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a b s t r a c t

Endou proteins belong to the Eukaryotic EndoU ribonuclease family of enzymes that present high
sequence homology with the founding member XendoU domain. The enzymatic activity and three-
dimensional structure of some Endou proteins have been previously reported. However, their molecu-
lar structure and gene expression patterns during embryogenesis remain to be elucidated. Therefore, we
took zebrafish (Danio rerio) endouC as the model to study molecular structure and gene expression
dynamics at different developmental stages. Zebrafish endouC cDNA contains 930 base pairs encoding
309 amino acid residues, sharing 27%, 27%, 27%, and 25% identity with that of human, mouse, chicken
and frog, respectively. A phylogenetic tree showed that zebrafish EndouA was clustered with vertebrate
Endou groups, while zebrafish EndouB and EndouC were found to belong to a unique monophyletic
group. Furthermore, the endouC transcript was detected in one-cell embryos, suggesting that it is a
maternal gene. While the endouC transcript was only weakly present at early developmental stages, its
expression was greatly increased in embryos from 18 to 48 h post-fertilization (hpf) and then decreased
after 72 hpf. Finally, endouC was ubiquitously expressed throughout the whole embryo during early
embryogenesis, but its expression was enriched in brain, eyes and fin buds from 24 to 96 hpf.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The Eukaryotic EndoU ribonuclease family is a novel protein
class which includes several enzymes that share significant
sequence homology with the founding member XendoU (Snijder
et al., 2003; Renzi et al., 2006). This family includes several pro-
teins from a variety of organisms that range from viruses to
humans. For example, Xenopus XendoU is a uridylate-specific,
divalent cation-dependent enzyme that produces molecules with
20,30-cyclic phosphate ends, a unique characteristic of this partic-
ular class of RNases involved in generating U16 and U86 small
nucleolar RNAs (snoRNAs) through the cleavage of pre-mRNAs
encoded within introns (Laneve et al., 2003; Gioia et al., 2005;
Renzi et al., 2006). The human Endou, known as PP11, has been
recently characterized as a member of the XendoU family. Despite
its annotated function as a putative serine protease, human Endou
iences, Mackay Medical Col-
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has endoribonuclease activity with placental tissue specificity. The
dysregulated expression of PP11 in tumor tissues suggests that it
may be associated with carcinogenesis (Inaba et al., 1980). Recent
studies also demonstrate that both Xenopus XendoU and human
Endou play important roles in cellular processes, including the
regulation of ER structure, RNA degradation and cell survival
(Schwarz and Blower, 2014; Poe et al., 2014). Nsp15 (NendoU), a
viral ortholog of XendoU, is unique to the nidovirus family of ssRNA
viruses, which includes severe acute respiratory syndrome (SARS)
coronavirus (Laneve et al., 2003; Bhardwaj et al., 2004; Gioia et al.,
2005). Nsp15 is a component of the replicaseetranscriptase com-
plex that plays important roles in virus replication and transcrip-
tion (Ivanov et al., 2004). Like XendoU, Nsp15 has endoribonuclease
activity which can cleave RNA, either upstream or downstream of
uridylates, at GUU or GU to produce molecules with 20,30-cyclic
phosphate ends (Ivanov et al., 2004). NendoU has also been
postulated to suppress host immune responses (Ricagno et al.,
2006) and facilitate apoptosis in cells expressing the mitochon-
drial antiviral signaling adapter protein that induces host antiviral
responses (Lei et al., 2009).

Recent studies have focused on XendoU enzymatic activity and
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its three-dimensional structure (Laneve et al., 2003, 2008; Gioia
et al., 2005; Renzi et al., 2006). Zebrafish (Danio rerio) has
become a powerful vertebrate model system for the in vivo study of
gene expression. However, the molecular implications of endonu-
clease, polyU-specific C (endouC) are not well known. Nor has the
spatiotemporal pattern of the endouC gene been reported. There-
fore, in the present work, a phylogenic tree of EndouC among
known vertebrate species was elucidated. The spatiotemporal
expression pattern of endouC in zebrafish embryos at different
developmental stages was also analyzed.
2. Material and methods

