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Abstract 45 

Background & Aims 46 

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver pathology in western 47 

countries, with serious public health consequences. Efforts to identify causal genes for NAFLD have been 48 

hampered by the relative paucity of human data from gold-standard magnetic resonance quantification of 49 

hepatic fat. To overcome insufficient sample size, genome-wide association studies using NAFLD 50 

surrogate phenotypes have been used, but only a small number of loci have been identified to date. In this 51 

study, we combined GWAS of NAFLD composite surrogate phenotypes with genetic colocalization studies 52 

followed by functional in vitro screens to identify bona fide causal genes for NAFLD. 53 

Approach & Results 54 

We used the UK Biobank to explore the associations of our novel NAFLD score, and genetic colocalization 55 

to prioritize putative causal genes for in vitro validation. We created a functional genomic framework to 56 

study NAFLD genes in vitro using CRISPRi. Our data identify VKORC1, TNKS, LYPLAL1 and GPAM as 57 

regulators of lipid accumulation in hepatocytes and suggest the involvement of VKORC1 in the lipid storage 58 

related to the development of NAFLD. 59 

Conclusions 60 

Complementary genetic and genomic approaches are useful for the identification of NAFLD genes. Our 61 

data supports VKORC1 as a bona fide NAFLD gene. We have established a functional genomic framework 62 

to study at scale putative novel NAFLD genes from human genetic association studies. 63 

  64 
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Introduction 65 

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver condition, with serious public 66 

health consequences. Globally, at least 25% of adults are estimated to suffer from NAFLD, and 67 

cardiovascular disease is the leading cause of death among these patients. (1, 2) NAFLD displays a wide 68 

spectrum of liver pathology, ranging from nonalcoholic fatty liver, which is typically benign, to non-69 

alcoholic steatohepatitis (NASH), characterized by steatosis and features of cellular injury, such as 70 

inflammation and hepatocyte ballooning. NASH may progress to liver cirrhosis, hepatic failure, and 71 

hepatocellular carcinoma in the absence of significant alcohol consumption. The degree of steatosis can be 72 

measured through various imaging techniques but the gold standard of these is abdominal magnetic 73 

resonance imaging (MRI). However, abdominal MRI is not typically conducted on asymptomatic 74 

individuals, often leaving NAFLD undiagnosed for years. 75 

Genome-wide association studies (GWAS) have been used to identify associations between NAFLD and 76 

common genetic variants. Due to the scarcity of MRI data, identifying risk loci for NAFLD has been slower 77 

than for other cardiometabolic diseases or their risk factors  (e.g., body mass index (BMI)) or biochemical 78 

measures (e.g., serum liver enzymes and lipids levels), and other complex cardiometabolic diseases such 79 

as obesity, and diabetes. One way to overcome the challenge of data scarcity in NAFLD is to comprise 80 

latent proxies for NAFLD using data that is more readily available in large cohort studies. For instance, 81 

Bedogni et al. (3) established the fatty liver index (FLI) as a surrogate variable for NAFLD; however, FLI 82 

did not outperform waist circumference in predicting NAFLD in a validation study. (4) 83 

 84 

Aiming to increase our understanding of the molecular etiology of NAFLD, we here generate (NAFLD-S), 85 

a composite variable of anthropometric and biochemical variables to predict liver fat. By using an 86 

alternative surrogate to predict liver fat, and running GWAS combined with genetic colocalization, we 87 

identify novel loci associated with NAFLD. The use of genetic colocalization aids in inferring causality 88 

and serves to prioritize genes for functional follow-up. We use CRISPR-interference (CRISPRi) to 89 
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interrogate the impact of multiple genes on both transcriptional changes and functional phenotypes, at a 90 

single-cell level. (5–9) We characterize a subset of putative NAFLD genes in vitro and in vivo through an 91 

integrated framework and identify VKORC1 as a likely causal NAFLD gene. 92 

 93 

Experimental procedures 94 

Study population 95 

This research was conducted using UK Biobank (UKB) data under application number 13721. The UKB is 96 

a cohort of over 500,000 adults that has tracked health behaviors, anthropometric measurements, and 97 

medical history. Biological samples that have been acquired longitudinally since the subjects’ enrollment 98 

in 2006-2010. A subset of white British participants in the UKB was utilized in the current study, a sub-99 

population which has been described in detail (10). Briefly, we excluded individuals who withdrew consent 100 

(n=167), and those who reported excessive alcohol consumption (n=128,477), which was defined as weekly 101 

alcohol consumption of ≥140 grams for women and ≥210 grams for men as per prevailing European 102 

guidelines (11). Further, we excluded those with other known liver diseases, alcohol use disorder, and HIV 103 

infection based on ICD-9 and ICD-10 codes (n=3,022). Individuals with short-term poor prognosis 104 

including diagnosis of metastatic cancer within one year of the baseline visit and palliative care or hospice 105 

status based on ICD-9 and ICD-10 codes were also excluded (n=4,497). After exclusions 242,524 106 

individuals remained, whose characteristics have been described (10). The UKB study was approved by the 107 

Northwest Multi-Center Research Ethics Committee and all participants provided written informed consent 108 

to participate. The UKB study protocol is available online (12).  109 

 110 

Generating the NAFLD score in UKB 111 

In the UKB, true NAFLD cases were first identified using existing data on liver fat from MRI (data fields 112 

22402, 22436 and 24352). Individuals with a liver fat percent ³ 5.5% were considered to have NAFLD, 113 

which resulted in a population of 2,544 NAFLD cases and 10,168 controls. The 5.5% cut-off is higher than 114 

the 5% convention, but motivated to reduce the risk of measurement error impacting the results. We utilized 115 
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biochemical and anthropometric data to determine a NAFLD score in the full subset of 242,524 participants 116 

in the UKB. Briefly, we performed a multivariate logistic regression analysis to estimate effect sizes of the 117 

biochemical and anthropometric predictors of liver fat percentage from MRI data. Table 1 shows the 118 

variables included in the prediction models and their effect sizes. We constructed a NAFLD score for the 119 

subset of UKB, as well as calucated the fatty liver index (FLI) (3), the difference lies in that the NAFLD 120 

score includes more predictors of liver fat from MRI than the FLI (see equation 1 below). The score was 121 

derived by multiplying the value for each biochemical and anthropometric trait with its effect size (beta), 122 

and then rounded to the nearest integer between 0 and 100 (Equation 1). The NAFLD score was compared 123 

with FLI, alanine aminotransferase (ALT), triglycerides (TG), gamma-glutamyl transpeptidase (GGT) and 124 

BMI in predicting liver fat percentage using a receiver operating characteristic (ROC) curve. Ultimately, 125 

the NAFLD score was used as the surrogate for NAFLD to conduct a GWAS in 242,524 participants in the 126 

UKB. 127 

Equation 1 128 

𝑵𝑨𝑭𝑳𝑫	𝒔𝒄𝒐𝒓𝒆 = (𝑒^(−0.52707 × 𝑠𝑒𝑥 + 0.45029 × 𝑇𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒𝑠 + 0.06973 × 𝐵𝑀𝐼 + 0.06514 × 𝐺𝐺𝑇 + 0.53716 ×129 
𝑊𝑎𝑖𝑠𝑡	𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + (−0.14647 × 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙) + 0.15941 × 𝐴𝑆𝑇 + 0.15286 × 𝐻𝑏𝐴1𝑐 + (−0.40867 × 𝐴𝑆𝑇/𝐴𝐿𝑇) + 0.17569 ×130 
𝐴𝑙𝑏𝑢𝑚𝑖𝑛) − 3.20145	)/(1 + (𝑒^(−0.52707 × 𝑠𝑒𝑥 + 0.45029 × 𝑇𝑟𝑖𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑑𝑒𝑠 + 0.06973 × 𝐵𝑀𝐼 + 0.06514 × 𝐺𝐺𝑇 + 0.53716 ×131 
𝑊𝑎𝑖𝑠𝑡	𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + (−0.14647 × 𝐶ℎ𝑜𝑙𝑒𝑠𝑡𝑒𝑟𝑜𝑙) + 0.15941 × 𝐴𝑆𝑇 + 0.15286 × 𝐻𝑏𝐴1𝑐 + (−0.40867 × 𝐴𝑆𝑇/𝐴𝐿𝑇) + 0.17569 ×132 
𝐴𝑙𝑏𝑢𝑚𝑖𝑛) − 3.20145	) × 	100  133 
 134 

