

compounds, especially on the models trained with ECFP features. There are only a few 

data points that have relative high RIO uncertainty values. In general RIO picked up 

part of high uncertainties similar to AD-DD when the models are trained with MOE 

descriptors. Exceptionally, for the model trained on cluster 4 with MOE descriptors RIO 

marks particularly high uncertainty values on several chemical compounds; while all other 

methods mark similar high uncertainty values but they are less distinct than what RIO gives 

as shown in Figs. 9 and 10.
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5.3. Uncertainties v.s. prediction errors

When using NN model predictions to direct experimental design, unanticipated imprecision 

wastes valuable time and resources for drug discovery applications [50]. We examine 

whether the UQ methods are able to identify the prediction errors when using NN models 

for new chemical compounds. We plot the actual MM/GBSA scores versus the predicted 

values of the chemical compounds from the test sets. We color their uncertainty values from 

the four evaluation methods for the models trained on cluster 1, 2, 3 and 4 in Figs. 4, 6, 8 

and 10, respectively. The diagonal line on the plots represents the values where the predicted 

is equal to the actual MM/GBSA score. Data points that are far away from the diagonal have 

large prediction errors. We examine the results for each cluster in the following.

The majority of the chemical compounds in cluster 1 have MM/GBSA scores ranging from 

around −15 to −35, indicating weaker binding. It is reasonable that larger prediction errors 

fall on the stronger binding side, ranging from −30 to −40 as shown in Fig. 4. This range 

is near the tail of the training set. Predicted values that fall outside the training set can be 

less reliable. The AD-LD, MC-dropout and RIO uncertainty values are high for those less 

reliable predictions for the model trained with MOE descriptors, while only the AD-DD and 

AD-LD values are high for ECFP. For the model trained on cluster 1 with ECFP the model 

uncertainty from MC-dropout appears opposite to the desired values, rendering low values 

on the high prediction error ranges and high values on the low prediction error ranges. For 

the same model the RIO method gives relatively high evaluations only to a few predicted 

values at the two ends of the predicting range, around −20 and −35.

Cluster 2 has strong binding free energy with the MM/GBSA scores approximately ranging 

from −25 to −55 as the majority. For the model trained on cluster 2 with MOE descriptors 

the AD-DD and AD-LD methods give relatively high values on the chemical compounds 

that also have large prediction errors as shown in Fig. 6. For the same model with the MOE 

descriptors, the model uncertainties from MC-dropout are moderately high on the lower 

half of the prediction values, while the RIO uncertainties are distinctly higher at the points 

far away from the diagonal. The four uncertainty evaluation methods do not capture any 

prediction errors for the model trained on cluster 2 with the ECFP features, whose training 

set performance was poor with R2 at 0.412. The model predicts strong binding for all data 

points, and has a small range of prediction values, from −32 to −44.

The chemical compounds in cluster 3 and cluster 4 cover a wider range of MM/GBSA 

scores than cluster 1 and cluster 2. Between the two clusters, cluster 3 contains more high 

value MM/GBSA scores (meaning weaker binding) while cluster 4 contains more low value 

MM/GBSA scores (meaning stronger binding). The models trained on cluster 3 have the 

best performance on the test set prediction. This also reflects on the actual versus predicted 

plots in Fig. 8 where most data points are along the diagonal. AD-DD, AD-LD and RIO 

give high values at the two ends of the predicting range for the model trained with MOE 

descriptors. RIO uncertainty gives distinct large uncertainty values at the lowest predicted 

MM/GBSA scores and only a few at the highest, reflecting the uncertainty due to the lack 

of low MM/GBSA scores in the training set. For the models trained on cluster 3 model 

uncertainties from MC-dropout are high at the lower half of the predicted range with MOE 
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descriptors, but high at the highest predicted values with ECFP. The model trained with 

ECFP again does not perform well and has a narrow range of predicted values, ranging from 

−30 to −43. The AD-DD and AD-LD values are spread out while the RIO uncertainties are 

close to a constant for the model trained with ECFP.

The model trained on cluster 4 with MOE descriptors predicts high MM/GBSA scores with 

large errors. All four methods successfully indicate these high prediction errors. Particularly 

the RIO method gives distinctively high uncertainties on the predictions larger than −20 

where the large errors occur. Similar to the model trained on cluster 3, the model trained 

with ECFP does not perform well and has a narrow range of prediction values, ranging from 

−30 to −43. The AD-DD and AD-LD values are spread out. The model uncertainties are 

high at the high predicted values. The RIO uncertainties are close to a constant for most 

chemical compounds except the lowest and the highest ends of the predicted values.

