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Purpose: To test the hypothesis that newly developed shape measures using optical
coherence tomography (OCT) macular volume scans can discriminate patients with
perimetric glaucoma from healthy subjects.

Methods: OCT structural measures defining macular topography and volume were
recently developed based on cubic Bézier curves. We exported macular volume scans
from 135 eyes with glaucoma (133 patients) and 155 healthy eyes (85 subjects) and
estimated global and quadrant-basedmeasures. The best subset ofmeasures to predict
glaucoma was explored with a gradient boost model (GBM) with subsequent logistic
regression. Accuracy and area under receiver operating curves (AUC) were the primary
metrics. In addition, we separately investigatedmodel performance in 66 eyeswithmild
glaucoma (mean deviation ≥ –6 dB).

Results: Average (±SD) 24-2 mean deviation was –8.2 (±6.1) dB in eyes with glaucoma.
The main predictive measures for glaucoma were temporal inferior rim height, nasal
inferior pit volume, and temporal inferior pit depth. Lower values for these measures
predicted higher risk of glaucoma. Sensitivity, specificity, and AUC for discriminating
between healthy and glaucoma eyes were 81.5% (95% CI = 76.6–91.9%), 89.7% (95%
CI=78.7–94.2%), and0.915 (95%CI=0.882–0.948), respectively. Correspondingmetrics
formild glaucomawere 84.8% (95%CI= 72.1%–95.5%), 85.8% (95%CI= 87.1%–97.4%),
and 0.913 (95% CI = 0.867–0.958), respectively.

Conclusions: Novel macular shape biomarkers detect early glaucoma with clinically
relevant performance. Such biomarkers do not depend on intraretinal segmentation
accuracy and may be helpful in eyes with suboptimal macular segmentation.

Translational Relevance: Macular shape biomarkers provide valuable information for
detection of early glaucoma and may provide additional information beyond thickness
measurements.

Introduction

Glaucoma is characterized by the loss of retinal
ganglion cells (RGCs) and may result in functional
loss if left untreated.1,2 Timely treatment of glaucoma
is of utmost importance as glaucoma deterioration is
associated with worsening of vision-specific quality of

life.3,4 The RGCs most crucial to central vision are
located in the macular region. Macular optical coher-
ence tomography (OCT) is commonly used to assess
the health of the RGC-axonal complex.5,6 Although
current OCT imaging approaches have significantly
enhanced detection of early signs of glaucoma,
identifying eyes with glaucoma at highest risk of visual
disability with high accuracy is a pressing unmet need
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in the field of glaucoma diagnostics. Automated detec-
tion of eyes with a high-risk of early glaucoma with
high specificity could make screening or risk stratifi-
cation possible. This is especially important in earlier
stages of the disease so that further functional damage
may be averted.7

Macular thickness measurements have been the
main outcome of interest in both research and clini-
cal setting with thinning of various layers of the
inner retina considered the hallmark of glaucoma.8–13
The central macula has a complex configuration and
variations in its thickness and topography have been
reported in eyes with glaucoma.14–18 Recent studies
reported on the foveal shape in healthy subjects and
subjects with glaucoma and explored its influence on
structure–function (SF) relationships.14,19–21 Yadav et
al. and Motamedi and collaborators recently proposed
a novel approach to parametrizing the configuration
and topography of the central macular and perifoveal
region based on cubic Bézier polynomials along with
a least square optimization for 3-dimensional model-
ing.22,23 Motamedi et al. evaluated the performance of
such measures in differentiating between neuromyelitis
optica (NMO) and multiple sclerosis (MS); the result-
ing area under receiver operating characteristic curve
(AUROC) for discriminating between the 2 diseases
was 0.800.23 Yadav and colleagues also reported the
differences in the aforementioned shape and topogra-
phy measures between healthy subjects and patients
with various inflammatory optic neuropathies.22

The goal of the current study is to test the hypoth-
esis that newly developed macular topographic and
volumetric measures (called macular shape measures
in this paper) can discriminate eyes with glaucoma
from healthy eyes with clinically relevant accuracy. We
speculate that these novel macular biomarkers could
enhance automated detection of early central damage
in patients with glaucoma above and beyond macular
thickness measures.

Methods

Study Sample

One hundred thirty-five eyes from 133 patients with
glaucoma and 155 eyes of 85 healthy subjects were
enrolled in this study. In this dataset, 66 eyes of 66
patients were categorized as having mild perimetric
damage defined as visual field mean deviation (MD)
≥–6 dB. The current study was carried out in accor-
dance with the tenets of the Declaration of Helsinki
and the Health Insurance Portability and Accountabil-
ity Act (HIPAA) and was approved by the University

of California Los Angeles (UCLA) Human Research
Protection Program.