Genome-wide association analyses 135 

Genome-wide association analyses (GWAS) were carried out using both the generated NAFLD score as a 136 

continuous variable (NAFLD-S), ALT, and NAFLD status from  MRI (MRI_UKB) in 242,524 white Brits 137 

with an at most moderate alcohol consumption. Analyses were carried out in Plink 2, and were adjusted for 138 

age, sex, genotyping batch and the first 10 genetic principal components. Imputed SNPs with INFO<0.8 139 

were excluded, and dependent SNPs were pruned out using a 50kb window and a R2 threshold of 0.8. 140 

 141 

Genetic colocalization analyses 142 
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SNPs associated with either cALT (chronic ALT), ALT (one point measurement), ALP, GGT, NAFLD 143 

score or NAFLD status from MRI were tested for genetic colocalization using the GTEx (v8) eQTL and 144 

sQTL data in metabolically relevant tissues (liver, subcutaneous adipose tissue, visceral adipose tissue, 145 

skeletal muscle and pancreas). Briefly, summary statistics from previously conducted GWASes (cALT, 146 

ALP, GGT) were obtained, and integrated with the GWASes conducted herein (NAFLD-S, ALT and 147 

NAFLD status). The colocalization analyses compute the probability that genetic association signals for 148 

trait and a QTL feature are produced by a common causal variant, as well as gene-level colocalizations. We 149 

used a novel, in-house, custom integration of the FINEMAP (13) and eCAVIAR (14) methods, which has 150 

been described in detail (15), to calculate gene-level colocalization scores. Genome-wide significance 151 

threshold was determined as 5e-8 in all except the two MRI GWASes where the significance threshold was 152 

set at 1e-5. QTL threshold was set at 1e-5. A colocalization score of 0.35 or above was considered as a 153 

coloc. All colocalizations were then investigated for gene set enrichment using GSEA (http://www.gsea-154 

msigdb.org/gsea/index.jsp), to elucidate pathways that are disturbed in NAFLD. 155 

 156 

Cellular model 157 

The HepaRG™ cell line (Sigma Aldrich) was established from a tumor of a female patient suffering from 158 

chronic hepatitis C (HVC) infection and hepatocarcinoma. HepaRG™ cells do not contain any part of the 159 

HCV genome nor express any HCV protein. (16–18). In vitro, maximum cell differentiation is reached 160 

when cells are exposed to 2 weeks of differentiation media 14 days after seeding, and 40 to 50% of the 161 

confluent cell population is hepatocyte-like in nature, with a morphology close to that of primary human 162 

hepatocytes (PHHs). A genome-wide gene expression profile analysis showed that for most genes encoding 163 

phase 1 and 2 drug metabolizing enzymes and drug transporters, the differences between HepaRG™ cells 164 

and PHHs were much smaller than between HepG2 cells and PHHs. (19) 165 

 166 

Generation, characterization, and validation of a HepaRG cell line suitable for gene editing 167 
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HepaRG cells were transduced with lentiviral vectors carrying the pHR-SFFV-KRAB-dCas9-P2A-168 

mCherry plasmid (Addgene, #60954), which was a gift from Jonathan Weissman. (20). Lentivirus was 169 

produced as previously described. (21) Transduced cells were selected based on mCherry expression using 170 

FACS. The resulting KRAB-dCas9-mCherry cell line was characterized by single-cell sequencing before 171 

and after differentiation using the Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead Kit (10X 172 

Genomics). Knockdown efficiency of KRAB-dCas9 was tested by transduction of single guide RNAs 173 

(individual sgRNAs inserted into pBA904 (Addgene #122238)) targeting PNPLA3, followed by cell sorting 174 

and RT-qPCR. 175 

 176 

sgRNA cloning and Perturb-seq library preparation 177 

Two to three sgRNAs targeting each gene of interest, and five control non-targeting sgRNAs, were chosen 178 

from the Weissman human genome-wide CRISPRi-v2 library (22). The top and bottom insert oligos were 179 

ordered as single stranded DNA (ssDNA) from Integrated DNA Technologies. They consisted of the 180 

sgRNA sequence (reverse-compliment for bottom) with the following overhangs: TGG (5’) and 181 

GTTTAAGAGC (3’) (top), and TTAGCTCTTAAAC (5’) and CAACAAG (3’) (bottom). The 3’ direct-182 

capture Perturb-seq plasmid (pBA904, Addgene #122238) was digested with BstXI and BlpI, and purified 183 

from agarose gel using QIAquick Gel Extraction Kit (QIAGEN). Top and bottom sgRNA DNA oligos were 184 

annealed, ligated into the digested 3’ direct-capture Perturb-seq backbone, and transformed into NEB Stable 185 

E.coli. Plasmid DNA was prepared from liquid cultures originating from single colonies and sgRNA 186 

sequences were confirmed using Sanger sequencing. The plasmids were combined at equal molar ratios to 187 

a plasmid library. 188 

 189 

Lentivirus packing and transduction 190 

Lentiviral stock of the sgRNA plasmid library was produced as previously described (21). Breifly, the 191 

sgRNA plasmid library was co-transfected with lentiviral packaging plasmids pMD2.G and pCMVdR8.91 192 

in HEK293T cells, and levtiviral supernatant was collected 48 hours later. To establish a multiplicity of 193 
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infection (MOI) of 0.10-0.15, HepaRG cells were transduced with serial dilutions of lentiviral stock in the 194 

presence of 8 ug/ml polybrene, cultured for two days, and analyzed for blue fluorescent protein (BFP) using 195 

flow cytometry. 196 

 197 

CRISPRi screens and Perturb-seq experiments 198 

On the day of the single-cell capture (day 42 of HepaRG cell culturing), cells were trypsinized, strained, 199 

and stained with the live/dead stain SYTOX Green Ready Flow Reagent (Thermo Fisher), according to the 200 

manufacturer’s protocol. Cells were kept on ice throughout. Live (SYTOX-negative), BFP/mCherry+/+ 201 

single cells were isolated using FACS at the Stanford Shared FACS Facility. Next, live, gene-edited cells 202 

underwent microfluidic single-cell capture on the 10X Chromium Controller device at the Stanford 203 

Genomics Service Center. In brief, single cells were encapsulated with individual Gel Beads-in-emulsion 204 

(GEMs) using the Chromium Next GEM Single Cell 3’ GEM, Library & Gel Bead Kit with the CRISPR 205 

feature barcodes technology (10X Genomics). In-drop reverse transcription and cDNA amplification were 206 

conducted according to the manufacturer’s protocol to construct expression and feature barcode libraries. 207 

Library quality control was carried out using an Agilent Bioanalyzer 2100. Expression libraries were 208 

sequenced on an Illumina NovaSeq 6000 sequencer. 209 

 210 

Validation experiments confirming the involvement of VKORC1 in NAFLD in HepaRG cells 211 

Single sgRNA transductions were performed as previously described, and HepaRG cells were selected on 212 

either BFP expression (for mRNA isolation) or puromycin resistance using (for confocal microscopy. 213 

sgRNAs were either targeting VKORC1, or were non-targeting sgRNAs as control. Cells were cultured 214 

either on standard 6-well plates (mRNA) or in confocal compatible cell culture chambers. 215 

