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Abstract: We have successfully fabricated poly(3,4-ethylenedioxythiophene) (PEDOT) derivative
nanohybrid coatings on flexible SUS316L stainless steel by electrochemical polymerization, which can
offer anti-fouling and anti-bacterial capabilities. PEDOT derivative nanohybrids were prepared from
polystyrene sulfonates (PSS) and graphene oxide (GO) incorporated into a conducting polymer of
PEDOT. Additionally, the negative charge of the PEDOT/GO substrate was further modified by
poly-diallyldimethylammonium chloride (PDDA) to form a positively charged surface. These PEDOT
derivative nanohybrid coatings could provide a straightforward means of controlling the surface
energy, roughness, and charges with the addition of various derivatives in the electrochemical
polymerization and electrostatically absorbed process. The characteristics of the PEDOT derivative
nanohybrid coatings were evaluated by Raman spectroscopy, scanning electron microscopy (SEM),
X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle, and
surface potential (zeta potential). The results show that PEDOT/PSS and PEDOT/GO nanohybrid
coatings exhibit excellent anti-fouling capability. Only 0.1% of bacteria can be adhered on the
surface due to the lower surface roughness and negative charge surface by PEDOT/PSS and
PEDOT/GO modification. Furthermore, the anti-bacterial capability (7 mm of inhibition zone)
was observed after adding PDDA on the PEDOT/GO substrates, suggesting that the positive charge
of the PEDOT/GO/PDDA substrate can effectively kill bacteria (Staphylococcus aureus). Given their
anti-fouling and anti-bacterial capabilities, PEDOT derivative nanohybrid coatings have the potential
to be applied to biomedical devices such as cardiovascular stents and surgical apparatus.

Keywords: electrochemical polymerization; PEDOT; graphene oxide; anti-fouling capability;
anti-bacterial capability

1. Introduction

In recent decades, the development of human medical care has been paid increasing attention.
In relation to this, films with anti-bacterial coatings have also been widely studied, including antibiotic
materials, silver nanoparticles, copper nanoparticles, metal ions, and carbon nanotubes [1–4]. It is
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well-known that anti-bacterial materials use surface charges to improve anti-bacterial activities through
the interaction with the different surface charge of the bacterial cell wall [5]. Generally, the wall of
a bacterium with negative charge can be captured by anti-bacterial materials with positive charge,
which can provide an excellent anti-bacterial effect [6]. Thus, the anti-bacterial activities of anti-bacterial
materials can be improved by surface modifications of materials [7].

Poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting conjugated polymer, has been widely
used in various applications due to its excellent properties, including flexibility, chemical stability,
high optical transparency, and good conductivity [8]. In addition, conducting conjugated PEDOT can be
polymerized from EDOT monomers using different polymerization methods, such as chemical oxidative
polymerization, vapor phase polymerization, and electrochemical polymerization [9–11]. Furthermore,
conductive PEDOT-based derivatives, such as electrode films doped with poly(4-styrenesulfonate)
(PSS) or different hydrophilic materials have attracted wide attention [12–14]. Due to good chemical
and physical stability, the PEDOT/PSS can be used in a wide variety of applications such as organic
solar cells, supercapacitors, antistatic surfaces, thermoelectric devices, and printed electronics [15,16].
Although oxidized PEDOT has excellent conductivity, it is unstable in water and solvents [17].
Therefore, the negative charge of PSS can be doped with the positive charge of conducting conjugated
PEDOT to address this issue and improve its applicability.