Inclusion criteria for eyes with glaucoma were:
(1) clinical diagnosis of primary open-angle glaucoma,
pseudoexfoliative glaucoma, pigmentary glaucoma, or
primary angle-closure glaucoma; (2) age between 40
and 80 years; (3) best corrected visual acuity ≥20/50;
and (4) no significant confounding retinal or neurolog-
ical disease. All study eyes underwent a complete eye
examination and macular imaging with Spectralis SD-
OCT (Heidelberg Engineering, Heidelberg, Germany).
A visual field (VF) defect was considered to be present
if both of the following criteriaweremet: (1)Glaucoma
Hemifield Test outside the normal limits or pattern
standard deviation with P < 0.05; and (2) 4 abnormal
points withP< 0.05 on the pattern deviation plot, both
confirmed at least once.24 VF examinations with false
positives rates >15% were excluded from this study.
Eligible healthy eyes were required to have normal VFs
and normal optic disc photographs based on the review
of two individual glaucoma specialists.

Macular OCT Imaging

We used the Posterior Pole Algorithm of the
Spectralis SD-OCT for this study. This algorithm
acquires 61 horizontal B-scans spanning a 30 degrees
× 25 degrees wide area with activated eye tracker,
parallel to the fovea-Bruch’s membrane opening axis;
each B-scan consists of 768 A-scans. The B-scans are
repeated 9 to 11 times (automatic real-time [ART]
averaging) to decrease speckle noise and improve image
quality. Scans with a quality factor greater than 15
were considered for the analysis. The quality factor is
a quality index provided by the proprietary software
of Spectralis OCT and ranges from 0 (worst quality)
to mid-40s (best quality) under clinical scenarios. We
exported .vol files to a personal computer for further
analysis by the morphometry algorithm as described
below.

All analyses were carried out with a software
suite developed by the co-authors (Nocturne GmbH,
Berlin, Germany). Nocturne software is a CE certi-
fied software (the product meets high safety, health and
environmental protection requirements to be sold in the
European Economic Area) as a medical device (DIN
EN ISO 13845:2016, class IM measurement software).
The local installable web application analyzes OCT
images of the retina to measure thinning, swelling,
and deformation of tissues. After an OCT volume
scan is acquired, the user can easily obtain a report
in a few minutes by opening the application on a
local computer, uploading the scan, and triggering the
required analysis. This deep learning-based software
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Figure 1. (A) The output from the AQUA algorithm provides information on image quality and segmentation adequacy. AQUA uses a
deep learning approach to assess volume scan quality. AQUA accesses each A-scan in the input volume and projects the corresponding
quality measure on the SLO image in different colors; for example, sufficient and insufficient signal quality are shown in green and yellow,
respectively. Furthermore, upper and lower image cutoffs are represented in red and orange colors, respectively. The interpolation feature
will generate artificial B-scans if one to three nonconsecutive B-scans have low signal quality. (B) The FOVEAM algorithm utilizes macular
OCT volume scans to create a model-driven 3D reconstruction of the central 4 mm of the macula and estimates various shape and volume
measures (see text). T, S, N, and I represent the temporal, superior, nasal, and inferior macula, respectively.

suite consists of a quality check algorithm (Automatic
Quality Analysis [AQUA]) and a foveal morphometry
algorithm (FOVEAM).22,25

Quality Check With the AQUA Algorithm

The OCT quality check and morphometry analy-
ses were carried out with the Nocturne software devel-
oped by the co-authors. Only images with a quality
factor of >15 were included. In addition, OCT image
quality was checked with a customized automated
algorithm, AQUA, which is part of the Nocturne
software suite and is based on the deep learning model-
ing.25 This model ensures that OCT volume scan data
are of sufficient quality for subsequent model-driven
3D reconstruction of the fovea. The AQUA algorithm
provides a fully standardized, grader-independent, and
easily applicable real-time method for evaluation of
macular OCT image quality (Fig. 1).26 AQUA has
been validated against reference data labeled by expert
reviewers at Berlin’s Charité University Hospital and
against the OSCAR-IB quality assessment algorithm,
a reference standard for quality check of macular OCT
images27; AQUA was able to discriminate between
good and poor-quality scans (volume, radial, and