 216 

After 10 days of gene-editing, double positive (BFP and mCherry) HepaRG cells were sorted, and total 217 

mRNA was isolated using Qiagen kits according to the manufacturer’s instructions. mRNA was reversely 218 

transcribed using a High-Capacity cDNA Reverse Transcription kit (Thermofisher). qPCR using TaqMan 219 
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Master Mix was carried out according to the manufacturer’s instructions on a StepOnePlus Real-Time PCR 220 

system from Applied Biosystems, using primers and probes targeting VKORC1 and PLIN2 (Thermofisher). 221 

 222 

Confocal microscopy was carried out on transduced HepaRG cells selected for puromycin resistance after 223 

10 days of gene-editing. Briefly, the chamber slides were washed and treated with 0.5% BSA and 0.03% 224 

Triton-X in PBS to block unspecific binding. Samples were incubated at RT for 1h with 1ug/ml of PLIN2 225 

antibody prepared in 0.1% BSA and 0.03% Triton-X in PBS. After three washes with PBS, samples were 226 

incubated with a goat anti-rabbit Alexa Fluor 564 antibody at a 1:5000 dilution at room temperature for 1 227 

hour. Samples were washed with PBS and incubated with 1 µg/ml Bodipy 493/503 (ThermoFisher #D3922) 228 

for 30 mins at room temperature, after which mounting media containing DAPI was applied. Cells were 229 

imaged on the Leica TCS SP8, using UV light to capture DAPI, and 488 and 552 nm lasers to image lipid 230 

droplets using Bodipy staining and PLIN2 staining, respectively. 231 

Image analyst was blinded to the treatments when assessing lipid droplet number, size, area, and PLIN2 232 

staining intensity. Imaging data were analyzed using a custom pipeline in Cell Profiler1 v4.2.5. For each 233 

imaging site, background was subtracted using CorrectIlluminationCalculate and 234 

CorrectIlluminationApply for each of the channels. Next, nuclei were identified in the DAPI channel using 235 

IdentifyPrimaryObjects. BODIPY channel underwent additional thresholding, followed by the 236 

identification of lipid vesicles using IdentifyPrimaryObjects and their measurement by 237 

MeasureObjectSizeShape. To quantify perilipin staining, the number of pixels above a set threshold were 238 

calculated using Threshold and MeasureImageAreaOccupied.  239 

Transcriptome analysis in human NAFLD 240 

Publicly available data were downloaded from the Gene Expression Omnibus (GEO, GSE130970), where 241 

whole genome transcriptomes from 78 patients in differential stages of NAFLD progression are available. 242 

Data were downloaded as per GEO instructions, and VKORC1 expression was assessed in relation to the 243 
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available metadata on steatosis grade, NAFLD activity score, and inflammation. Expression levels were 244 

extracted using R version 4.3.1, and later plotted in GraphPad Prism v.9. 245 

 246 

PheWAS and eQTL analyses in public databases 247 

The global biobank engine was used to explore the lead NAFLD-S SNP (rs9934438) in relation to other 248 

cardiometabolic traits (Global Biobank Engine, Stanford, CA (http://gbe.stanford.edu) [12, 2023]). The 249 

GTEx database was adapted to explore eQTL effects of rs9934438, (GTEx Portal 250 

[https://gtexportal.org/home/] on 12/11/23). 251 

 252 

Statistical analyses 253 

All statistical analyses pertaining the generation of the NAFLD score were carried out in R 3.5.1 using the 254 

pROC package. Plotting of GWAS results was also carried out using R. Plink v.2 was used for genetic 255 

analyses. Single-cell RNA-seq data comparing proliferative and differentiated HepaRG cells were analysed 256 

using Seurat, and the ‘FindMarkers’ differential expression analysis function using Wilcoxon tests. 257 

Unsupervised clustering based on single-cell transcriptomes was carried out for both differentiated and 258 

undifferentiated HepaRG cells. For each cluster, the top 20 upregulated genes in that cluster were input into 259 

GSEA pathway enrichment analyses using ‘Hallmark genes’, ‘Gene Ontology’ and ‘Reactome’ pathways. 260 

The scMAGeCK package was used to explore differential expression produced by sgRNA perturbations. 261 

Differentially expressed genes (comparing targeting vs. non-targeting sgRNAs) from scMAGeCK analyses 262 

were input into GSEA pathway enrichment analyses. 263 

 264 

Functional experimental data were plotted and analysed using GraphPad Prism v. 9. Student’s T-test, or 265 

ANOVA with post-hoc test was applied as appropriate on data passing Shapiro-Wilk’s test for normality, 266 

otherwise non-parametric tests were applied. 267 

 268 

Results 269 
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Anthropometric and biochemical data predict NAFLD in UKB 270 

We explored existing data on liver fat percentage obtained from abdominal MRI in UKB. NAFLD was 271 

defined as a liver fat percentage >5.5%, resulting in 2,544 NAFLD cases and 10,168 controls. 272 

Anthropometric and biochemical variables related to NAFLD and cardiometabolic traits were interrogated 273 

for their ability to predict NAFLD defined as above using multivariate regression models. The variables 274 

included in the regression model can be found in Table 1. Predictors of NAFLD were selected to create a 275 

NAFLD score using Equation 1. 276 

 277 

NAFLD score improves NAFLD approximation. 278 

The power to approximate NAFLD using the generated NAFLD score (NAFLD-S) was assessed using a 279 

receiver operating characteristic (ROC) curve, and the area under the curve was compared between 280 

NAFLD-S, FLI and several individual anthropometric and biochemical variables. Our results reveal that 281 

NAFLD-S improves approximation of NAFLD status compared to FLI. Further, NAFLD-S outperformed 282 

all individual anthropometric and biochemical variables on which the NAFLD-S was based, Figure 1A. 283 

 284 

The NAFLD-S was calculated for a subset of non- and moderate drinkers in the UKB, and a GWAS was 285 

carried out on NAFLD-S as a continuous variable. In parallel, GWAS were carried out for liver fat 286 

percentage (MRI_UKB), and ALT (qnormALT_UKB) in the same subset of UKB. Our results show 287 

numerous associations to liver fat percentage, NAFLD-S, and ALT (Figure 1B-D). There is a sizable 288 

overlap in loci that are associated with NAFLDNAFLD-S and liver fat percentage. For example, the 289 

PNPLA3 locus is detected in GWAS of NAFLD-S, ALT, and liver fat percentage. However, since ALT 290 

and NAFLD-S use a larger portion of the UKB, there is a substantially larger number of associations for 291 

ALT and NAFLD-S, compared to liver fat percentage. Another effect of the larger sample size used in the 292 

association studies for ALT and NAFLD-S is the typically smaller p-value for these associations, which is 293 

visualized by scaled y-axes on Manhattan plots, and the three association studies plotted in the same Q-Q 294 
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plot, Figure 1E. Summary statistics for significant associations can be found in Supplementary Tables 1-295 

3. 296 

 297 

To aid in inferring causality and to prioritize genes for functional follow-up, we assessed GWAS SNPs 298 

associated with liver fat percentage and common surrogates through genetic colocalization to eQTL and 299 

sQTLs from GTEx (v8) using our custom pipeline (15). For this analysis, we used our NAFLD-S as well 300 

as a previously published score, recently published data on liver enzymes, chronically elevated ALT and 301 

MRI/ML Figure 2A to explore the overlap between different approaches to detect genetic associations and 302 

causal genes for NAFLD (23–25). Genes demonstrating a significant colocalization to the liver tissue in the 303 

GTEx data base were prioritized. 304 

 305 

Due to the relative paucity of GWAS data for liver fat percentage, only four colocalizations were found for 306 

our MRI/ML in liver: PNPLA3 (which is also shared with all NAFLD surrogate markers), CYP3A5, 307 

