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Abstract: Since the first report on isolation of porcine adenovirus serotype 5 (PAdV-5, species
Porcine mastadenovirus C (PAdV-C)) from pigs with respiratory illness in Japan in 1987, PAdV-5 have
been detected in a few fecal samples from healthy pigs and in some environmental samples. To
date, only a single PAdV-5 strain (isolate HNF-70 from 1987) has been analyzed for the complete
genome. We report here high detection rates of PAdV-5 (25.74%, 26/101 fecal samples) in diarrheic
pigs at 3 different farms in the Caribbean country of Dominican Republic. After a long gap, the
complete deduced amino acid sequences of the DNA-dependent DNA polymerase (pol) and hexon
of two PAdV-5 strains (GES7 and Z11) were determined, revealing >99% sequence identities between
PAdV-5 strains (HNF-70, GES7 and Z11) detected in different parts of the world and during different
time periods (1987, and 2020–2021). By phylogenetic analysis, the putative hexon and pol of HNF-70,
GES7 and Z11 exhibited similar clustering patterns, with the PAdV-5 strains forming a tight cluster
near ruminant AdVs, distinct from the species PAdV-A and -B. GES7 and Z11 retained the various
conserved features present in the putative pol and major late promoter region of HNF-70. Considering
the paucity of data on current epidemiological status and genetic diversity of PAdV in porcine
populations, our findings warrant similar studies on PAdV-5 and other PAdVs in clinically ill and
healthy pigs. To our knowledge, this is the first report on detection and molecular characterization of
PAdV-5 (PAdV-C) from diarrheic pigs.

Keywords: porcine adenovirus serotype 5; Porcine mastadenovirus C; pigs; diarrhea; DNA-dependent
DNA polymerase (pol); hexon

1. Introduction

Porcine adenoviruses (PAdV) are double-stranded DNA viruses that belong to the
genus Mastadenovirus within the family Adenoviridae [1]. To date, at least three species
(Porcine mastadenovirus A (PAdV-A), B (PAdV-B) and C (PAdV-C)) and five serotypes (PAdV-1 to -5)
have been recognized among PAdVs, with PAdV serotype 1-3, PAdV-4, and PAdV-5 belonging
to species PAdV-A, PAdV-B, and PAdV-C, respectively [1,2]. Two additional PAdV serotypes
(isolates GK/K92 and TG/K79) have also been proposed [3]. Based on analysis of the partial
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DNA-dependent DNA polymerase (pol)/hexon sequences, two PAdV strains, SVN1 and WI,
were speculated to represent novel PAdV [4,5]. However, later, the partial sequences of SVN1
(hexon and pol) and WI (hexon) were found to be closely related to the recently available
complete genome sequence of PAdV-B strain PAdV-B-HNU1 [6].

PAdV is considered as a low-grade porcine pathogen that rarely causes diseases of
economic concern in domestic swine populations [2,7]. Since PAdVs are mostly associated
with subclinical/asymptomatic infections, they (PAdV-3 and -5) have been used to develop
viral vector vaccines against important porcine diseases and in gene transfer research [3,8].
PAdVs have been reported in healthy and clinically ill pigs [2,7]. In diseased pigs, PAdVs
have been most commonly associated with diarrhea, although they have also been detected
in animals with other clinical conditions (encephalitis, nephritis, respiratory disease, and
reproductive disorders) [2]. Furthermore, PAdVs have been speculated to play roles in
coinfections with economically important porcine pathogens [2,7]. Pigs infected with
PAdV-4 and Mycoplasma hyopneumoniae were found to develop more severe pneumonia [2].
PAdVs have been detected in conjunction with Rotavirus-A (RVA) from diarrheic pigs [9].
Adenovirus inclusion bodies were more commonly observed in kidneys of pigs with
Porcine circovirus-2 (PCV2) associated disease [2].

Although PAdVs are believed to be endemic in porcine populations, epidemiolog-
ical information on PAdVs is limited and primarily based on sero-surveillance studies
conducted during the 1960–1980s [2,7,9–11]. As a result, the current global distribution
of PAdV is not clear, and there is little data on PAdV-related mortality and morbidity
rates in pigs [2,7,9]. Furthermore, the complete viral genome sequences, or full-length
nucleotide (nt) sequences of important genes of only a handful of PAdV strains have been
determined so far, which might not be sufficient to obtain conclusive insights into the
evolution of PAdVs [1,3,6,12–14].