ring patterns) with 97% accuracy. The AQUA method
combines three main OSCAR-IB criteria: (1) foveal
center detection, (2) signal quality (signal to noise
ratio), and (3) image completeness artifacts (scan
cuts). These features are evaluated before the fovea
morphometry, and only if the input volume is free
frommissing regions, is well-centered on the fovea, and
the signal quality is acceptable, then the morphomet-
ric analysis is performed. AQUA predicts the quality of
OCT volume scans based on a review of A-scans and
if 98% or more of the A-scans have an image quality
above the threshold (learned byDCNN), then the input
volume will be included for further processing. AQUA
uses parabola fitting in the foveal region for accurate
center detection. AQUA not only checks image quality
but also evaluates the quality of segmented data. In
our study, we used the segmentation of the upper
(inner limiting membrane [ILM]) and lower bound-
aries (Bruch’s membrane) of the retina as provided
in the Spectralis’ .vol files; the segmentation of these
two boundaries can be more easily done and is of
higher quality compared to the inner layers when the
quality of OCT images is subpar. Before performing
the foveal morphometry,22 we checked the accuracy
of these two segmentation lines to avoid including
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any data with inappropriate segmentation. Similar to
the image quality assessment, AQUA ensures that the
segmentation lines are free from missing regions, high
jumps, and that the internal limiting membrane and
Bruch’s membrane are not intersecting each other.

Macular Shape Analysis

Two-dimensional (2D) and three-dimensional (3D)
data from the macular OCT volume scans can assess
structural changes of the central macula including the
perifoveal area that may correlate with presence of
glaucoma or disease progression. Yadav et al. first
proposed a method for parametric modeling of the
central macular topography and volume from OCT
data, which uses a cubic Bézier polynomial and least
square optimization alongside landmark features of
the macula to create a best-fit parametric model of
the foveal topography within the central 4 mm of the
macula.22 Specifically, the proposed model uses a least
square optimization to fit the cubic Bézier polyno-
mial to interior and exterior regions of the fovea based
off stable and reliable features of the foveal pit shape,
including the lowest point of the pit and the highest
point around the pit region. To generate a high-fidelity
parameterization of the fovea, the interior and exterior
regions are parametrized using different constraints
based on the geometric properties of the macula.
The foveal shape has two different intrinsic properties:
maximum peaks at rim points and minimum depth at
the center of the fovea. We utilized these two proper-
ties to force different constraints in different regions.
The whole region was split between interior (between
maximum and minimum points) and exterior (beyond
the maximum points) areas. For parameterization of
the interior region, the main constraint is that the end
points must have horizontal tangent lines (because of
the extreme points). For the exterior region, we used

the same constraints for one side (maxima points) but
not for the other side, which is defined by the rim
points. Because of the intrinsic shape differences, the
constraints are different.

Using the above model-driven foveal shape
analysis method developed by Yadav et al., we
acquired thickness, volume, and fitting measures
to accurately model and reconstruct the 3D profile
of the perifoveal region.22 The 3D reconstruction
exemplified in Figure 1B represents the macula of a
patient’s right eye.

Foveal Morphometry With the FOVEAM
Algorithm

The FOVEAM (fovea morphometry) algorithm
calculates topographic and volumetric (shape)
biomarkers based on a central 4 mm macular area
(see Fig. 1B). The FOVEAM algorithm calculates
several shape measures from raw macular volume
scans (.vol files) as follows (Figs. 2, 3). The macular
volume scans sample the central macula using a
stack of linear B-scans aligned with the fovea-Bruch’s
membrane opening axis. Therefore, radial resampling
of the volume scan is needed. The number of radial
resampling curves around the fovea is an important
variable as too sparse sampling could lead to loss of
data and a too dense sampling scheme can result in
longer processing time for data extrapolations from
the macular volume scans. Yadav et al. estimated the
fidelity of the resampling approach with the L2-metric,
which assesses the closeness between two geomet-
rical shapes.28,29 They found that the resampling
process using 12 or more radial lines on the Spectralis
volume scans provided adequate resolution when
compared to a ground truth of 48 radial scans (average
error = 0.2 μm).

Figure 2. Visualization of 2D measures on the central B-scan passing through the foveal pit.
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Figure 3. Volumetric measures of interest consist of the rim
volume, pit volume, and inner rim volume. The rim volume (repre-
sented by the large blue cylinder) describes the total volume of
the perifoveal retina delimited internally by the rim disk and exter-
nally by the Bruch’s membrane–RPE complex, whereas the inner rim
volume (the green cylinder) is defined as the volume of the retina
between the Bruch’smembrane–RPE complex and the internal limit-
ing membrane within a 0.5 mm radius of the foveal center. The pit
volume is the total volume between the rim disk, the highest points
on the inner surfaceof themacula, and the inner surfaceof the foveal
pit.