ABHD12, and ENTPD6. In contrast, we observed numerous colocalizations originating from GWAS of 308 

NAFLD surrogates, with sizable overlap between the different surrogates, Figure 2B and Supplementary 309 

Table 4. Numerous other genes that have previously been suggested to influence NAFLD were also found 310 

to show significant colocalization; e.g., in or near GPAM (ALT), AKNA (ALT and NAFLD-S), and the 311 

TNKS/PPP1R3B (ALT). VKORC1, a gene previously associated with triglyceride levels and body fat 312 

distribution, colocalizes with NAFLD-S (26, 27). We then used colocalized NAFLD-S genes as input in a 313 

GSEA pathway enrichment analysis, and show that these genes are enriched in processes related to lipid 314 

homeostasis, steroid and lipid metabolism, and sterol homeostasis, Table 2. Colocalized ALT genes, 315 

however, are primarily enriched in processes pertaining to organelle organization, small molecule metabolic 316 

processes, response to stress, and lipid metabolism, Supplementary Table 5. Importantly, our NAFLD-S 317 

outperforms ALT in approximating liver fat >5.5% and variants associated with NAFLD-S more often co-318 

localize with lipid metabolism-related eQTLs in liver (n=XXXX genes) than variants associated with ALT 319 

(n=XXX genes). This provides a rationale for using composite surrogate variables for GWAS  of NAFLD 320 
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as these may capture more of the biology of the disease and provide better insight in the natural history of 321 

NAFLD than single biochemical surrogates. 322 

 323 

Collectively, these data not only suggest that creating composite surrogate markers for NAFLD may be 324 

used to identify putative NAFLD genes when there is a paucity of gold standard MRI data, but also that 325 

there may be biological differences driving the different associations with surrogate phenotypes, which has 326 

implications for the pathogenesis of NAFLD. 327 

 328 

Establishing a HepaRG cell line suitable for genome editing 329 

To do functional follow up studies following gene knockdown experiments, we genetically engineered 330 

HepaRG cells to stably express dCas9-KRAB, which allows for CRISPRi. The  introduction pHR-SFFV-331 

KRAB-dCas9-P2A-mCherry into HepaRG cells allows for transcriptional interference of genes targeted by 332 

sgRNAs by KRAB. The resulting cell line (dCas9-KRAB-HepaRG) was used to characterize putative 333 

NAFLD genes. HepaRG cells underwent single-cell RNA sequencing (scRNA-seq) to characterize the 334 

model system and ensure that the introduction of dCas9-KRAB does not alter the function and the ability 335 

to differentiate of HepaRG cells. dCas9-KRAB-HepaRG cell line was efficiently differentiated using 336 

established protocols, Figure 3A, did not differ at the transcriptome level, assessed by scRNA-Seq, 337 

regardless of dCas9-KRAB integration, and assumed a hepatocyte-like phenotype upon treatment with a 338 

differentiation media for two weeks Supplementary Figure 1. 339 

 340 

Standard scRNA-seq quality control steps were taken, and revealed that, upon differentiation, HepaRG cells 341 

increased their expression of mitochondrial genes, while the overall number of genes expressed at 342 

detectable levels was marginally decreased, Supplementary Figure 2. The upregulation of mitochondrial 343 

genes was not surprising as upon differentiation, HepaRG cells have been documented to increase their 344 

metabolism while suppressing proliferation. Clustering of single-cells showed that there are no significant 345 
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differences between wild-type (Wt)  and genetically engineered dCas9-KRAB-HepaRG cells, Figure 3B, 346 

and thus, all cells were analyzed jointly.  347 

 348 

Clustering with regard to single-cell transcriptomes of Wt and dCas9-KRAB HepaRG cells revealed 11 349 

distinct clusters; clusters 1, 3 and 5 belong to undifferentiated cells, whereas the remaining clusters belong 350 

to differentiated HepaRG cells. Genes involved in the cell cycle, G2M checkpoint, EMT and cell division 351 

are all more highly expressed in the undifferentiated clusters. In contrast, genes involved in drug 352 

metabolizing pathways, lipid metabolism, hemostasis and albumin are significantly upregulated in 353 

differentiated cells, particularly in clusters 0, 2, 4, 6 and 9, Figure 3C-D, Supplementary Table 6. It is 354 

expected that numerous cells undergo apoptosis during the differentiation process. In line with this, cells 355 

within clusters 8 and 10 express genes involved in apoptosis, p53 and programmed cell death, Figure 3D, 356 

Supplementary Table 6. Cells within cluster 7 seem to consist of a population of cells that may not be fully 357 

differentiated, as they highly express some hepatocyte and proliferative markers, Figure 3D and 358 

Supplementary Table 6. In summary, HepaRG cells are efficiently differentiated to a hepatocyte-like 359 

phenotype as the transcriptome of the cells belonging to clusters 4, 6, 7, 9 (>50% of cells) indicate a shift 360 

consistent with hepatocyte biology and function. 361 

 362 

Differentiated and proliferative HepaRG cells cluster separately, as shown in Figure 3E. We compared the 363 

differentiated and undifferentiated cell populations based on a list of hepatocyte markers and the human 364 

liver atlas (28), regardless of their dCas9-KRAB status. Differentiated cells demonstrate an increased 365 

expression of hallmark hepatocyte genes including ALB, CYP3A4, HP, and DPP4, Figure 3F. The 366 

expression of a list of hepatocyte genes involved in drug and lipid metabolism were also increased compared 367 

to undifferentiated cells, Figure 3G. Next, we analyzed global differential gene expression. Gene set 368 

enrichment analysis revealed that differentiated HepaRG cells increase their expression of genes involved 369 

in metabolic processes; both in lipid metabolism and the genes within drug metabolism, Figure 3H, 370 

Supplementary Figure 3A-B, and Supplementary Table 7. 371 
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 372 

CRISPRi screen and Perturb-seq implicates putative causal genes in NAFLD 373 

We created a combinatory lipid accumulation-based CRISPRi and Perturb-seq screen in the dCas9-KRAB-374 

HepaRG cell system to investigate putative NAFLD genes. We optimized the lipid accumulation-based 375 

CRISPRi system by knocking down the lipid droplet associated protein PLIN2 to markedly reduce lipid 376 

accumulation. dCas9-KRAB-HepaRG cells were transduced with three sgRNAs targeting PLIN2 along 377 

with a non-targeting sgRNA as a control, loaded with 400uM oleic acid for 24hrs. Next, neutral lipids were 378 

stained using Bodipy. Lipid loading was significantly increased after 24hrs of oleic acid treatment, and the 379 

efficiency of the sgRNAs was confirmed, Figure 4A-C. mCherry/BFP+/+ HepaRG cells were sorted with 380 

regard to lipid content after 10 days of gene-editing, and gDNA was isolated in the most and least lipid-381 

laden cells (the 20th percentile in either tail), Figure 4D-E. Sequencing of gDNA from the most and least 382 

of lipid loaded HepaRG cells, as measured by Bodypi staining, revealed a significant enrichment of PLIN2 383 

sgRNAs in the least lipid-laden cells, indicating that PLIN2 knockdown indeed impairs lipid accumulation, 384 

Figure 4F-G. This experiment served as a proof-of-principle for our CRISPRi screen, which included 385 

sgRNAs targeting a small selection of putative NAFLD genes, selected based on our human molecular 386 

genetic analyses.  387 

 388 

Eleven known and putative NAFLD genes were selected for tandem CRISPRi and Perturb-seq to explore 389 

their role in NAFLDNAFLD development, as measured by HepaRG lipid accumulation and single-cell 390 

transcriptional changes. The genes were selected based on 1) their robustness of association to NAFLD 391 