Among the PAdV serotypes (species), PAdV-1 and -3 (PAdV-A) have been associated
with porcine gastrointestinal (GI) disease [2,7]. PAdV-4 (PAdV-B) has been reported in
pigs with enteritis, encephalitis, nephritis, and pneumonia [2,6,7]. PAdV-5 (PAdV-C) was
first isolated (isolates HNF-61 and -70) from nasal swabs of pigs exhibiting clinical signs
(sneezing, nasal discharges, and coughing) of respiratory disease in Japan in 1987 [15]. A
subsequent study by Kadoi et al. (1995) [16] had proposed another isolate (strain TG/K79,
from the brain of a piglet that died shortly after) as a candidate of PAdV serotype 5. Since the
study by Kadoi et al. (1995) was based on serological comparisons with viruses belonging to
PAdV-1 to -4 and not PAdV-5 (the PAdV-5 isolates from 1987), it was concluded that TG/K79
might not represent PAdV-5 [3], although genomic evidence in support of this observation
is lacking. To date, studies on PAdV-5 (PAdV-C) are very limited. Two different studies
have identified PAdV-5 (3/5 fecal samples and <10% of 5 fecal-swab pools, respectively) in
a few fecal samples from healthy pigs [17,18], whilst there are a few reports on detection
of PAdV-5 in environmental samples (sewage effluent, water, and shellfish) [17,19–22],
GenBank accession number KX570638]. The complete genomic sequence of only a single
PAdV-5 strain (isolate HNF-70) has been analyzed so far [12]. In the present study, we
report for the first-time high rates of detection and molecular characterization (full-length
coding sequences (CDS) for the putative hexon and pol) of PAdV-5 in diarrheic pigs.

2. Results and Discussion

The present study was based on 101 fecal samples from diarrheic pigs at three different
pig farms (Cabrera in Central-North, and Pedro Brand and Villa Mella in Central-South)
in the Caribbean country of Dominican Republic (Supplementary Figure S1). Since the
initial objective was to identify novel AdVs in diarrheic pigs, the porcine fecal samples
were screened using a broad-range nested PCR screening assay (targeting a ~300 bp stretch
of the AdV pol gene) that has been employed to amplify different genera of AdVs including
novel AdVs [23,24]. It should be noted here that the AdV pan-pol nested PCR assay is based
on a partial stretch of a single gene (pol) [23,24], and therefore, it might be possible that
we missed detection of AdV positive samples that were not as similar to the target region.
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Twenty two of the 101 samples yielded the expected ~300 bp amplicon and were sequenced
to confirm the presence of AdVs. However, by BLASTN (https://blast.ncbi.nlm.nih.gov/
Blast, accessed on 27 July 2022) analysis, 14 of the sequences (~246 nt) shared maximum
identities (>98%) with the pol of PAdV-5 (PAdV-C) isolate HNF-70, whilst the remaining
8 sequences shared maximum homology with non-AdV sequences, indicating non-specific
amplification. This observation warrants the importance of sequencing-based confirmation
of samples that test positive with AdV pan-pol nested PCR assays. Considering that all
the 14 AdV sequences were closely related to PAdV-5, the negative samples (with the
pan-pol nested PCR assay) were further screened using a PAdV-5-specific semi-nested PCR
assay (supplementary Table S2), revealing an additional 12 PAdV-5 positive samples.

Taken together, we report here high rates of detection of PAdV-5 (25.74%, 26/101 samples)
in diarrheic pigs. Although the sample size varied between farms, the PAdV-5 detection rates
were higher on the farms in Cabrera (42.85%, 15/35) and Pedro Brand (37.5%, 6/16) compared
to Villa Mella (10%, 5/50), which might be attributed to differences in animal husbandry
practices between the farms (Table 1). The municipality of Cabrera (distance of ~165 km and
~180 km from Villa Mella and Pedro Brand, respectively) is located in the Central-Northern
part of Dominican Republic, whilst Pedro Brand (~30 km from Villa Mella) and Villa Mella are
located in the Central-Southern part of the country (Supplementary Figure S1). Since the pig
farms in Cabrera, Pedro Brand and Villa Mella operate as independent units (no movement of
animals, fodder, or equipment between the farms), potential transmission of PAdV-5 between
the farms appeared to be unlikely. Our findings, although based on three different farms,
provided preliminary evidence that PAdV-5 might be widely distributed in pig farms in the
Dominican Republic, warranting large-scale molecular epidemiological studies on PAdV-5 in
porcine populations throughout the country.