In 2004, graphene nanosheets were successfully exfoliated from graphite using the process of
repeatedly peeling flakes of Scotch tape [18]. Graphene of two-dimensional nanosheets with an atomic
layer of carbon atoms has attracted significant scientific attention and technical interest due to its
flexibility, chemical stability, high carrier mobility, and excellent electrical conductivity [19]. In addition,
graphene oxide (GO) nanosheets were prepared by chemical modifications in which the surface of the
GO exhibited a large number of functional groups (epoxide, carboxyl, carbonyl groups) containing
oxygen. This promotes a negative charge of the surface to improve its dispersion in water [20].
These properties of GO-based nanosheets have provided great potential for wide applications in the
biosensor, anti-bacterial, and optoelectronic devices [6,21,22]. Moreover, the surface negative charge
of GO nanosheets can also be modified by the electrostatic absorbed method of positive charged
poly-diallyldimethylammonium chloride (PDDA) to induce anti-bacterial capability [23]. In addition,
the poor conductivity of GO nanosheets was improved to fabricate a novel conducting composite by a
combination of conducting polymers [24–26]. Therefore, the PEDOT of conducting polymers has been
incorporated in GO nanosheets to produce novel nanohybrid materials via self-assembly or chemical
processes for electrochemical sensors and anti-fouling coatings [24,27,28].

In this study, PEDOT derivative nanohybrid coatings were fabricated using electrochemical
polymerization on a flexible SUS316L stainless steel substrate. These PEDOT derivative nanohybrids
were prepared by incorporation of a PSS dopant and GO nanosheets. In addition, the negatively charged
PEDOT-GO nanohybrid coating was modified to form a positively charged surface of anti-bacterial film
by electrostatically absorbed PDDA. The characteristics of the PEDOT derivative nanohybrid coatings
were evaluated by Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron
spectroscopy (XPS), atomic force microscopy (AFM), water contact angle, and surface potential
(zeta potential). The anti-bacterial and anti-fouling capabilities of PEDOT derivative nanohybrid
coatings were investigated by an inhibition zone and anti-fouling test. We anticipated that the PEDOT
derivative nanohybrid coatings composed of GO nanosheets and PDDA would demonstrate the
excellent anti-bacterial and anti-fouling capabilities, which can be applied to bio-interface coatings and
biomedical devices.

2. Materials and Methods

2.1. Materials

SUS316L stainless steel substrate was purchased from Sinkang Industries Co., Ltd., (New Taipei
City, Taiwan). Graphite powder was purchased from Allightec Co., (Taichung City, Taiwan).
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3,4-Ethylenedioxythiophene (EDOT), PSS solution (Mw 75,000 g/mol), hydrogen peroxide (H2O2),
hydrochloric acid (HCl), sulfuric acid (H2SO4), nitric acid (HNO3), sodium chloride (NaCl), alcohol,
potassium permanganate (KMnO4), and PDDA solution were purchased from Sigma-Aldrich Corp.
(St. Louis, MO, USA) and Acors Organics (Ozaukee County, WI, USA).

2.2. Preparation of GO Nanosheets

GO nanosheets were prepared from graphite powder by a modified Hummers-Offeman
method [29]. First, 1 g of graphite powder was dispersed into 36 mL of H2SO4 solution for 30 min in an
ice bath. Then, 12 mL of HNO3 solution and 5 g of KMnO4 were slowly added to the resulting solution,
and the mixtures were stirred for 40 min in an ice bath. Subsequently, 120 mL of deionized (DI) water
was gently added and stirred for 2 h. Then, 6 mL of H2O2 was added to the stirred solution for 2 h and
settled overnight. After removing the supernatant, 200 mL of DI water, 1 mL of H2O2, and 1 mL of
HCl were added to above resultant mixture and stirred for 2 h. The resultant solution was washed and
centrifuged three times. The resultant was washed with DI water until a neutral pH was achieved to
obtain dark-yellow GO nanosheets, which were dried by vacuum freeze drying for 72 h.

2.3. Preparation of PEDOT/PSS and PEDOT/GO Nanohybrid Coatings

A PEDOT/PSS nanohybrid coating was prepared from an EDOT monomer with PSS and GO
nanosheets by electrochemical polymerization on a SUS316L stainless steel substrate. The SUS316L
stainless steel substrate was washed sequentially with common detergent, ethanol, and DI water,
which was dried in a vacuum oven. First, 56.8 µL of EDOT and 113.6 µL of PSS were dispersed
into DI water and ultrasonicated for 2 h at room temperature. Then, the solution was placed into a
three-electrode electrochemical analyzer (PGSTAT12, Metrohm Autolab B.V., Utrecht, Netherlands)
and polymerized at a constant potential of 1 V to fabricate a PEDOT/PSS nanohybrid coating with an
average deposition density of 10–20 mC cm−2. The electrochemical polymerization was performed
using a three-electrode electrochemical analyzer, including the reference electrode of AgCl, the counter
electrode of Pt wire, and the working electrode of a SUS316L stainless steel substrate. According to
the above procedure, 56.8 µL of EDOT and 0.1 g of GO nanosheets were dispersed into DI water and
ultrasonicated for 2 h. Then, the above solution was polymerized on SUS316L stainless steel substrate
to obtain a PEDOT/GO nanohybrid coating by electrochemical polymerization.