2.1. Zebrafish husbandry and microscopy

Both zebrafish AB strain and transgenic line huORFZ (Lee et al.,
2011) were cultured as previously described (Westerfield, 2000).
Embryos were grown at 28.5 �C in embryo media (EM) and staged
according to standardized morphological criteria (Westerfield,
2000). EM was supplemented with 0.003e0.006% of 1-phenyl 2-
thiourea (PTU) (Sigma) to prevent pigment formation in embryos
at 24 h post-fertilizationn (hpf). Fluorescence was visualized with a
fluorescent stereomicroscope (MZ FLIII, Leica) and a confocal
spectral microscope (TCS SP5, Leica). The experiments and treat-
ments of this animal have been reviewed and approved by the
Institute of Biomedical Science, Mackay Medical College Institu-
tional Animal Care and Use Committee with ethics approval num-
ber A1040009.
2.2. Whole-mount in situ hybridization (WISH)

The full-length coding sequence of zebrafish endouC was iso-
lated by RT-PCR, inserted into plasmid pGEMTeasy (Promega), and
confirmed by sequencing. After cloning the partial DNA fragments
of the desired gene, the probe was labeled by Digoxigenin (DIG).
After permeabilization, embryos were hybridized overnight. Then,
embryos were incubated with anti-DIG antibody (Roche; 1:8000),
stained, and observed under a fluorescent stereomicroscope (MZ
FLIII, Leica).
2.3. RNA extraction and RT-PCR

Total RNA isolation, cDNA synthesis and reverse transcriptase
polymerase chain reaction (RT-PCR) were performed as previously
described (Lee et al., 2011). For RT-PCR and molecular cloning, the
primers used were as follows: forward primer: 50-ATGGCCAGTG-
GATATGATTTTGGA-3’; reverse primer: 50- CAG-
CATGTGTCTGTTGTTGCTGCT -3’.
Fig. 1. The deduced amino acid sequences of zebrafish endouC protein compared
with other endou from vertebrates. The alignment of amino acid sequences of endou
by CLUSTALW (2.1), including human H. sapiens endou1 (Hendou1), H. sapiens endou2
(Hendou2), H. sapiens endou3 (Hendou3), mouse Mus musculus endou1 (Mendou1),
M. musculus endou2 (Mendou2), chicken Gallus gallus endou (Gendou), frog Xenoupsu
tropicalis endou (Xendou), and zebrafish Dario rerio EndouA (EndouA), D. rerio EndouB
(EndouB) and D. rerio EndouC (EndouC). Using Signal-blast software, the predicted
signal peptide is labeled with blue color. The conserved regions are boxed with red,
Xendou-domain. Asterisks, two dot and one dot were indicated that amino acid resi-
dues were 100%, 75%, 50% conserved among all species, respectively.



Fig. 2. An unrooted radial gene tree of EndoU among vertebrates. The gene tree was
constructed with the neighbor-joining method (Pearson et al., 1999), using 1000
bootstrap values. The marker length of 0.1 corresponds to 10% sequence difference.
Human (H. sapiens), mouse (M. musculus), chicken (G. gallus), frog (X. tropicalis) and
zebrafish (D. rerio) were marked in green, blue, red, brown and black, respectively.

Fig. 3. RT-PCR analysis of zebrafish endouC transcript during embryogenesis.
Analysis of endouC transcript by RT-PCR at different developmental stages of zebrafish
embryos as indicated: 1-cell (lane 1), shield (lane 2), 12 hpf (lane 3), 18 hpf (lane 4), 24
hpf (lane 5), 36 hpf (lane 6), 48 hpf (lane 7), 72 hpf (lane 8)and 96 hpf (lane 9). M:
marker; P: positive control. b-actin was used as internal control.
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3. Results and discussion

3.1. Comparison of deduced amino acids and functional domains of
EndouC among known vertebrate species

Zebrafish endouC is located on chromosome 18 at
15,490,813e15,498,934, and is composed of eight exons separated
by seven introns. The full-length cDNA of zebrafish endouC contains
930 nucleotide base pairs encoding 309 amino acid residues.

Three XendoU homologs in zebrafish were reported: EndouA,
EndouB and EndouC (Strausberg et al., 2002). Their corresponding
deduced amino acid sequences were shown on NCBI Reference
Sequence NM_001080698, NM_001020562, and NM_001044974,
respectively. When the deduced amino acid residues of EndouA/-
B/-C were aligned with the counterpart of other vertebrates, a
highly conserved XendoU domain was identified at residues
28e290 (Fig. 1). This result supported the conclusion proposed by
Laneve et al. (2003) and Renzi et al. (2006) who demonstrated that
Endou family proteins have a highly conserved XendoU domain
(residues 131e285) with homologs from eukaryotes. Moreover, this
XendoU domain was speculated to have endoribonucleolytic ac-
tivity (Renzi et al., 2006). Using Singal-blast software, we found that
all human three Endou isoforms, mouse two Endou isoforms, and
zebrafish EndouA and EndouC contain a signal peptide at N-ter-
minus, while Xenopus Xendou, chicken Endou and zebrafish
EndouB did not (Fig. 1). Interestingly, three zebrafish Endou pro-
teins lacked the Somatomedin B (SMB) and SMB-like domain
otherwise conserved among vertebrate Endou proteins (Fig. 1).