Table 1. Details of the fecal samples from diarrheic pigs that tested positive for porcine adenovirus 5
(species Porcine mastadenovirus C) in the Dominican Republic.

Animal/Sample
Number

Age Group/Category
of Animal 1

Location of the
Pig Farm

Year of Sample
Collection

Coinfection with

Porcine circovirus 2 2 Rotavirus A 3

DE10 Weaner Pedro Brand 4 2020 Positive Negative

DE22 Weaner Cabrera 4 2020 Positive Negative

DE92 Weaner Pedro Brand 2020 Positive Negative

ENG2 Grower Cabrera 2020 Positive Negative

ENG4 Grower Cabrera 2020 Positive Negative

ENG5 Grower Cabrera 2020 Positive Negative

ENG7 Grower Cabrera 2020 Negative Negative

ENG14 Grower Cabrera 2020 Positive Negative

ENG21 Grower Cabrera 2020 Positive Negative

ENG52 Grower Cabrera 2020 Positive Negative

GE4 Farrow 5 /Pregnant Pedro Brand 2020 Negative Negative

GE12 Farrow/Pregnant Pedro Brand 2020 Negative Negative

GES7 Farrow/Pregnant Pedro Brand 2020 Positive Negative

GES15 Farrow/Pregnant Pedro Brand 2020 Positive Negative

M8 Piglet Cabrera 2020 Positive Negative

MA1 Piglet Cabrera 2020 Negative Negative

MA5 Piglet Cabrera 2020 Positive Negative

https://blast.ncbi.nlm.nih.gov/Blast
https://blast.ncbi.nlm.nih.gov/Blast
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Table 1. Cont.

Animal/Sample
Number

Age Group/Category
of Animal 1

Location of the
Pig Farm

Year of Sample
Collection

Coinfection with

Porcine circovirus 2 2 Rotavirus A 3

MA9 Piglet Cabrera 2020 Positive Negative

N8 Grower Cabrera 2020 Positive Negative

VE8 Boar Cabrera 2020 Positive Negative

VE22 Boar Cabrera 2020 Positive Negative

D17 Weaner Villa Mella 4 2021 Positive Negative

PP3 Dry Sow Villa Mella 2021 Negative Negative

PP8 Dry Sow Villa Mella 2021 Negative Negative

Z11 Grower Villa Mella 2021 Positive Negative

Z13 Grower Villa Mella 2021 Positive Negative
1 Porcine age groups/animal categories as defined by the National Farm Animal Care Council (NFACC), Canada
(https://www.nfacc.ca/codes-of-practice/pig-code#glossary, accessed 5 July 2022). 2 Fecal samples were screened
for Porcine circovirus 2 using a nested PCR assay targeting the replicase gene, as described previously [25]. 3 Screening
for Rotavirus A (RVA) was carried out using a RVA VP6-specific RT-PCR assay, as reported in a previous study [26].
4 Municipality in the Dominican Republic. 5 Refers to a sow that has recently given birth to piglets.

Among the different age groups of sampled pigs, the PAdV-5 detection rates were
23.52% (4/17), 11.42% (4/35), 55.55% (10/18), 0% (0/1), 30.76% (4/13), 14.28% (2/14) and
66.66% (2/3) in piglets, weaners, growers, gilt, farrow/pregnant sows, dry sows, and boars,
respectively (Table 1). It has been proposed that PAdVs might play roles in coinfections [2].
AdV inclusion bodies were shown to be more common in kidneys of pigs infected with
PCV2 [2]. In a study from Thailand, 18.4% (23/125) of diarrheic pigs tested positive for
both PAdV and RVA [9]. As a part of another research project, the porcine fecal samples
(from this study) were screened for the presence of PCV2 and RVA. PCV2 was detected in
20 (76.92%) of the 26 PAdV-5 positive samples, of which one animal died (a grower from
Cabrera), whilst none of the diarrheic pigs tested positive for RVA (Table 1).