2.4. Preparation of PEDOT/GO/PDDA Nanohybrid Coating

PEDOT/GO/PDDA nanohybrid coating was prepared from PEDOT/GO and PDDA by the
electrostatic absorbed method, as illustrated in Scheme 1. The PEDOT/GO nanohybrid coating was
immersed into PDDA solution for 30 min. Then, the coating was washed with DI water three times.
The resultant PEDOT/GO/PDDA nanohybrid coating was dried at 60 ◦C.
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Scheme 1. Preparation of the poly(3,4-ethylenedioxythiophene)/graphene oxide/poly-diallyldimethylammonium
chloride (PEDOT/GO/PDDA) nanohybrid coating.

2.5. Anti-Bacterial Capability of PEDOT Derivatives Nanohybrid Coatings

The anti-bacterial capability of PEDOT derivative nanohybrid coatings was surveyed in connection
with bacteria (Staphylococcus aureus, S. aureus). For the microbiological experiment, all of the chemicals
were autoclaved at 120 ◦C for 15 min. S. aureus bacteria were incubated at 37 ◦C for 18–24 h. The cultured
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S. aureus was mixed with 1 wt % NaCl solution and stirred in a vortex mixer for 30 s. Then, 1 mL of the
solution was added to 9 mL of Lysogeny broth (LB) medium and stirred in a vortex mixer for 30 s.
According to the above procedure, the mixing process was repeated three times. Subsequently, 0.01 mL
of suspension S. aureus (105 CFU/mL) was dropped and uniformly dispersed on a nutrient agar plate.
The PEDOT derivative nanohybrid coatings were placed on the nutrient agar plate with S. aureus and
incubated at 37 ◦C for 18–24 h. After 18–24 h of culturing, the inhibition zone of PEDOT derivative
nanohybrid coatings was demonstrated.

2.6. Anti-Fouling Capability of PEDOT Derivatives Nanohybrid Coatings

A quantity of 105 CFU/mL of S. aureus was chosen as the adhering bacteria for the evaluation of
anti-fouling capability. The PEDOT derivative nanohybrid coatings were immersed in the S. aureus
solution and incubated at 37 ◦C for 18–24 h. The number of S. aureus bacteria adsorbed on the PEDOT
derivative nanohybrid coatings was counted by fluorescence microscope (fluorescent nucleic acid
stain-SYTO®9/propidium iodide kits).

2.7. Characterization

Raman measurement with a 532 nm He-Ne emitting laser was performed using a micro-Raman
system (Renishaw Vendor, Gloucestershire, UK) in the detection range from 1000 to 3000 cm−1.
The chemical binding conditions of PEDOT derivative nanohybrid coatings were measured by X-ray
photoelectron spectrometer (XPS, ULVAC-PHI PHI 5000 VersaProbe, Ulvac-PHI, Kanagawa, Japan).
The surface charge of PEDOT derivative nanohybrid coatings was observed by zeta potential (Zetasizer
3000, Malvern Instruments, Malvern, UK). A contact angle goniometer (DSA 100, Krüss GmbH,
Hamburg, Germany) was used for the static contact angle measurement of PEDOT derivative nanohybrid
coatings. An atomic force microscope (AFM, Dimension Edge, Bruker, Madison, WI, USA) and field
emission scanning electron microscope (FE-SEM, JEOL JSM 6701F, JEOL Co., Tokyo, Japan) were used
for the morphological characterization of PEDOT derivative nanohybrid coatings. The number of
bacteria was calculated from fluorescence microscope images bacteria adhered on the surface of the
SUS316L substrate and PEDOT derivative nanohybrid coatings by using commercial ImageJ software
(National Institutes of Health, Bethesda, MD, USA).