NAFLD (amount of evidence if known NAFLD gene), 2) emerging evidence for an association without 392 

functional validation, and 3) new association with NAFLD-S that also demonstrates association to other 393 

cardiometabolic traits. The genes can be found in Table 2. Next, sgRNAs directed towards selected NAFLD 394 

genes were transduced in differentiated dCas9-expressing HepaRG cells for a tandem CRISPRi and 395 

Perturb-seq experiment Figure 5A. 396 

 397 
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Cells were loaded with oleic acid and then sorted based on mCherry/BFP+/+, and their lipid accumulation 398 

was measured by Bodipy staining. Sequencing of gDNA from either extreme population with regard to 399 

lipid accumulation (~ top/bottom 15%) revealed that VKORC1 and TNKS sgRNAs are enriched in the 400 

bottom population, whereas GPAM and LYPLAL1 sgRNAs are enriched in the top population. This suggests 401 

that VKORC1 and TNKS knockdown reduces lipid accumulation, whereas GPAM and LYPLAL1 402 

knockdown increases lipid accumulation, Figure 5B. 403 

 404 

In parallel to the lipid accumulation-based CRISPRi screen, we produced single-cell transcriptomes from 405 

all perturbations. The experiment was performed in a total of five 10X Genomics single-cell captures, from 406 

two biological replicates. Single-cell transcriptomes were analyzed using Seurat, and the general quality 407 

control data is visualized in Supplementary Figure 3A. While there was no clustering by replicate or 408 

sgRNA identity, perturbations produced by the sgRNAs are consistently efficient and specific as only the 409 

intended target gene is significantly knocked down, Figure 5C-E. VKORC1 knockdown produced the most 410 

striking transcriptional changes, and will be discussed in detail below.  GPAM knockdown resulted in a 411 

downregulation of genes enriched in oxidative phosphorylation and RNA transcription pathways, while the 412 

upregulated genes were enriched in pathways pertaining cellular stress, glycolysis, apoptosis and cell cycle, 413 

Supplementary Table 8. LYPLAL1 knockdown resulted in the downregulation of genes involved in 414 

interferon-response, adipogenesis, and oxidative phosphorylation, amongst others. Genes upregulated by 415 

LYPLAL1 knockdown are enriched in metabolism of heme and blood vessel formation, Supplementary 416 

Table 8. We found pathway enrichments in adipogenesis, HDL, and chylomicron metabolism, and estrogen 417 

response among genes downregulated upon TNKS knockdown. Differential gene expression for all 418 

perturbations are visualized as heatmaps in Supplementary Figure 4, and Supplementary Table 8.  419 

 420 

While we decided to focus on the target gene VKORC1 – because of its novelty and significant impact on 421 

lipid accumulation – we validate one gene (GPAM) influencing lipid accumulation in the opposite direction 422 

to VKORC1. We knocked down GPAM using single sgRNA transductions, and recapitulated the findings 423 
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from the lipid accumulation-based CRISPRi screen where GPAM knockdown results in an increase in lipid 424 

accumulation, Supplementary Figure 5A-D.  425 

 426 

VKORC1 is involved in the development and progression of hepatosteatosis 427 

Differential gene expression as a result of VKORC1 knockdown was investigated over the two replicates of 428 

Perturb-seq experiments using the scMAGeCK package in R. All differentially expressed genes from the 429 

two replicates were investigated for gene set enrichment, and results show that genes enriched in lipid 430 

metabolic pathways are downregulated upon VKORC1 knockdown, Figure 5F-G and Supplementary 431 

Tables 9-11. Further, agnostic differential gene expression analyses demonstrate that VKORC1 knockdown 432 

alters the expression of a set of genes related to liver lipid metabolism and insulin resistance, 433 

Supplementary Figure 5E. Specifically, under VKORC1 knockdown conditions there is a trend for reduced 434 

expression in cells of genes involved in lipoprotein production and secretion (DGAT1, DGAT2, APOB, 435 

APOC1, and MTTP), and of the lipid accumulation marker PLIN2. Our scRNA-seq data reinforces the 436 

notion that VKORC1 may influence lipid accumulation and PLIN2 expression since there is a correlation 437 

between PLIN2 and VKORC1 expression in cells transduced with non-targeting sgRNAs in our Perturb-seq 438 

experiments, Supplementary Figure 5F-G.  439 

 440 

Further, metabolic perturbations in another hepatocyte model system, HepG2 cells, revealed that VKORC1 441 

expression is reduced by glucose, and shows a trend towards downregulation by atorvastatin, 442 

Supplementary Figure 5H.  443 

 444 

We construct a protein-protein interaction network using BioGRID to explore what proteins might interact 445 

with VKORC1. Analyses reveal that there is a physical interaction with apolipoproteins, which reinforces 446 

the notion that VKORC1 may have a previously unexplored role in liver lipid metabolism, Supplementary 447 

Figure 6A. We investigate gene set enrichment of all VKORC1 interactors, and enrichments were found 448 
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in processes pertaining lipid homeostasis, oxidoreductase activity, lipid metabolic processes, and sterol 449 

homeostasis, Supplementary Table 11. 450 

 451 

We next performed knockdown experiments of VKORC1 in HepaRG cells using single sgRNA 452 

transductions to confirm our observations from single-cell CRISPRi screens, with a non-targeting sgRNA 453 

as control. The knockdown was confirmed using RT-qPCR against VKORC1, Figure 6A. We recapitulated 454 

the in vitro phenotype observed in the single-cell CRISPRi screens, where the reduction of VKORC1 455 

expression brought about a reduction in PLIN2 expression, accompanied by a reduction in lipid 456 

accumulation as measured by Bodipy using flow cytometry and confocal microscopy, Figure 6B-E. 457 

 458 

To better understand the role of VKORC1 expression in human NAFLD, we investigated publicly available 459 

data on VKORC1 transcript levels in a cohort of 78 human livers encompassing the entire spectrum of 460 

NAFLD. Our analyses show a positive association of NAFLD activity score, steatosis, and inflammation 461 

with VKORC1 expression, Figure 6F-H. These data suggest that VKORC1 is involved in the initiation of 462 

NAFLD, however, VKORC1 does not seem to the primary driver of the progression of disease as transcript 463 

levels only increase over the lowest grade of disease, and not as grades of disease progress.  464 

 465 

We explored the co-expression patterns of VKORC1 and transcripts of a selection of genes involved in lipid 466 

metabolism and fibrosis that are thought to drive disease progression in healthy human liver, the ASAP 467 

study. Co-expression patterns revealed that VKORC1 expression correlates with the expression of genes 468 

involved in uptake of lipids, as well as in intracellular fatty acid and triglyceride synthesis. Further, 469 

VKORC1 mRNA levels are correlated with transcript levels of collagen and TGFb, which are genes known 470 

to promote fibrosis, Supplementary Figure 7A. VKORC1 was negatively correlated with genes involved 471 

in the mobilization of lipids from hepatocytes; MTTP and SREBF1, suggesting that VKORC1 expression 472 

promotes the intracellular accumulation of lipids in human liver.  473 

 474 
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The in vitro NAFLD phenotype is also recapitulated in mice fed a high fat diet for 30 weeks, known to 475 

induce NAFLD, where both Vkorc1 and Plin2 expression is concomitantly increased in animals on high fat 476 

diet, Supplementary Figure 6B. 477 

 478 

Further exploration of genetic data, and PheWAS revealed a large LD-block in the NAFLD-S-associated 479 

VKORC1 locus, and the A allele is associated with a lower VKORC1 expression in liver (GTEx v8 480 

database), reinforcing the observed relationship between VKORC1 and an in vitro NAFLD phenotype, as 481 

well as the phenotype obtained from in vivo models of disease, Supplementary Figure 8A-B. All the SNPs 482 

in the VKORC1 locus that contribute to the NAFLD-S association, and colocalization are associated with 483 

the expected (protective) effect with regard to cardiometabolic risk factors/biomarkers, Supplementary 484 