To date, only a single PAdV-5 strain (isolate HNF-70, AF289262) has been characterized
for the complete viral genome (32621 bp in size) [12], whilst a 4199 bp sequence (containing
open reading frames (ORF) 1 to 5) of PAdV-5 isolate HNF-61 (AF186621) and some PAdV-5
partial hexon sequences (~170 bp, or ~300 bp) are available in the GenBank database
(https://www.ncbi.nlm.nih.gov/nuccore, accessed 27 July 2022). Except for isolates HNF-61
and HNF-70 (from pigs with respiratory illness in 1987) [12,15], no other PAdV-5 strain has
been sequenced for the complete genome, or full-length CDS for important AdV proteins
so far. In the present study, the partial pol sequences (~246 nt) of 12 (7, 3 and 2 strains from
Cabrera, Pedro Brand and Villa Mella, respectively) of the 14 PAdV-5 strains (determined
to confirm the results of the pan-pol nested PCR screening assay) were subjected to further
analysis, whilst two of the sequences lacked high quality (Phred quality scores of <40). The
partial deduced amino acid (aa) sequences (82 aa) of the putative pol of the 12 PAdV-5 strains
shared 98.78–100% identities between themselves, and with that of the PAdV-5 reference
strain HNF-70. Deduced aa identities of <80% were observed with cognate pol sequences of
other AdVs. Phylogenetically, the partial pol sequences of the PAdV-5 strains from Cabrera,
Pedro Brand and Villa Mella grouped with strain HNF-70 to form a single cluster, which
was distinct from those of other mastadenoviruses (Supplementary Figure S3).

Since the partial pol sequences of the PAdV-5 strains from Cabrera, Pedro Brand and
Villa Mella were closely related to each other (deduced aa identities of 98.78–100% between
themselves, and phylogenetically, formed a tight cluster (Supplementary Figure S3)), we
selected two samples (GES7 and Z11 from 2020 and 2021, respectively) that were only
available in sufficient volumes for obtaining the full-length CDS for the putative AdV
hexon and pol. The AdV hexon is the major viral capsid protein, which plays an im-
portant role in eliciting host immune responses [27], whilst the AdV pol participates in

https://www.nfacc.ca/codes-of-practice/pig-code#glossary
https://www.ncbi.nlm.nih.gov/nuccore
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viral DNA replication [28]. Phylogenetic analysis of the pol constitutes an important
basis for taxonomic classification of AdVs [1]. The complete deduced aa sequences of
the putative hexon (910 aa) of GES7 and Z11 shared identities of 99.67% between them-
selves, and 99.78% and 99.89%, respectively, with that of PAdV-5 reference strain HNF-70
(Supplementary Figure S4), followed by identities of 82.46–85.92% with those of AdVs
belonging to the species Bovine mastadenovirus A (BAdV-A), caprine mastadenovirus and
Ovine mastadenovirus A (OAdV-A) and B (OAdV-B). Deduced aa identities of 73.19–75.88%
and 65.25–65.38% were observed with the hexon of PAdV-A (PAdV-3) and PAdV-B, respec-
tively. Phylogenetically, the hexon of GES7 and Z11 grouped with PAdV-5 isolate HNF-70
within a clade that consisted of two clusters of ruminant AdVs assigned to BAdV-A, OAdV-A
and OAdV-B (Figure 1A).
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other AdV strains. Red circles, a pink triangle, black, and blue squares indicate the PAdV-5 strains 
GES7 and Z11, the PAdV-5 reference strain (isolate HNF-70), viruses belonging to the species PAdV-
A, and -B, respectively. A member of the genus Atadenovirus was used as the outgroup sequence. 
Bootstrap values < 70% are not shown. Scale bar, 0.5 substitutions per aa. Abbreviations: AdV, ade-
novirus; Bo, bovine; Ca, canine; Cap, caprine; Eq, equine; Hu, human; Mu, murine; Ov, ovine; PAdV, 
porcine adenovirus; Si, simian. 
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26/101) and molecular characterization of PAdV-5 (PAdV-C) from diarrheic pigs, although 
the virus has been previously identified in a few fecal samples from healthy pigs [17,18], 
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pigs were infected with PCV2 (associated with porcine enteritis [29]), and the samples 
were not screened for other enteric pathogens (except for PCV2 and RVA), we could not 
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Figure 1. Phylogenetic analysis of the full-length deduced amino acid (aa) sequences of the putative
hexon (A) and DNA-dependent DNA polymerase (pol) (B) of porcine adenovirus serotype 5 (PAdV-5)
(species Porcine mastadenovirus C (PAdV-C)) strains GES7 and Z11 with those of other adenoviruses.
The virus name/host/country/year are shown for GES7 and Z11, whilst the virus name (isolate
name)/host/country/year/GenBank accession number/virus species have been mentioned for the
other AdV strains. Red circles, a pink triangle, black, and blue squares indicate the PAdV-5 strains
GES7 and Z11, the PAdV-5 reference strain (isolate HNF-70), viruses belonging to the species PAdV-A,
and -B, respectively. A member of the genus Atadenovirus was used as the outgroup sequence.
Bootstrap values < 70% are not shown. Scale bar, 0.5 substitutions per aa. Abbreviations: AdV,
adenovirus; Bo, bovine; Ca, canine; Cap, caprine; Eq, equine; Hu, human; Mu, murine; Ov, ovine;
PAdV, porcine adenovirus; Si, simian.