3. Results and Discussion

3.1. Characteristics of PEDOT Derivative Nanohybrid Coatings

The structural properties of GO nanosheets and PEDOT derivative nanohybrid coatings were
measured by Raman spectroscopy, as shown in Figure 1. The GO nanosheets exhibited the characteristic
peaks at 1350 cm−1 (D band) for the in-plane bond stretching of sp2 carbon atoms and 1583 cm−1 (G band)
for defects of structure and lattice distortion [30]. The Raman spectrum of the PEDOT/PSS nanohybrid
coating was observed at 1433 and 1505 cm−1 for the asymmetric and symmetric C=C stretching
vibration of PEDOT [31]. When the GO nanosheets were used in the PEDOT nanohybrid system,
the Raman spectrum of the PEDOT/GO nanohybrid coating was similar to that of the PEDOT/PSS
nanohybrid coating, while the shoulder peaks of the D and G bands of the GO nanosheets were located
at 1350 and 1583 cm−1, respectively. This confirms that GO nanosheets were doped in the chain [32].
After the electrostatically absorbed process by PDDA, the Raman spectrum of the PEDOT/GO/PDDA
nanohybrid coating was similar to that of the PEDOT/GO nanohybrid coating.
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Figure 1. Raman spectra of GO nanosheets, and PEDOT/PSS (polystyrene sulfonates), PEDOT/GO, and
PEDOT/GO/PDDA nanohybrid coated substrates.

The chemical binding of PEDOT derivative nanohybrid coatings was analyzed by XPS spectra,
as shown in Figure 2. The XPS spectra were observed in the presence of oxygen (O-1s), carbon (C-1s),
and sulfur (S-2s and S-2p) elements in the PEDOT/PSS nanohybrid coating. Compared with the
PEDOT/PSS nanohybrid coating, the characteristic peaks (S-2s and S-2p) of the PEDOT/GO nanohybrid
coating were almost dispersed, while the O-1s peak was increased with oxygen-containing groups of
GO nanosheets incorporated into the PEDOT nanohybrid system. Moreover, a new characteristic peak
(Cl-2p) was observed for PEDOT/GO/PDDA nanohybrid coatings, indicating that PDDA was absorbed
on the PEDOT/GO nanohybrid coating by the electrostatic absorbed process. The curve-fitting of C-1s
spectra of PEDOT/PSS and PEDOT/GO nanohybrid coatings are shown in Figure 3a,b. Compared with
the PEDOT/PSS nanohybrid coating, the stronger characteristic peak at 286.8 eV for the C-O-C bond was
observed for the PEDOT/GO nanohybrid coating. The results indicate that the many oxygen-containing
functional groups of GO nanosheets were successfully incorporated into the PEDOT nanohybrid
system [31]. In addition, the curve-fitting of Cl-2p spectra (Figure 3c) of PEDOT/GO/PDDA nanohybrid
coatings demonstrates characteristic peaks at 198.8 and 197.4 eV, corresponding to Cl-2p1/2 and Cl-2p3/2,
which further confirm the adsorption of PDDA on the PEDOT/GO nanohybrid coating.
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The zeta potential results of the nanohybrid coated substrates (PEDOT/PSS, PEDOT/GO,
PEDOT/GO/PDDA substrates) and bacteria (S. aureus) are illustrated in Figure 4. Due to the negative
charge of PSS and GO nanosheets incorporated into the PEDOT nanohybrid system, the zeta potential
values of PEDOT/PSS and PEDOT/GO nanohybrid coatings were −69.3 and −51.4 mV, respectively.
When positively charged PDDA was absorbed on PEDOT/GO nanohybrid coating, the zeta potential
value of PEDOT/GO/PDDA substrate significantly increased to +34.1 mV. In addition, the zeta potential
value of S. aureus with the negative charge of the cell walls was −19.8 mV. Therefore, the positive charge
of PEDOT/GO/PDDA substrate can physically absorb and thus kill the bacteria (S. aureus), thereby
inducing the anti-bacterial capability.
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The surface hydrophilicity of PEDOT derivative nanohybrids coated on SUS316L stainless steel
substrate was investigated by water contact angle measurement, as shown in Figure 5. The surface of
pristine SUS316L substrate displayed a water contact angle of 53.4◦. After the PEDOT/PSS nanohybrid
was coated on the SUS316L substrate, the water contact angle of the coated surface decreased to
47.2◦. Moreover, the water contact angle (38.4◦) of the PEDOT/GO nanohybrid coating was slightly
lower than that of the PEDOT/PSS nanohybrid coating, indicating that the incorporation of GO
nanosheets possessed a large number of oxygen functional groups. Furthermore, the PEDOT/GO/PDDA
nanohybrid coating demonstrated the lowest water contact angle (5.7◦). The results indicate the
successful adsorption of hydrophilic PDDA on the PEDOT/GO nanohybrid substrate to create the
hydrophilic surface.
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The surface morphological characterization of the SUS316L substrate and PEDOT derivative
nanohybrid coatings were investigated by SEM, as shown in Figure 6. Macroscopically, the pristine SUS316L
stainless steel substrate showed a clear and smooth surface morphology (Figure 6a). The PEDOT/PSS
nanohybrid coating was observed as a dense layer on the SUS316L substrate, as shown in Figure 6b.
Moreover, the PEDOT/GO nanohybrid coating was shown as GO nanosheets with a wrinkled structure
on the surface of the PEDOT nanohybrid system (Figure 6c). When the positively charged PDDA was
absorbed on the PEDOT/GO nanohybrid coating (Figure 6d), the absence of GO nanosheets with wrinkled
morphology on the surface of PEDOT/GO/PDDA nanohybrid coatings indicated that PDDA successfully
covered the surface of the PEDOT/GO nanohybrid coated substrate. The surface roughness of coating
layers was further investigated by AFM analysis.