Figure 8C. The NAFLD-S reducing A allele of lead SNP rs9934438 is also associated with reduced lower 485 

hip and waist circumference, BMI, and numerous fat mass phenotypes as well as a protective association 486 

with numerous biomarkers of cardiometabolic disease; including lower plasma triglycerides, ApoB, 487 

HbA1c, and higher HDL and ApoA, Supplementary Figure 8D.  488 

 489 

In summary, we have demonstrated the usefulness of using NAFLD-S as a surrogate marker for NAFLD, 490 

prioritized candidate NAFLD genes from past and the present study using a custom genetic colocalization 491 

analysis for functional follow-up. After assigning putative causal genes for functional follow-up coming 492 

from GWAS for different NAFLD surrogates, we performed a functional CRISPRi screen for lipid 493 

accumulation and Perturb-seq transcriptional analysis at a single cell level, which constitutes a functional 494 

genomic framework and allows for interrogation of putative NAFLD genes at scale. By using our functional 495 

genomics framework; originating from human genetics, moving to functional in vitro studies, and later to 496 

murine and human disease, we propose that VKORC1 is implicated in the pathogenesis of NAFLD. Our 497 

data suggest that VKORC1 expression is associated with the increase in intracellular accumulation of lipids, 498 

and thereby drive the intiation of NAFLD development. Investigations can now be expanded to interrogate 499 
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a large selection of putative causal NAFLD genes to further determine the molecular landscape of disease 500 

development and progression. 501 

 502 

Discussion 503 

In the present study we generate a NAFLD-S that outperforms single variable surrogates when validated 504 

against ‘ground truth’ NAFLD as defined by >5.5% liver fat obtained from proton density fat fraction from 505 

MRI images in the UKB. By using a new surrogate marker of NAFLD for our GWAS, together with 506 

colocalization analyses of previous GWAS, we expand the knowledge on the genetic susceptibility to 507 

NAFLD. We create a functional genomic framework to validate putative NAFLD genes and explore the 508 

role of a subset of genes on hepatocyte lipid accumulation, single-cell transcriptomes, and murine and 509 

human disease. 510 

 511 

GWAS have been useful in the identification of common susceptibility variants for various cardiometabolic 512 

traits. However, GWAS for NAFLD have remained small and underpowered, and therefore, surrogate 513 

markers of NAFLD have been extensively used, all with their strengths and drawbacks. The FLI does not 514 

seem to outperform waist circumference in predicting NAFLD (4), NAFLD may be present without ALT 515 

elevation (29,30), and high ALT levels could reflect a myriad of liver insults. Thus, FLI and ALT may 516 

constitute poor surrogates for NAFLD. Our NAFLD-S might not only reflect metabolic liver disease, but 517 

also an insulin resistance phenotype as the score takes into account waist circumference, BMI, HbA1c and 518 

triglyceride levels, which are all also associated with insulin resistance. By integrating anthropometric and 519 

biochemical data into a single score, we sought to capture the global etiology of NAFLD given its 520 

correlation with dyslipidemia, type II diabetes, and obesity. We outperform ALT levels in predicting liver 521 

fat in the UKB, however, mitigation of the drawbacks of using ALT measurements as surrogate for NAFLD 522 

could be achieved by using chronic ALT elevation, which has been described elsewhere. (24) We find 523 

several overlaps in the genetic colocalizations between several NAFLD surrogates, which suggests that 524 
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these surrogates capture a common part of the disease etiology, but also may reflect different aspects of the 525 

natural history of NAFLD. 526 

 527 

We created a HepaRG cell model system suitable for large-scale CRISPRi screening and Perturb-seq to 528 

explore putative NAFLD genes. We selected a group of both previously associated (PNPLA3, 529 

TNKS/PPP1R3B, GPAM, LYPLAL1, TRIB1) and novel or less established (WDR6, VKORC1, RBM6, 530 

NCKIPSD, C6orf106) NAFLD candidate genes to establish a functional genetic framework to interrogate 531 

new potential disease genes at scale. We screened the selected genes for their influence on hepatocyte lipid 532 

accumulation in our in vitro gene-editing system, and generated single-cell transcriptomes for these 533 

CRISPR-based knockdown perturbations. Our data suggest the involvement of VKORC1 and TNKS 534 

(increased lipid content), LYPLAL1 and GPAM (decreased lipid content) on lipid accumulation in 535 

hepatocytes, which we further validated for VKORC1 and GPAM. The latter is a well-established NAFLD 536 

locus, and its knockdown resulted in increased lipid accumulation in HepaRG cells. In contrast, VKORC1 537 

knockdown resulted in less lipid accumulation, possibly mediated by lower PLIN2 levels. The knockdown 538 

of VKORC1 also resulted in the perturbation of the transcriptional landscape of lipid metabolism, and 539 

insulin resistance genes like PLIN2, PNPLA2, G6PC, and INSR were dysregulated. Finally, we explored 540 

the mRNA expression of VKORC1 in a murine model and human disease, where VKORC1 expression 541 

consistently was increased upon high-fat diet. We strengthen the notion that low VKORC1 expression may 542 

be protective of disease development, by exploring the expression levels in relation to the degree of 543 

steatosis, NAFLD activity score, and inflammation. By using human molecular genetics, we demonstrated 544 

that the NAFLD-S lowering SNP rs9934438 also improves other anthropometric and biochemical 545 

cardiometabolic traits, while lowering the expression of the VKORC1 transcript. Collectively, this suggests 546 

a protective role of low VKORC1 expression in NAFLD. 547 

 548 

VKORC1 is known to reduce vitamin K to its active form, which promotes the formation of functional 549 

clotting factors from pro-clotting factors. This process is inhibited by warfarin and ultimately results in 550 
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reduced activation of coagulation factors IX, VII and prothrombin, which is how warfarin exerts its 551 

antithrombotic effects. (31) Some studies have indeed described an association between thrombotic risk 552 

factors and extent of fibrosis in NAFLD. (32) Similarly, researchers have found elevated, and increased 553 

activity of coagulation factors in NAFLD. (33) Likewise, it has been observed that there is a higher-than-554 

expected prevalence of NAFLD in patients suffering from idiopathic venous thromboembolism. (34) 555 

However, to the best of our knowledge, we provide the first data implicating VKORC1 in the hepatocyte 556 

lipid metabolism, that is also reflected in VKORC1 expression levels in murine and human disease. 557 

 558 

Several genetic variants in the VKORC1 locus have been described to influence patients’ response to 559 

warfarin treatment. (35,36) However, to the best of our knowledge, no genetic variants in this locus have 560 

been described to influence NAFLD. By using a composite variable as a proxy for NAFLD we may capture 561 

more of the genetic variability contributing to NAFLD, than when using single surrogate variables. We 562 

may capture more of the metabolic phenotype of NAFLD than if only ALT levels had been used, since the 563 

NAFLD-S is made up of liver enzymes, biochemical, and anthropometric variables that are highly 564 

correlated with NAFLD, obesity and diabetes. Interestingly, GWAS for BMI, TG LDL, total cholesterol 565 

and have identified genetic signals in the VKORC1 locus, and we find strong colocalization signals for 566 

VKORC1 in the liver (Supplementary Figure 8). Moreover, human PheWAS data show a strong association 567 

with BMI, TG and HDL (among other cardiometabolic values) between variants in VKORC1, including a 568 

splice donor variant (rs2884737). These data support our transcriptional data that show a dysregulation of 569 

lipid metabolism genes upon VKORC1 knockdown, and our protein-protein interaction network suggests a 570 

role for VKORC1 in lipid and cholesterol metabolism. 571 

 572 

Collectively, present, and previous data provide a potential rationale for the involvement of VKORC1 in 573 

the pathogenesis of NAFLD through the regulation of lipid accumulation and cholesterol metabolism in 574 

human hepatocytes. To the best of our knowledge, we provide the first experimental evidence suggesting 575 