Measures of Interest
Table 1 summarizes the topographic and volumet-

ric parameters derived from the FOVEAM algorithm.
The current version of the algorithm is able to calcu-
late both global measures and sectoral measures within

four quadrants around the fovea (temporal superior
[TS], temporal inferior [TI], nasal superior [NS], and
nasal inferior [NI]). Supplementary Figure S1 provides
the algorithm pipeline carried out to estimate the shape
biomarkers from raw 3D OCT images.

Statistical Analyses

We first explored the performance of each global
and sectoral measure one at a time (univariable analy-
ses) for glaucoma risk. Both linear logistic models and
restricted cubic spline (RCS) logistic models were fit for
each individual measure. Because the shape measures
are correlated, we used aGradient Boost logistic model
(GBM) using all potential predictors simultaneously to
evaluate the relative influence of each potential predic-
tor and determine the best subset of the predictors
to retain. The subset of predictors that accounted for
most of the relative influence was retained. A conven-
tional logistic model allowing two-way interactions was
subsequently fit using the variables selected by GBM.
The model combines the variables into a logit score
through the following formula (showing only 3 poten-
tial predictors):

Logit score = β0 + β1 x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3

where x1, x2, and x3 are the selected variables and
β1, β2, and β3 are their corresponding weights. In

Table 1. Description of Central Macular Topographic and Volumetric Measures (Also See Figs. 2 and 3).

Rim disk area: Area represented by a spline fit on the maximum perifoveal points on each radial cut
(reconstructed radial foveal cross-section) centered on the foveal center.

Rim disk diameter: Longest distance between opposite maximum perifoveal rim points among radial B-scans.
Rim height: Average of maximum perifoveal rim height measurements on 12 radial B-scans.
Average pit depth: Distance between the center of the foveal pit and the average rim height.
Central foveal thickness: Minimum distance between foveal pit’s center and the underlying retinal pigment
epithelium (RPE)-Bruch’s membrane complex.

Slope disk area: The area derived from a spline fit of all maximum slope points on each reconstructed radial
foveal cross-section.

Slope disk diameter: Longest distance among all the corresponding pairs of maximum slope points on radial
cross-sections.

Pit flat disk area: Quantifies the flatness of the foveal pit surrounding the foveal center.
Pit flat disk diameter: Distance between two opposite points representing the widest area of the flat portion of
foveal pit.

Volume Parameters
Rim volume: Total volume of the perifoveal rim delimited internally by the rim disk and externally the BM-RPE
complex (large blue cylinder, Fig. 3).

Inner rim volume: Volume of the fovea between the region of inner limiting membrane within 0.5mm of the
foveal center and the BM-RPE complex (green cylinder, Fig. 3).

Pit volume: Total volume between the rim disk and the inner surface of the foveal pit (yellow valley, Fig. 3).
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the equation above, the β4 and β4 are the weights of
interactions between variables 1 and 2 and variables
1 and 3, respectively. The odds and risk (P = propor-
tion) of glaucoma can be computed from the logit
score as: where odds = O = exp (logit score) and
risk = P = O/(1+O)).

We also included a random subject effect to allow
for non-independence between the two eyes of subjects.
The Akaike information criterion (AIC) was used to
determine which interaction terms were retained in
the final logistic model. We report primary outcome
measures from the logistic model, including sensitivity,
specificity, and AUROC with their corresponding 95%
confidence interval (CI) after 5-fold cross-validations.
We repeated the same approach to determine the
performance of the shape measures for discriminating
between mild glaucoma and healthy eyes.

We also investigated the performance of various
machine learning (ML) models for discriminating
glaucoma eyes from healthy eyes for both the entire
dataset and for eyes with early glaucoma. We used
a GBM, Naïve Bayes (NB), and a support vector
machine (SVM) algorithm for this purpose. We fed the
40 topographic and volumetric parameters of interest
to the ML models and carried out parameter tuning
withGrid SearchMethod; a 5-fold cross-validationwas
done for eachMLmodel.We report theAUROC, sensi-

tivity, specificity, and accuracy along with the corre-
sponding 95% CI for each model.

All the analyses were performed with the software R
version 4.0.4 (R Foundation for Statistical Computing,
Vienna, Austria).

Results

Table 2 displays the clinical and demographic data
for the study eyes. The mean (SD) age was 52.6 (13.6)
and 66.7 (9.6) years (P < 0.001) and the average
(SD) 24-2 visual field MD was –0.73 (1.77) and –8.24
(6.11) dB in the glaucoma and healthy groups, respec-
tively (P< 0.001). There were no significant differences
between the two groups with regard to gender and
ethnicity.

Table 3 describes the performance of each of the
global shape measures for detection of glaucoma in
the entire patient sample based on linear and RCS.
The best performing global measure was the global rim
height (AUC = 0.814). The global rim height (AUC
= 0.818) was also found to be the best-performing
measure based on the RCS logistic model for the entire
patient group.