Figure 7 shows the microscopic surface roughness and morphology of the SUS316L substrate
and PEDOT derivative nanohybrid coatings by AFM. Microscopically, the pristine SUS316L substrate
displayed a relatively rough morphology (Ra = 76.2 nm). By the electrochemical polymerization process,
the PEDOT/PSS nanohybrid was polymerized and filled the nanostructured surface of SUS316L
substrate to obtain a uniform surface morphology and lower surface roughness (Ra = 39.0 nm).
Compared with the PEDOT/PSS nanohybrid coating, the surface roughness of the PEDOT/GO
nanohybrid coating increased from 39.0 to 50.9 nm, which was due to the presence of GO nanosheets
on the surface. When positively charged PDDA was absorbed on the PEDOT/GO nanohybrid coating,
the surface roughness of the PEDOT/GO/PDDA nanohybrid coating decreased to 45.3 nm. The result
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shows that the PDDA covered the surface, reducing surface roughness and creating a relatively
smooth morphology.Polymers 2020, 12, 1467 8 of 12 
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3.2. Anti-Fouling Capability of PEDOT Derivative Nanohybrid Coatings

To evaluate the anti-fouling capability of the PEDOT derivative nanohybrid coated on the surface
of SUS316L stainless steel (Figure 8), 105 CFU/mL of S. aureus was chosen as the model bacteria.
Green dots of the fluorescence microscope images represent live S. aureus bacteria adhering to the
surface of the SUS316L substrate and PEDOT derivative nanohybrid coatings. A dense distribution of
S. aureus (approximately 108/cm2) adhered to the surface of the pristine SUS316L substrate, as shown
in Figure 8a. Compared with the pristine SUS316 substrate (Ra = 76.2 nm), a lower adhesion density
of bacteria was obtained on the PEDOT derivative nanohybrid coatings (Figure 8b–d), which was
due to the lower surface roughness. Therefore, the numbers of adhered bacteria were decreased to
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approximately 106/cm2 for PEDOT/PSS, approximately 106/cm2 for PEDOT/GO, and approximately
107/cm2 for PEDOT/GO/PDDA substrates. In particular, the negative charge of PEDOT/PSS (Figure 8b)
and PEDOT/GO (Figure 8c) nanohybrid coatings can further inhibit and reduce the adhesion of the
negative charge of S. aureus, demonstrating the anti-fouling capability. On the other hand, the numbers
of S. aureus decrease from 105 CFU/mL (SUS316L substrate) to approximately 102 CFU/mL (PEDOT/PSS
and PEDOT/GO nanohybrid coating), and only 0.1% of bacteria can be adhered on the surface.
However, the numbers of adhering bacteria (approximately 103 CFU/mL) on the PEDOT/GO/PDDA
nanohybrid coating were slightly higher than that of the PEDOT/PSS and PEDOT/GO nanohybrid
coating. The results indicate that the bacteria seemed to slightly prefer to adhere on the positive charge
of the PEDOT/GO/PDDA substrate (Figure 8d). The negative cell wall of the bacteria would be locked
by the positive charge of PEDOT/GO/PDDA substrates to inhibit the growth; thus, the bacteria are going
to die [6]. The substrate exhibited excellent anti-bacterial capability, as discussed in the next section.