Although RIO gives almost all predictions a near constant uncertainty estimation, we 

observed that these constants reflect possible prediction errors. Fig. 11 display the box plots 

for the test set uncertainties and prediction errors. Fig. 11(C) and Fig. 11(B) contain the 

estimated mean and standard deviation of the prediction errors from the Gaussian Processes 

used in RIO. On the x-axis are the trained models where the first column C1 indicates the 

model trained on cluster 1. The corresponding data points in the box plot are from C1’s test 

set, composed of cluster 2,3 and 4. The UQ value that RIO estimates for a point prediction is 

the standard deviation of the prediction errors. RIO gives high uncertainty values to most of 

their test set predictions except C1 with MOE descriptors, reflecting the possibility of large 

test set prediction failures.

Remarkably by ordering the uncertainty values and examining the test set performance, 

we found that the magnitude of the uncertainties does not necessarily reflect the level of 

prediction errors. We sort the uncertainty values in a decreasing order in the test sets for each 

of the UQ methods. We compute the test set coefficient of determination (also known as the 

R2 score) and remove the top 5% largest uncertainty values in the test set, iteratively, until 

no samples are left. These computed values form the performance curves shown in Fig. 12. 

If the magnitude of the uncertainty values reflect the level of the prediction errors, the test 

set performance will increase as the top 5% largest uncertainty values are removed from the 

test set. The model trained on cluster 4 with MOE descriptors is the only one where all four 

UQ methods are able to reflect the level of prediction errors. These UQ methods evaluating 

other NN models barely echo the level of prediction errors.

6. Conclusion

In this article, we investigate selected uncertainty quantification (UQ) methods that provides 

estimates of different sources of predictive uncertainty for neural networks (NN) aimed 

at protein-ligand binding prediction. The applicability domain (AD) methods capture 

distributional uncertainties. MC-dropout estimates model uncertainties. RIO perceives NN 

behavior by estimating the NN prediction residuals. The selected methods can be directly 

applied to any standard NN without having to modify the model formulation or training 

procedure, making them more accessible to analysts.
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To test how these UQ methods work on NN model predictions for the drug discovery 

tasks, we carry out a series of carefully designed experiments. We randomly select drug 

compounds in the form of SMILES strings from public available database. We rescore 

the binding affinities of the chemical compounds by employing the molecular mechanics 

generalized Born surface area (MM/GBSA) continuum solvent approach. Since the MM/

GBSA scores are calculated and not from the experimental measurements, it reduces 

the otherwise irreducible aleatoric uncertainty in the prediction. We use two featurization 

schemes, the MOE descriptors and the ECFP4 bit vectors, as model features. We design the 

splits of the training and test set using our prior knowledge on the correlation between MOE 

descriptors and the MM/GBSA scores. The visualization algorithm, t-distributed stochastic 

neighbor embedding (t-SNE), gives four visible clusters on the subset of MOE features that 

are highly correlated to the MM/GBSA scores. The clusters contain different distributions of 

the MM/GBSA scores. We take each cluster as a training set and the rest of the chemical 

compounds as the corresponding test set. We apply hyperparameter search to build optimal 

NN models. Finally, the selected UQ methods provide uncertainty values for the point 

predictions made by the trained NN models.

Our experiments show that the selected UQ methods describe different sources of 

uncertainty for point predictions of NN models. The AD method using distance distribution 

(AD-DD) retain the distance scale of the original data space, which the projected 2-

dimensional t-SNE space has lost. Our results show that the AD-DD method can highlight 

novel chemical compounds, which gives the data in the other clusters higher uncertainties. 

It can also identify non-clustered data in the t-SNE plot, such as the cluster 4. When using 

cluster 4 as the training cluster, AD-DD gives high uncertainty values to several data points 

in the cluster, indicating the chemical compounds are very different from each other. The 

AD method using local density (AD-LD) verifies the clarity of the training set clusters.

MC-dropouts points to the sensitivity of the training parameters to the final predictions. MC-

dropout can give opposite levels of uncertainty estimations when using different compound 

representations (i.e. MOE or ECFP). Our results show that MC-dropout is more reliable 

with MOE descriptors than with ECFP, possibly due to the better trained models with MOE 

descriptors. MC-dropout can reflect possible prediction errors on some of the predictions 

made by the models trained with MOE descriptors on cluster 1 and cluster 3. However, 

MC-dropout provide high uncertainty values to the predictions in the training clusters where 

the other methods tend to give low values.

RIO method gives near constant uncertainty values to the majority of chemical compounds. 

We observed that these constants reflect possible prediction errors made by poorly 

performing models. When the model is not performing well, the RIO gives high near-

constant uncertainty values to most predictions. Only in the case where the chemical 

compounds are very different from the applicable domain and at the same time the model 

causes large prediction errors in the test set, RIO gives high uncertainty values to the data 

points that are distinctly larger than the near-constant uncertainty values.