Overall, 40 global and sectoral variables were used
in the GBM analysis. Based on the GBM analysis, the

Table 2. Demographic Characteristics of the Healthy Subjects and the Subjects With Glaucoma

Healthy (N = 155) Glaucoma (N = 135) P Value

Age
Mean (SD) 52.6 (13.6) 66.7 (9.6) < 0.001

Gender (%)
Female 55% 60%
Male 45% 40% 0.466

Race (%)
Caucasian 32% 54% 0.988
African American 15% 15% 0.988
Hispanic 15% 13% 0.987
Asian 38% 18% 0.988

24–2MD (dB)
Mean (SD) –0.73 (1.77) –8.24 (6.11) < 0.001

Axial length (mm)
Mean (SD) 23.8 (1.2) 24.6 (1.4) < 0.001

Global rim height (mm)
Mean (SD) 0.34 (0.01) 0.31 (0.02) < 0.001

Global pit volume (mm3)
Mean (SD) 0.25 (0.04) 0.21(0.04) < 0.001

Global pit depth (mm)
Mean (SD) 0.11 (0.02) 0.09 (0.02) < 0.001
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Table 3. Performance of Global Topographic and Volumetric Parameters for Detection of Glaucoma Based on
Univariable Linear and Restricted Cubic Spline Logistic Models for the Entire Dataset

Linear Logistic Model Restricted Cubic Spline Logistic Model

Global Predictor Specificity Sensitivity Accuracy AUC Specificity Sensitivity Accuracy AUC

Rim height 82.1% 68.9% 75.5% 0.814 82.1% 68.9% 75.5% 0.818
Pit depth 62.8% 82.2% 72.5% 0.769 62.8% 82.2% 72.5% 0.769
Rim volume 66.7% 77.0% 71.9% 0.764 66.7% 77.0% 71.9% 0.758
Pit volume 67.9% 74.1% 71.0% 0.739 67.9% 74.1% 71.0% 0.739

AUC, area under the curve.

Table 4. The Coefficients, Standard Errors, and P Values for the Predictors in the Final Optimal Logistic Model
for Prediction of Glaucoma Based on Topographic and Volumetric Markers for the Entire Glaucoma Group and
Separately for Eyes With Mild Glaucoma

Entire Glaucoma Eyes Mild Glaucoma Eyes

Predictor Estimate SE P Value Estimate SE P Value

TI rim height (mm) 84.6 58.8 0.1500 60.4 57.4 0.2927
NI pit volume (mm3) 482.5 247.3 0.0511 334.4 257.0 0.1933
TI pit depth (mm) 200.8 124.2 0.1059 186.3 114.3 0.1030
TI rim height×NI pit volume –1710.3 776.0 0.0275 –1219.6 807.5 0.1310
TI rim height× TI pit depth –703.4 389.4 0.0709 –663.0 363.0 0.0678

TI, temporal inferior; NI, nasal inferior; SE, standard error.
• Logit score for entire dataset = –20.9 + 84.6 (TI rim height) + 482.5 (NI pit volume) + 200.8 (TI pit depth) –1710.3 (TI rim

height × NI pit volume) – 703.4 (TI rim height × TI pit depth).
• Logit score for eyeswithmild glaucoma= –14.1+ 60.4 (TI rimheight)+ 334.4 (NI pit volume)+ 186.3 (TI pit depth) –1219.6

(TI rim height × NI pit volume) –663.0 (TI rim height × TI pit depth).

3 top variables according to their relative influence were
the TI rim height, NI pit volume, and TI pit depth with
the 3 of them accounting for 53% of the total influ-
ence of all the shape measures (i.e. all other predic-
tors added less than 47%). The final optimal logistic
model included the above 3 measures and 2-way inter-
actions between TI rim height and NI pit volume, and
TI rim height and TI pit depth. Table 4 provides the
estimates, standard errors, and P values for the predic-
tors in the final logistic model. The sensitivity, speci-
ficity, accuracy, and AUC (95% CI) of the final logis-
tic model for discriminating between healthy eyes and
eyes with glaucoma were 81.5% (95% CI = 76.6%,
91.9%), 89.7% (95% CI = 78.7%, 94.2%), 85.6% (95%
CI = 84.1%, 87.1%), and 0.915 (95% CI = 0.882,
0.948), respectively. Figure 4 shows the glaucoma risk
for a range of values of each predictor with the other
2 variables fixed at their first quartile, mean, and third
quartile values. Lower values for TI rim height, NI pit
volume, and TI pit depth were associated with a higher
risk of glaucoma.