The study on complete genomic analysis of PAdV-5 (isolate HNF-70) had analyzed the
partial deduced aa sequence (843 aa, CDS: nt 6837-nt 4306) of the putative pol [12], although,
later, the full-length pol sequence (1130 aa, CDS: join nt 12194-nt 12186, nt 7689-nt 4306)
of HNF-70 was made available in the GenBank database (AC_000009). The pol (1130 aa)
of GES7 and Z11 shared deduced aa identities of 99.91% between themselves, followed
by identities of 99.56% and 99.47%, respectively, with that of HNF-70. With other AdVs,
GES7 and Z11 shared <69% sequence identities. Low deduced aa identities (56.10–57.84%
and 60.63–60.73%, respectively) were observed with the pol of PAdV-A and PAdV-B strains.
By phylogenetic analysis, the pol of GES7 and Z11 clustered with HNF-70 near ruminant
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AdVs belonging to BAdV-A and OAdV-A (Figure 1B). GES7 and Z11 retained the conserved
region I (YGDTDS) and the two putative zinc finger motifs that are conserved in the pol
of PAdV-5 reference strain HNF-70 [12], although a single aa mismatch (V1019A) was
observed between HNF-70 and the two study strains in one of the zinc finger motifs
(Supplementary Figure S5). The inverted CAAT box, an upstream promoter element, the
canonical TATA box, an initiator element and the 2 downstream activating elements, present
in the putative major late promoter (MLP) region of HNF-70 [12], were also identified in
GES7 and Z11 (Supplementary Figure S6).

Historically, PAdV-5 has been associated with porcine respiratory disease [2,7,15]. To
our knowledge, the present study is the first report on high rates of detection (25.74%,
26/101) and molecular characterization of PAdV-5 (PAdV-C) from diarrheic pigs, although
the virus has been previously identified in a few fecal samples from healthy pigs [17,18],
indicating potential infection of the porcine GI tract. Since most of the PAdV-5 positive pigs
were infected with PCV2 (associated with porcine enteritis [29]), and the samples were not
screened for other enteric pathogens (except for PCV2 and RVA), we could not establish
whether PAdV-5 caused GI disease in the pigs. After a long gap (more than 3 decades),
the full-length CDS for two important PAdV-5 proteins (hexon and pol) were analyzed,
revealing nearly absolute sequence identities between PAdV-5 strains (HNF-70, GES7 and
Z11) detected in different parts of the world (Japan (Asia), and the Dominican Republic
(Caribbean region)) and during different time periods (1987 and 2020–2021). Although
phylogenetic analysis of the pol is crucial for taxonomic classification of AdVs [1], the
PAdV-5 reference strain, HNF-70, was phylogenetically evaluated for only the hexon and
pVIII proteins with a limited number of AdV sequences [12]. In the present study, the
hexon and pol of HNF-70, GES7 and Z11 were subjected to phylogenetic analysis with a
larger set of mastadenovirus sequences, revealing similar clustering patterns between the
hexon and pol of PAdV-5 strains (Figure 1A,B), and corroborating previous observations
that PAdV-5 (PAdV-C) is more related to ruminant AdVs (BAdV-A, OAdV-A and -B) than
other AdVs, and distinct from members of the species PAdV-A and -B [12]. Considering
the paucity of data on current epidemiological status and genetic diversity of PAdV in
porcine populations [2,7,9], our findings warrant similar studies on PAdV-5 and other
PAdVs in clinically ill and healthy pigs. The evolution of PAdV might be more complex
than anticipated, as evident from evidence for recombination events involving the fiber
genes of PAdV-5 and members of the genus Atadenovirus [30], underscoring the importance
of analyzing the complete genomes, or at least the full-length sequences of important genes
of several viral strains representing the different PAdV species.