Moreover, we observed that not all UQ methods can capture high prediction errors 

invariably. Only for cluster 4 with MOE descriptors do all four models capture the high 
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prediction errors. Furthermore, the magnitude of the uncertainties does not clearly reflect 

the level of prediction errors. Again, only the models trained on cluster 4 with MOE 

descriptors form increasing performance curves when the top 5% largest uncertainty values 

are removed iteratively. Generally, the AD methods can only detect the novelty of the 

chemical compounds without any knowledge from the NN model. MC-dropout reflects the 

prediction variance due to changes in training parameters. RIO gives extra high uncertainties 

to extreme predicted values. These scenario do not always come with high prediction errors.

The differences in the uncertainty estimations made by the selected UQ methods provide 

more insight into the behavior of NN models for protein-ligand binding prediction. We 

suggest to model the different types of predictive uncertainty separately. Knowing the 

assorted types of uncertainty in a point prediction may assist practitioners in taking an 

appropriate UQ aware selection strategy.
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Fig. 1. 
Clusters using the two tSNE coordinates.
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Fig. 2. 
MM/GBSA score distribution in each cluster.
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Fig. 3. 
Uncertainty values for the models trained on cluster 1 (C1). The bold number on the plot 

indicates the training set cluster. The x and y axes are the two coordinates from tSNE using 

top correlated MOE features.
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Fig. 4. 
Test set actual MM/GBSA scores versus predicted plot from the model trained on cluster 

1 (C1). The diagonal represents the values where the predicted is equal to the actual MM/

GBSA score.
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Fig. 5. 
Uncertainty values for the model trained on cluster 2 (C2).
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Fig. 6. 
Test set actual MM/GBSA scores versus predicted plot from the model trained on cluster 2 

(C2).
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Fig. 7. 
Uncertainty values for the model trained on cluster 3 (C3).
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Fig. 8. 
Test set actual MM/GBSA scores versus predicted plot from the model trained on cluster 3 

(C3).
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Fig. 9. 
Uncertainty values for the model trained on cluster 4 (C4).
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Fig. 10. 
Test set actual MM/GBSA scores versus predicted plot from the model trained on cluster 4 

(C4).
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Fig. 11. 
Box plots for the test set uncertainties and prediction errors from the models trained with 

MOE features and ECFP features.The first column C1 indicates the model trained on cluster 

1 and the corresponding data points in the box plot are from the test set, composed of cluster 

2, 3 and 4. (A) MC dropout uses the standard deviation of the predictions as its uncertainty 

estimation for the NN point prediction. For all the test sets MC dropout gives the uncertainty 

values in a narrow range. (B) RIO provides the standard deviation of the prediction errors 

(the residuals) to the NN point prediction. (C) RIO also estimates the mean of the prediction 

errors to the NN point prediction. (D) The actual prediction error is the actual MM/GBSA 

score subtracted by the NN predicted value. The actual prediction errors are close to zero 

with some outliers that have large errors. Although RIO estimates most mean prediction 

errors close to zero, it gives high standard deviations to the predictions made by the models 

trained on cluster 2, 3 and 4, indicating high uncertainties in some data points.
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Fig. 12. 
Ranked UQ values versus the prediction performance on the test sets from the models 

trained with MOE and ECFP features.
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Table 1

For visualization we select the subset of MOE features whose values are highly correlated to the MM/GBSA 

scores. There are 22 features having their Pearson correlation coefficient larger than 0.5 or lower than −0.5.

Rank MOE feature Correlation

1 BCUT_SMR_0_per_atom −0.738

2 BCUT_SLOGP_0_per_atom −0.735

3 GCUT_SMR_3_per_atom 0.729

4 GCUT_SLOGP_3_per_atom 0.725

5 BCUT_SMR_3_per_atom 0.722

6 VAdjEq_per_atom 0.721

7 a_count −0.694

8 vsurf_R_per_atom 0.688

9 vsurf_CW1_per_atom 0.686

10 PEOE_RPC-_per_atom 0.682

11 RPC-_per_atom 0.674

12 opr_leadlike_per_atom 0.668

13 vsurf_G_per_atom 0.664

14 balabanJ_per_atom 0.662

15 weinerPath −0.658

16 VAdjMa_per_atom 0.644

17 VDistMa_per_atom 0.621

18 VDistEq_per_atom 0.568

19 ast_violation −0.552

20 ast_fraglike 0.538

21 std_dim1 −0.528

22 pmi_per_atom −0.506
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Table 2

Model performance in R2 on each cluster using MOE descriptors.

MOE Test set

Training set Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.841 0.088 0.485 0.237

Cluster 2 −5.898 0.721 −0.652 −0.029

Cluster 3 0.685 0.256 0.580 0.363

Cluster 4 −3.332 0.182 0.323 0.455
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Fan et al. Page 32

Table 3

Model performance in R2 on each cluster using ECFP features.

ECFP Test set

Training set Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 0.767 −0.834 0.222 −0.317

Cluster 2 −3.917 0.399 −0.453 0.046

Cluster 3 0.036 −0.497 0.455 −0.054

Cluster 4 −1.885 −0.053 0.159 0.276
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