We repeated all the above steps to build a new
logistic model based on the healthy eyes and the eyes

with early perimetric glaucoma including only eyes
with visual field MD ≥–6 dB. The GBM selected
TS rim height, NI pit volume, TI pit depth, and TS
pit depth as the top variables with overall resistive
index (RI) of 50%. Table 5 displays the estimates,
standard errors, and P values for this logistic model
using only eyes with early perimetric glaucoma. The
logistic model included the interactions between TS pit
depth and TS rim height and between TI pit depth
and TS rim height. The sensitivity, specificity, accuracy,
and AUC (95% CI) were 84.8% (95% CI = 72.1%,
95.5%), 85.8% (95% CI = 87.1%, 97.4%), 85.3% and
0.913 (95% CI = 0.867, 0.958), respectively. When
we applied the logistic model derived from the entire
glaucoma group, which included TI rim height, NI pit
volume, and TI pit depth, and the relevant interac-
tions (see Table 4), to eyes with mild glaucoma and
healthy eyes only, the sensitivity, specificity, accuracy,
and AUC (95% CI) were 87.9% (95% CI = 68.2%,
95.5%), 76.8% (95% CI = 71.6%, 96.8%), 82.3%, and
0.896 (95% CI = 0.850, 0.942) respectively. Figure 5
represents the receiver operating characteristic (ROC)
curves for models used for discriminating normal eyes



Volumetric Macular Parameters and Glaucoma TVST | July 2022 | Vol. 11 | No. 7 | Article 25 | 8

Figure 4. Effect of each of the three shape predictors identified by the gradient boostmodel (temporal inferior [TI] rimheight, nasal inferior
[NI] pit volume, and temporal inferior pit depth) on the glaucoma risk, whereas the other two predictors are fixed at their first quartile (Q1),
mean, and third quartile (Q3).

from glaucoma eyes and from early stage glaucoma
eyes.

The performance of the 3 ML models (GBM,
NB, and SVM) are provided in Table 6. For the

entire dataset, GBM demonstrated the highest perfor-
mance for discriminating eyes with glaucoma from
healthy eyes. The AUCs (95% CI) for the classifica-
tion task were 0.947 (95% CI = 0.921, 0.973), 0.838
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Figure 5. Receiver operating characteristic (ROC) curves for glaucoma prediction models for the entire dataset (red curve, AUC = 0.915),
prediction of mild glaucoma using four selected parameters based on repeat analyses (green curve, AUC= 0.913) and based on parameters
derived from the entire dataset (blue curve, AUC = 0.896).

Table 5. The Coefficients, Standard Errors, and P Values for the Predictors in the Final Optimal Logistic Model for
Prediction of Mild Perimetric Glaucoma (Visual Field Mean Deviation≥ –6 dB) Based on the Top Four Topographic
and Volumetric Markers Selected by the Gradient Boost Model

Predictor Estimate SE P Value

(Intercept) 9.77 10.73 0.3622
TS rim height (mm) –13.50 34.48 0.6953
NI pit volume (mm3) –70.21 17.85 0.0001
TI pit depth (mm) 1356.51 427.07 0.0015
TS pit depth (mm) –1139.56 402.76 0.0047
TS pit depth × TS rim height 3758.79 1258.32 0.0028
TI pit depth × TS rim height –4502.45 1333.19 0.0007

TI, temporal inferior; NI, nasal inferior; TS, temporal superior; SE, standard error.
Logit score= 9.77 –13.50 (TS rim height) –70.21 (NI pit volume)+ 1356.51 (TI pit depth) – 1139.56 (TS pit depth)+ 3758.79

(TS pit depth × TS rim height) –4502.45 (TI pit depth × TS rim height).

Table 6. Results of Three Machine Learning Approaches for Discriminating all Eyes With Glaucoma and EyesWith
Early Glaucoma From Healthy Subjects

AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

Entire dataset
GBM 0.947 (0.921, 0.973) 89.6% (81.4%, 96.3%) 91.0% (82.0%, 97.7%) 90.0% (86.2%, 93.1%)
Naïve Bayes 0.838 (0.782, 0.895) 80.3% (64.4%, 97.7%) 78.0% (57.7%, 90.8%) 78.3% (67.4%, 85.2%)
SVM 0.845 (0.800, 0.890) 83.6% (74.0%, 90.3%) 76.1% (66.4%, 84.5%) 79.3% (74.4%, 83.4%)
Mild glaucoma eyes
GBM 0.950 (0.918, 0.983) 86.3% (77.2%, 97.7%) 96.1% (81.5%, 99.3%) 92.7% (85.0%, 96.3%)
Naïve Bayes 0.838 (0.782, 0.895) 80.3% (64.4%, 97.7%) 77.4% (57.7%, 90.8%) 78.3% (67.7%, 85.2%)
SVM 0.845 (0.800, 0.890 83.6% (91.1%, 74.0%) 76.1% (65.1%, 84.5%) 79.3% (74.4%, 83.4%)