3. Materials and Methods
3.1. Sampling

A total of 101 fecal samples were obtained from diarrheic pigs at three different farms
in the Caribbean country of Dominican Republic (Supplementary Figure S1). Between
August–November 2020, 35 and 16 fecal samples were collected on a pig farm in the
municipality of Cabrera and Pedro Brand, respectively, and during January–February
2021, 50 fecal samples were obtained from a pig farm in the municipality of Villa Mella
(Supplementary Figure S1). The samples were stored at −20 ◦C until further analysis. The
Institutional Animal Care and Use Committee (IACUC) of the Ross University School of
Veterinary Medicine (RUSVM), St. Kitts and Nevis, acknowledged the sampling process
and use of the porcine fecal samples for the present study (RUSVM IACUC #: TSU6.10.22).

3.2. Amplification of Viral Genome

Viral DNA was extracted from the porcine fecal samples using the QIAamp Fast DNA
Stool Mini Kit (Qiagen Sciences, Germantown, MD, USA) according to the manufacturer’s
instructions. The samples were screened for adenoviral DNA using a broad-range nested PCR
assay based on the pol gene, as described previously [23,24]. Samples that tested negative
with the AdV pan-pol PCR assay were subjected to a PAdV-5-specific semi-nested PCR assay
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targeting the pol gene (Supplementary Table S2). Primers used in PCR/nested PCR assays to
obtain the full-length hexon and pol CDS are shown in supplementary Table S2. Polymerase
chain reactions were performed using the Platinum™ Taq DNA Polymerase (Invitrogen™,
Thermo Fisher Scientific Corporation, Waltham, MA, USA) following the manufacturer’s
instructions. Sterile water was used as the negative control in all PCR reactions.

3.3. Nucleotide Sequencing

The PCR amplicons were purified using the Wizard® SV Gel and PCR Clean-Up kit
(Promega, Madison, WI, USA) according to the instructions made available by the manufac-
turer. Nucleotide sequences were obtained using the ABI Prism Big Dye Terminator Cycle
Sequencing Ready Reaction Kit on an ABI 3730XL Genetic Analyzer (Applied Biosystems,
Foster City, CA, USA).

3.4. Sequence Analysis

The standard BLASTN and BLASTP program (Basic Local Alignment Search Tool, www.
ncbi.nlm.nih.gov/blast, accessed on 27 July 2022) was used to perform homology searches
for related nt and deduced aa sequences, respectively. The putative ORF coding for the
PAdV-5 hexon protein was determined using the ORF finder (https://www.ncbi.nlm.nih.
gov/orffinder/, accessed on 27 July 2022), whilst the putative CDS for pol were identified
by alignment of the obtained nt sequences with the complete genome sequence of PAdV-5
reference strain HNF-70. Pairwise sequence identities were determined using the ‘align
two or more sequences’ option of BLASTP (https://blast.ncbi.nlm.nih.gov/, accessed on
27 July 2022), or the EMBOSS Needle program (https://www.ebi.ac.uk/Tools/psa/emboss_
needle/, accessed 27 July 2022). Multiple alignments of nt and deduced aa sequences were
carried out using the Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/, accessed
27 July 2022) program. Phylogenetic analysis was performed by the maximum likelihood
(ML) method using the MEGA11 software [31], supported with 1000 bootstrap replicates and
the LG + I + G model of substitution, as described previously [1].

3.5. GenBank Accession Numbers

The GenBank accession numbers for the PAdV-5 sequences determined in this study
are OP087409-OP087414 and OP407941-OP407950.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11101210/s1, Supplementary Figure S1: The locations
of the three porcine sampling sites in the Dominican Republic; Supplementary Table S2: Primers
used in PCR assays to obtain the putative DNA-dependent DNA polymerase (pol) and hexon coding
sequences of porcine adenovirus serotype 5 (PAdV-5, species Porcine mastadenovirus C) strains from the
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