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3.3. Anti-Bacterial Capability of PEDOT Derivative Nanohybrid Coatings

The anti-bacterial capability of PEDOT derivative nanohybrid coatings was evaluated using S.
aureus as a model bacterium. As compared with other anti-bacterial tests, the zone of inhibition testing
is a rapid and inexpensive test for anti-bacterial activity. Nevertheless, the zone of inhibition testing
is a qualitative test to inhibit the growth of tested bacteria. In this study, the anti-bacterial capability
was investigated by measuring the inhibition zone incubated on a nutrient agar plate, as shown in
Figure 9. When the zone of inhibition shows on the nutrient agar plate, the results displayed that the
tested bacteria were susceptible to the PEDOT derivative nanohybrid coatings. The pristine SUS316L
substrate, and the PEDOT/PSS and PEDOT/GO nanohybrid coatings, showed the absence of an
inhibition zone. However, a significant inhibition zone (7 mm) on the PEDOT/GO/PDDA nanohybrid
coating was observed. This is due to the positive charge of PDDA absorbed on the PEDOT/GO
substrate to create the positive charge surface of the PEDOT/GO/PDDA substrate, which can inhibit
the growth of the bacteria. Compared with our previous studies [24,33], the negative charge of
PEDOT derivatives (PEDOT/PSS, PEDOT/GO, PEDOT/Heparin, PEDOT/ chondroitin sulfate, and
PEDOT/carboxymethyl-hexanoyl chitosan) can suppress the adhesion of the negative charge of proteins,
platelets, and bacteria to form the anti-fouling surface. However, it would be an anti-bacterial surface
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after immobilizing the positive charge of PDDA on the PEDOT/GO substrate. Therefore, the inclusion
of PDDA in the PEDOT/GO/PDDA substrate can effectively diffuse and then kill bacteria, as shown as
the larger inhibition zone [6].
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4. Conclusions

This study successfully fabricated PEDOT derivative nanohybrid coatings on a flexible SUS316L
stainless steel substrate by electrochemical polymerization for improving the anti-bacterial and anti-fouling
capabilities. Via the addition of hydrophilic derivatives, these PEDOT derivative nanohybrid coatings
decrease the water contact angle and surface roughness to form a hydrophilic surface. In addition,
the negatively charged surface of the PEDOT/GO nanohybrid coating can be further modified by
the electrostatically absorbed process of the positively charged PDDA. PEDOT/PSS and PEDOT/GO
nanohybrid coatings with lower surface roughness and negative charge led to less adsorption of bacteria
(S. aureus). By comparison, the positively charged PEDOT/GO/PDDA nanohybrid coating inhibited
the growth of bacteria, resulting in excellent anti-bacterial capability. Therefore, the electrochemically
polymerized PEDOT derivative nanohybrid coatings can provide an anti-fouling and anti-bacterial surface,
which offers a straightforward and rapid method to develop anti-bacterial and anti-fouling coatings for
medical devices.
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