GBM, gradient boost model; SVM, support vector machine; CI, confidence interval.
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(95% CI = 0.782, 0.895), and 0.845 (95% CI = 0.800,
0.890) for GBM,NB, and SVM, respectively. Similarly,
for discriminating eyes with mild glaucoma from the
healthy eyes, GBM showed the highest performance
among all the ML models, with AUCs of 0.950 (95%
CI = 0.918, 0.983), 0.838 (95% CI = 0.782, 0.895),
and 0.845 (95% CI = 0.800, 0.890) for GBM, NB, and
SVM, respectively.

Discussion

The goal of this study was to assess whether
the newly developed macular shape measures, captur-
ing both topographical and volumetric features of
the central perifoveal macular region, can discrimi-
nate eyes with perimetric glaucoma from healthy eyes.
Our results demonstrate that these novel macular
biomarkers can detect perimetric glaucoma with clini-
cally relevant performance. Quadrant-based measures
performed overall better than global measures. The
best-performing model incorporated a combination
of a few quadrant-based measures and their interac-
tions. We found an AUC of 0.915 for the detection of
glaucoma with the selected measures, namely TI rim
height, NI pit volume, and TI pit depth. In addition,
we explored 3 ML models (GBM, NB, and SVM) for
identifying eyes with glaucoma. All showed good to
very good performance for discriminating glaucoma
and more specifically, eyes with early glaucoma from
healthy eyes with GBM demonstrating the best perfor-
mance for this purpose (AUCof 0.948 and 0.950 for the
entire dataset and mild glaucoma eyes, respectively).

Most prior studies found that macular thickness
measurements derived from OCT imaging performed
well for identifying glaucoma at different stages of the
disease.6,8–10,30–36 These studies investigated both full
macular thickness and inner retinal layers. However,
there are several shortcomings with regard to macular
thickness measurements. Various artifacts may affect
the segmentation of inner retinal layers, especially in
more severe glaucoma or when the quality of the
images is subpar.37,38 Another caveat is that measure-
ment of perifoveal RGCs is particularly difficult even in
eyes with good-quality images as the inner retinal thick-
ness rises from near zero in the center of the fovea to
its peak around 700 to 1100 microns from the fovea.39
Thickness measurements may also be misleading in
myopic eyes.40

The novel proposed biomarkers are not dependent
on the segmentation of individual retinal layers and
may be especially helpful when accurate segmentation
of the inner retinal layers cannot be achieved. We also

hypothesize that such biomarkers may be helpful very
early in the disease process when subtle changes in
thickness measurements in individual eyes may be diffi-
cult to ascertain due to the wide range of thickness
measurements observed in OCT normative databases.
The software suite developed by the co-authors is
equipped with a built-in algorithm (AQUA), which
is a deep learning model able to automatically evalu-
ate the quality of the macular volume scans. Hood et
al. proposed that two main macular damage pheno-
types demonstrating shallow and diffuse versus local-
ized and deep damage may exist.13 The proposed novel
shape measures would be particularly useful for defin-
ing macular phenotypes and our team is exploring
deep learning approaches to identify such phenotypes.
We also speculate that the macular shape measures
could be used tomonitor disease progression in various
stages of glaucoma.

The deep learning model providing novel 3D
volumetric and topographic perifoveal biomarkers
with automated image quality check has no prece-
dence in the OCT literature. Vercellin et al. devel-
oped an algorithm in MATLAB to provide ganglion
cell complex (GCC) volume and reported very good
performance in detecting glaucoma.20 However, the
scan quality and segmentation accuracy needed to
be checked manually. A recent study reported that
3D optic disc neuroretinal rim measures were able to
detect glaucoma progression earlier than 2D thickness
measurements.21 The Nocturne software suite does not
rely on segmentation of inner macular layers or thick-
ness measurements. Any artifacts within the macular
volume scans can be detected by the AQUA software
and depending on the severity may be subsequently
removed from the dataset. Asaoka et al. recently
demonstrated that a deep learning algorithm using
pretrainingwould perform better than an approach not
utilizing pretraining.41 They reported an AUC of 94%
for the new algorithm compared to 77% to 79%without
the pretraining. The main difference between the study
by Asaoka et al. and ours is that the deep learning
on raw images represents a black box with no clue on
how the deep learning algorithm is performing this task
while our proposed biomarkers are specifically aiming
to utilize predefined features of the perifoveal macula.
The performance of both approaches seems to be clini-
cally relevant.41