VKORC1 as a NAFLD susceptibility gene. 576 
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 577 

In summary, we have expanded our knowledge on the genetic susceptibility for NAFLD by using GWA- 578 

and genetic colocalization studies of surrogate markers of NAFLD. Above all, we have established a 579 

functional genomic framework to study putative NAFLD genes at scale. Large-scale CRISPRi screens have 580 

not only paved the way to study genes involved in various cardiometabolic phenotypes (37), but also 581 

intricate multidimensional gene cellular functions. (8) Our efforts have implicated the VKORC1 gene in the 582 

pathogenesis of NAFLD. Taken together, this study provides a sound rationale for use of CRISPRi screens 583 

to delineate the roles of known and new putative causal risk genes for both NAFLD, and other 584 

cardiometabolic traits. 585 

 586 

Limitations 587 

This work was conceived and primarily executed before the change in nomenclature from NAFLD to 588 

MASLD. The authors have after consideration opted to retain the old nomenclature in this manuscript as 589 

data referenced herein were generated under these guidelines. 590 

 591 
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 699 

Figure legends 700 

Figure 1 Human molecular genetic analyses in the UK Biobank. Non- or moderately drinking European 701 

ancestry British participants were selected for the analyses. A) ROC curve showing the predictive 702 

power of NAFLD-S and individual biochemical and anthropometric variables on NAFLD status as 703 

defined by liver fat > 5.5% in UK biobank. B) Manhattan plot for the genome-wide association study 704 

on NAFLD defined as >5.5% liver fat in UK biobank. C) Genome-wide association study on NAFLD 705 

score in UK biobank, visualized using a Manhattan plot. D) ALT associations from the genome-wide 706 

association study in UK biobank, visualized by a Manhattan plot. E) Q-Q plot for the GWA studies on 707 
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ALT, NAFLD, and NAFLD score, plotted together to visualize the differences in significance obtained. 708 

Y-axes in Manhattan plots are scaled for comparison between the three association studies. 709 

 710 

Figure 2 Colocalization study of NAFLD-S associated SNPs in the UK Biobank. A) Strategy for genetic 711 

colocalization studies to infer causality of novel putative NAFLD genes found from GWAS with 712 

metabolically active tissues in the GTEx (v8) database. Liver enzymes include ALT, ALP, GGT and 713 

qnormALT_UKB,  MRI/ML MRI_UKB and machine-learning MRI, NAFLD-S out novel NAFLD 714 

score and the NAFLD score from Miao et al. B) Overlap of genes with a significant liver eQTL/sQTL 715 

colocalization. GSEA gene set enrichment analysis of colocalized genes can be found in Table 2. Full 716 

list of colocalizations can be found in Supplementary Table 5. 717 

 718 

Figure 3 Characterisation of a HepaRG model system that is genetically engineered to allow for CRISPRi 719 

gene-editing. A) Description of HepaRG culturing, indicating at which point scRNA-seq was used to 720 

characterize the model system. B) Clustering by both genotype and differentiation stage (temporal 721 

analysis along the differentiation axis). Data demonstrate that cells efficiently differentiate regardless 722 

of genotype (dCas9-KRAB integration) and that cells remain in their differentiated phenotype two 723 

weeks after differentiation is complete. This allows for gene-editing after complete HepaRG 724 

differentiation. C) Clustering of scRNA-seq data, where proliferative and differentiated cells are plotted 725 

together, irrespective of genotype (dCas9-KRAB integration). Data show 11 different clusters divided 726 

over two distinct populations of cells. D) Differential gene expression analyses based on clustering in 727 

Figure 3B. Clusters 1, 3 and 5 belong to undifferentiated cells, whereas the remaining clusters belong 728 

to the differentiated HepaRG cells; genes involved in drug metabolizing pathways, lipid metabolism, 729 

hemostasis and albumin were significantly upregulated in differentiated cells, particularly in clusters 0, 730 

2, 4, 6 and 9. Lists for differentially expressed genes can be found in Supplementary Table 6. E) 731 

Clustering by differentiation status irrespective of genotype. Data demonstrate a perfect clustering of 732 

HepaRG cells by their differentiation status. F) Expression of hepatocyte hallmark genes ALB, 733 
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CYP3A5, HP-1 and DPP4. Data show an upregulation of these genes upon differentiation. G) 734 

Differential expression analyses of genes suggested to define hepatocytes from ‘the human liver atlas’. 735 

Data show that the transcriptional program thought to define hepatocytes is enhanced upon 736 

differentiation. H) Global differential expression analyses by differentiation status. Genes upregulated 737 

by differentiation are enriched in processes related to small molecule and lipid metabolic processes, 738 

mitochondrial processes and electron transport chain, Supplementary Table 10. Complete lists of 739 

differentially expressed genes can be found in Supplementary Table 7. 740 

 741 

Figure 4 Establishment of, and control experiments in a HepaRG cell CRISPRi gene-editing model system 742 

with lipid accumulation as readout. A) Micrographs showing that lipid loading using 400 µM of oleic 743 

acid results in significant formation of large lipid droplets. B) Lipid loaded HepaRG cells were stained 744 

with 1 µg/ml Bodipy and analysed using flow cytometry. Data show that lipid loading (Blue histogram) 745 

increases the content of neutral lipids within the HepaRG cell compared to non-loaded control cells 746 

(Red histogram). C) PLIN2 was knocked down as a proof-of-principle experiment. PLIN2 expression 747 

was efficiently silenced in our dCas9-KRAB expressing HepaRG cells, and sgRNAs from the v2 748 

Weissman library. D) Representative gates for sorting gene-edited HepaRG cells (blue), and an 749 

untransduced control, negative for both mCherry and BFP (red). The Q2 gate contains the gene-edited 750 

cells, which express dCas9-KRAB, and have been efficiently transduced with sgRNAs. E) Gene-edited 751 

HepaRG cells from Q2 were sorted based on their Bodipy content; approximately the top and bottom 752 

18% of cells were sorted, and gDNA was prepared from both extreme populations. gDNA was then 753 

sequenced using NGS. F-G) By assessing the enrichment of PLIN2 sgRNAs in the cell population with 754 

the least intracellular lipids, we find a 2-3 times enrichment of PLIN2 sgRNAs compared to non-755 

targeting sgRNAs. As one would expect, these data demonstrate hampered lipid accumulation in 756 

HeapRG cells that do not express PLIN2. The casTLE pipeline was also piloted for this purpose, and 757 

analysed data recapitulates simple sgRNA counting and fold change calculations in that we show a 2 758 

times enrichment of PLIN2 sgRNAs in the least lipid laden cells compared to what one would expect 759 
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by chance. Data show that the model system can provide useful information on the effect of genes on 760 

lipid accumulation in HepaRG cells, and show that appropriate analysis methods are employed. 761 

 762 

Figure 5 Tandem lipid-based CRISPRi and Perturb-seq in HepaRG cells to explore the involvement of 763 

genes, suggested from human molecular genetics, in NAFLD pathogenesis. A) Experimental outline of 764 

tandem CRISPRi and Perturb-seq in HepaRG cells. HepaRG cells were harvested on day 42 of 765 

culturing, as per the protocol described in Figure 3A. B) Volcano plot, following sequencing of gDNA 766 

in the most and least lipid laden HepaRG cells, where casTLE effect and score are plotted against each 767 

other. Data demonstrate that knockdown of VKORC1 and TNKS results in less intracellular lipids. 768 