3.2. Comparison of deduced amino acid residues of three zebrafish
Endou proteins with those of higher vertebrates

Based on a comparison of the three zebrafish Endou proteins,
the deduced amino acid sequence of zebrafish EndouC shared 26%
and 42% similarity with EndouA and EndouB, respectively. The
deduced amino acid sequence of zebrafish EndouA shared 49e50%,
50%, 54% and 49% identity with human (Homo sapiens), mouse (Mus
musculus), chicken (Gallus gallus), and frog (Xenopus tropicalis),
respectively. Meanwhile, zebrafish EndouB and EndouC respec-
tively shared 28%, 30%, 31% and 30% and 27%, 27%, 27% and 25%
identity with human, mouse, chicken and frog. Interestingly, sim-
ilarity of the XendoU domain among the three zebrafish Endou
proteins was low, and zebrafish EndouAwasmore closely related to
vertebrate Endou proteins.

3.3. Phylogenetic analysis of three zebrafish Endou proteins

To examine the evolutionary relationship between Endou of
teleost and that of other species, we generated a phylogenetic tree
based on the deduced amino acid residues of the three zebrafish
Endou proteins in comparison with Endous of other vertebrates
(Fig. 2). Results showed that zebrafish EndouA was clustered with
vertebrate Endou groups. Interestingly, zebrafish EndouB and
EndouC were found to belong to a unique monophyletic group.
Further study of this unusual characteristic should provide addi-
tional insight into the molecular structure of endou genes.

3.4. Expression pattern of endouC in zebrafish embryos

To analyze the spatiotemporal expression pattern of endouC
during zebrafish embryogenesis, we performed RT-PCR and WISH.
We found that the endouC was a maternal gene because its tran-
script was present in one-cell embryos (Fig. 3). Expression of
endouC was low at early developmental stages (Fig. 3). It gradually
increased from 18 to 48 hpf and then decreased after 72 hpf (Fig. 3).

WISH analysis to detect the spatiotemporal expression of
zebrafish endouC demonstrated that the endouC transcript was
ubiquitously expressed throughout the whole embryo after 12 hpf
(Fig. 4A). At 24 hpf, endouC was still strongly expressed at the head
and ventral body regions above the yolk sack (Fig. 4B), but it was
weakly expressed in somite and spinal cord (Fig. 4C). During 36 to
48 hpf, the expression of endouC becamemore limited, appearing in
brain, eyes and fin buds (Fig. 4DeG). In brain, endouCwas observed
at forebrain, midbrain, midbrain hindbrain boundary (MHB), and
hindbrain (Fig. 4E and G), while in eyes, endouC was expressed in
lens and retinae (Fig. 4G). The endouC transcript was first detected
at the fin bud at 48 hpf (Fig. 4G).

Later at 72 hpf, endouC was expressed in the midline of the
midbrain and hindbrain, but it was weakly detected in the spinal
cord and somite (Fig. 4H). In hindbrain, the endouC transcript was
visible as a triangular shape emerging from the anterior part of
hindbrain midline (Fig. 4I). At 96 hpf, the expression pattern of
endouC in brain was similar to that of embryos at 72 hpf; however,
in head, the signal appeared to be more restricted to pharynx, MHB
and hindbrain, and the signal in eyewas reduced greatly (Fig. 4J and
K).



Fig. 4. The expression pattern of endouC transcript during the development of zebrafish embryos. Embryos at different stages as indicated were collected and hybridized with
endouC probe using whole-mount in situ hybridization. Panels A, B, D, F, H, and J were lateral views with anterior of embryo on the left; panel C was dorsal view with anterior of
embryo on the left; panel E, G, I and K were dorsal views with anterior of embryos on the top. At 12 hpf, endouC was expressed in whole embryo. At 24 hpf, endouC was highly
expressed in head, including forebrain (fb), midbrain (mb), midbrain hibrain boundary (mhb), and hindbrain (hb). The endouC transcript was also detected in somite (s) during
24e96 hpf. f, fin bud; sc, spinal cord; r, retina; e: eyes; l, lens; ph, pharynx. Scale bar: 100 mm.
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