TheNocturne algorithm provides an array of global
and sectoral measures. Due to the collinearity observed
betweenmanymeasures (results not shown), amachine
learning approach (GBM) was performed to select
the best measures to discriminate between eyes with
glaucoma and healthy eyes. After introducing a loss
function, GBM selected TI rim height, NI pit volume,
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and TI pit depth as the top 3 shape measures with an
AUC of 0.915 for discriminating eyes with glaucoma
of various stages from healthy eyes. The same model
still performed well for detection of mild perimetric
glaucoma (AUC = 0.895). In addition, when subset
selection was carried out using only eyes with mild
glaucoma, the identified subset of predictive measures
was quite similar with a higherAUC (0.913). Therefore,
the proposed 3D topographic and volumetric measures
could be clinically relevant biomarkers for the detec-
tion of glaucoma at all stages once their performance is
further validated in other external and larger datasets.
Two out of three best sectoral measures belonged to
the inferotemporal sector, which is well known to be
the most common macular region where early signs of
the disease tend to manifest.12,13,42,43

Yadav et al. proposed cubic Bézier polynomial
modeling and least square optimization of landmark
features of the macula for parametric modeling of
the perifoveal configuration and volume in a cohort
of healthy eyes and eyes from patients with neuroin-
flammatory central nervous system disorders and optic
neuritis.22 Their novel model is based on stable and
reliable features of the foveal pit shape, including the
lowest point of the pit and the highest retinal point
around the foveal pit region. A recent study on foveal
morphology showed the importance of accounting for
artifacts seen on RGC probability maps in healthy
subjects;44 the proposed modeling of the perifoveal
region by Yadav et al. is an important step toward
individualized structure-function maps of the macula
as further development of the current deep learning
algorithms may help prediction of functional damage
in the macular region.14,17

The Nocturne software has an OCT reader module
which is capable of reading the image data and other
available information inOCTvolume scans fromdiffer-
ent devices (Heidelberg Spectralis, Cirrus, Nidek, and
Topcon) and different file types (.vol, .img, .dcm, .xml,
and .fda). All these files contain, at the minimum,
the raw imaging data (e.g. .img format) and poten-
tially the segmentation information (for example, .vol
format). If the data file has only the raw image infor-
mation, then theNocturne segmentermodule performs
segmentation of the ILM and Bruch’s membrane in
the foveal region and this segmentation information
is utilized for the perifoveal shape analysis module. In
this study, we utilized .vol files from the Heidelberg
Spectralis OCT; these files do contain the segmentation
information for the upper (ILM) and lower (Bruch’s
membrane) retinal boundaries. Therefore, we did not
utilize the segmenter module fromNocturne. However,
the ILM and Bruch’s membrane segmentation quality
for each volume scan was checked using the automated

quality analysis module (AQUA) from Nocturne. The
foveal shape analysis was performed using the fovea
morphometry module utilizing quality checked data.
As Cubic Bézier parametrization is a smooth represen-
tation of the foveal shape, the effect of noise in segmen-
tation is removed robustly. Furthermore, we have also
compared the accuracy of our method with respect to
the current state-of-the-art methods and shown that
our method is capable of parameterizing the different
foveal shape with high fidelity.22 A similar result was
shown in a recent paper by Romero-Boscenes et al.,
who performed a comparison between current state-of-
the-art methods for foveal shape modeling in terms of
accuracy and robustness.17

Given the performance of the macular shape
parameters, we propose that combining these param-
eters with macular thickness measures could poten-
tially provide a stronger structural signal for detec-
tion of glaucoma, especially in eyes with early-stage
glaucoma. Another potential benefit is to explore these
novel macular phenotypes for categorizing different
stages of glaucoma, which has been an ongoing interest
in the glaucoma community.

Our results should be interpreted in light of poten-
tial shortcomings. A larger normal database is required
to define the factors potentially affecting shape param-
eters. Specifically, race, gender, and axial length might
affect the shape measures in healthy and glaucoma-
tous eyes. The group of eyes with early glaucoma was
fairly small and the results need to be confirmed in a
larger study and potentially in eyes with preperimetric
glaucoma.

In conclusion, the proposed novel topographic and
volumetric macular biomarkers were able to detect
perimetric glaucoma across the severity spectrum
with clinically relevant performance. Incorporating this
model in clinical practice, once validated, could help
in optimizing detection of glaucoma in early stages
especially in eyes with significant early central involve-
ment. The shape biomarkers do not depend on segmen-
tation of intraretinal layers andmay prove to be helpful
where segmentation of macular layers is suboptimal.
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