Conversely, knockdown of genes GPAM and LYPLAL1 increases intracellular lipids. C-D) Perturb-seq 769 

is performed in parallel to our lipid accumulation-based CRISPRi to explore the transcriptomic profiles 770 

resulting from a gene knockdown. No major changes in clustering of gene-edited cells by replicate and 771 

sgRNA identity is observed. Data show that replicates are very similar, and sgRNAs have modest 772 

effects on the transcriptome that causes the cells to cluster separately. E) Dotplot visualizing that the 773 

knockdown of sgRNAs targeting the selected genes is efficient and specific as demonstrated by the 774 

blue dots along the diagonal. F-G) Differential gene expression analyses upon VKORC1 knockdown 775 

are carried out using the scMaGeCK R-package, and differentially expressed genes are plotted in a 776 

representative heatmap. Results reveal that VKORC1 knockdown changes the transcriptional landscape, 777 

and reduces the gene expression of genes involved in lipid metabolism, Golgi and ER, as well as 778 

homeostatic processes. Complete results of differentially expressed genes for all perturbations can be 779 

found in Supplementary Figure 4, and Supplementary Table 8. 780 

 781 

Figure 6 Validation experiments of VKORC1 knockdown in differentiated HepaRG cells, and the 782 

relationship between VKORC1 transcript and human disease. A) Single sgRNA knockdown of 783 

VKORC1 in differentiated HepaRG cells results in a significant knockdown of the VKORC1 transcript 784 

as measured by qPCR. Concomittant with VKORC1 knockdown, we demonstrate a significant 785 
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downregulation of the PLIN2 transcript. B-C) VKORC1 knockdown results in reduction of intracellular 786 

neutral lipids by Bodipy staining and flow cytometric analysis. D-E) Confocal microscopy of HepaRG 787 

cells upon VKORC1 knockdown shows a significant reduction in Bodipy neutral lipid staining; lipid 788 

droplet number, lipid droplet area, as well as PLIN2 positive area. F-H) By exploring VKORC1 789 

expression levels in different stages of human disease we demonstrate an upregulation of the VKORC1 790 

transcript in livers of a higher degree of NAFLD activity score, steatsis, and inflammation. N for 791 

experimental data is 6-7 replicates, Ordinary one-way ANOVA was performed to compare the non-792 

targeting sgRNA with the VKORC1 targeting sgRNAs. Total n for human liver samples is 78. * p<0.05, 793 

** p<0.01, ***p<0.001, ****p<0.0001. 794 

 795 

Supplementary Figure 1 Clustering of HepaRG scRNA-seq characterization experiments. Each genotype 796 

and culturing day along the differentiation process was plotted separately. Notably, we observe no 797 

major differences in the clustering by genotype or differentiation day (28 days or 42 days post seeding) 798 

as shown by Figure 3B. Micrographs showing the gross phenotype of differentiated HepaRG, as has 799 

been previously described. 800 

 801 

Supplementary Figure 2 Standard scRNA-seq quality control. Cells exhibiting less than 200 detected 802 

features, 2000 RNAs and more than 25% mitochondrial genes (justified based on high expression of 803 

mitochondrial genes in differentiated HepaRG cells) were filtered out. 804 

 805 

Supplementary Figure 3 Standard scRNA-seq quality control was carried out on HepaRG cells undergoing 806 

Perturb-seq. As before, cells exhibiting less than 200 detected features, 2000 RNAs and more than 25% 807 

mitochondrial genes were filtered out. 808 

 809 

Supplementary Figure 4 Heatmaps of differentially expressed genes by all targets in Perturb-seq 810 

experiments. GPAM and LYPLAL1 are the two top targets after VKORC1 based on their effects on lipid 811 
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accumulation. However, gene expression profiles suggest a more striking phenotype of VKORC1 812 

knockdown compared to all other perturbations. 813 

 814 

Supplementary Figure 5 To further validate findings from lipid accumulation-based CRISPRi screens, we 815 

preformed single sgRNA transductions targeting the second most interesting target; GPAM. A) 816 

Visualizes FACS sorting gates, where gene-edited mCherry/BFP+/+ where sorted. B) GPAM 817 

knockdown was efficient as confirmed by RT-qPCR against the target gene in mCherry/BFP+/+ cells, 818 

and C-D) GPAM knockdown increased neutral lipid content in HepaRG cells upon lipid loading. FAF; 819 

fatty acis-free BSA, OA; oleic acid. E) Dotplot visualizing results of agnostic differential gene 820 

expression of VKORC1 knockdown. Results reveal a trend for downregulation of PLIN2, PNPLA2, 821 

G6PC, and INSR transcripts in response to VKORC1 downregulation. F-G) Feature plots of single-cell 822 

RNA-seq data from cells receiving a non-targeting sgRNA reveal a degree of correlation between the 823 

expression of VKORC1 and PLIN2, which reinforces the notion that VKORC1 may indeed influence 824 

the hepatocyte lipid metabolism and thus NAFLD. H) Metabolic perturbations in HepG2 cells, revealed 825 

that VKORC1 expression, measured by bulk RNA-seq, is modulated by treating HepG2 cells with 826 

glucose, and atorvastatin. Glucose treatment reduces VKORC1 expression, whereas atorvastatin 827 

treatment shows a trend towards lower VKORC1 expression. Experimental data consists of n of 3-12 828 

replicates, ANOVA tests were used to explore singificances. * p<0.05, ** p<0.01, ***p<0.001, 829 

****p<0.0001. 830 

 831 

Supplementary Figure 6 A) Protein-protein interaction network constructed using BioGRID demonstrates 832 

a physical interaction between VKORC1 and apolipoproteins, which further reinforces the notion that 833 

VKORC1 may influence lipid and sterol metabolism in liver. B) Mice fed a high fat diet, known to 834 

induce hepatic steatosis, demonstrate a higher expression of Vkorc1 along with increased Plin2 mRNA. 835 

N for experimental data is 6-11 replicates. * p<0.05, ** p<0.01, ***p<0.001, ****p<0.0001. 836 

 837 
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Supplementary Figure 7 Exploration of VKORC1 mRNA co-expression, and transcript levels’ relation to 838 

biochemical markers of cardiometabolic disease in healthy human liver (the ASAP study). A) Co-839 

expression patterns between the VKORC1 transcript and transcripts involved in the NAFLD 840 

pathogenesis. Data reveal that there is a significant co-expression between VKORC1 and regulators of 841 

NAFLD development, which reinforeces the connection between VKORC1 expression and the early 842 

development of NAFLD. N for co-expression analyses is 210. 843 

 844 

Supplementary Figure 8 Exploration of the VKORC1 locus, and associations with other cardiometabolic 845 

traits using PheWAS. A) Correlation plot between NAFLD-S GWAS p-values and GTEx (v8) liver 846 

eQTL p-values, as well as locus plots for NAFLD-S associations and eQTL effects plotted separately, 847 

in SNPs used for VKORC1 colocalization. B) PheWAS analysis of the NAFLD-S lead SNP rs9934438, 848 

and its association with cardiometabolic traits. Notably, the rs9934438 A allele is associated with lower 849 

hip and waist circumference, lower BMI and lower values for several fat mass phenotypes in the 850 

Biobank engine powered by Stanford University. Furthermore, the rs9934438 A allele is also associated 851 

with lower levels of biomarkers of cardiometabolic disease (ApoB, TG, HbA1c), and higher levels of 852 

protective biomarkers (HDL, ApoA). C) Importantly, the rs9934438 A allele that is associated with 853 

protection from NAFLD-S and cardiometabolic biomarkers, and is associated with more protective 854 

biomarkers of cardiometabolic disease is also associated with lower VKORC1 expression. This suggests 855 

that lower VKORC1 expression in the liver may protect from protective of NAFLD and cardiometabolic 856 

disease. 857 
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