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ABSTRACT

Cell type identification is essential for single-cell
RNA sequencing (scRNA-seq) studies, currently
transforming the life sciences. CHETAH (CHaracteri-
zation of cEll Types Aided by Hierarchical classifica-
tion) is an accurate cell type identification algorithm
that is rapid and selective, including the possibility
of intermediate or unassigned categories. Evidence
for assignment is based on a classification tree of
previously available scRNA-seq reference data and
includes a confidence score based on the variance
in gene expression per cell type. For cell types repre-
sented in the reference data, CHETAH’s accuracy is
as good as existing methods. Its specificity is supe-
rior when cells of an unknown type are encountered,
such as malignant cells in tumor samples which it
pinpoints as intermediate or unassigned. Although
designed for tumor samples in particular, the use
of unassigned and intermediate types is also valu-
able in other exploratory studies. This is exempli-
fied in pancreas datasets where CHETAH highlights
cell populations not well represented in the reference
dataset, including cells with profiles that lie on a con-
tinuum between that of acinar and ductal cell types.
Having the possibility of unassigned and intermedi-
ate cell types is pivotal for preventing misclassifica-
tion and can yield important biological information
for previously unexplored tissues.

INTRODUCTION

Single-cell RNA-sequencing (scRNA-seq) is transforming
our ability to study heterogeneous cell populations (1–6).
While tools to help interpret scRNA-seq data are develop-
ing rapidly (7–14), challenges in data analysis remain (15),
with cell type identification a prominent example. Accurate
cell type identification is a prerequisite for any study of het-
erogeneous cell populations, both when the focus is on sub-

sets of a particular cell type of interest or when investigat-
ing the population structure as a whole (16–20). The intro-
duction of single cell RNA sequencing has paved the way
for rapidly discovering previously uncharacterized cell types
(21–23) and this application too would greatly benefit from
efficient identification of known cell types prior to focusing
on new types.

Research into tumor composition presents an even more
challenging setting, as the RNA expression profile of ma-
lignant cells is often different from any known cell type, as
well as unique to the patient or even to the biopsy (24,25).
Malignant cells can sometimes be identified in scRNA-seq
data (26) but this is not always feasible or even possible, for
instance with tumors that do not harbor easily identified
copy number variations. In both cases, a first sign of the
malignancy of cells in the sample is their imperviousness
to classification, simply because their expression profiles do
not resemble that of any known, healthy cell type.

Cell type identification in scRNA-seq studies is cur-
rently often done manually, starting by identifying tran-
scriptionally similar cells using clustering. This is frequently
followed by differential expression analysis of the result-
ing cell clusters combined with visual marker gene inspec-
tion (4,24,25,27–29). Such manual cell type identification is
time-consuming and often subjective due to the choice of
clustering method and parameters for example, or to the
lack of consensus regarding which marker gene to use for
each cell type. Such analyses are becoming more complex
given the fast-expanding catalogue of defined cell types (15).
Canonical cell surface markers are also not always suitable
in scRNA-seq studies because the transcripts of these genes
may not be measurable in the corresponding cell type ow-
ing to low expression or to degradation of the mRNA. This
is aggravated by technical difficulties (drop-out) and, more
generally, by the poor correlation between protein expres-
sion and mRNA abundances (22).

Recently, a number of cell type identification algorithms
have emerged to address these problems. Automated meth-
ods such as scmap (30) and SingleR (31) base their cell
type call on comparisons with annotated reference data us-
ing automatically chosen genes that optimally discriminate
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between cell types. A good cell type identification method
should be both sensitive and selective. That is, it should cor-
rectly identify as many cells as possible, while not classifying
cells when based on insufficient evidence. If the cell being
identified is of a type that is not represented in the refer-
ence, such misclassification can easily occur. This is a con-
cern when studying malignant cells which are often too het-
erogeneous to include in the reference data. To avoid over-
classification, methods such as scmap (30) therefore leave
cells unclassified if they are too dissimilar to any reference
data.

Both the complete lack of classification as well as over-
classification is unsatisfactory. For example, if the evidence
for a very specific cell type assignment such as effector CD8
T-cell is not strong enough, a more general, less specific as-
signment such as T cell may still legitimately be made and
might still be useful. The reason for such an intermediate
cell type assignment could be that the correct T-cell subtype
is not part of the reference dataset, or even that there is in-
sufficient read-depth for the more specific call to be made.
An even more interesting case is that of cells that are biolog-
ically of an intermediate type such as differentiating cells or
cells undergoing transdifferentiation.

Here we present CHETAH (CHaracterization of cEll
Types Aided by Hierarchical classification), an algorithm
that explicitly allows the assignment of cells to an inter-
mediate or unassigned type. The unassigned and interme-
diate types are inferred using a tree that is constructed
from the reference data and which guides the classifica-
tion. CHETAH’s classification is a stepwise process that tra-
verses the tree and, depending on the available evidence,
ends at one of the reference cell types or halts at the unas-
signed or one of the intermediate types. CHETAH is able
to correctly classify published datasets and, in comparison
to other methods, performs equally or better when consid-
ering cells whose type is represented in the reference data.
For cells of an unknown type, CHETAH is more selec-
tive, yielding a classification that is as fine-grained as is
justified by the available data. The benefit of calling unas-
signed and intermediate types is highlighted in several tu-
mor datasets, showing CHETAH is consistently selective.
This makes CHETAH a powerful tool for identifying cells
that are not in the reference, such as malignant tumor cells,
novel or intermediate cell types. The latter is shown in an
analysis of published pancreas datasets, where a manifest
expression gradient of cells with types varying between aci-
nar and duct cell is described. CHETAH is implemented in
R (32), is available at github.com/jdekanter/CHETAH, and
has been incorporated in Bioconductor (33) release 3.9. It
comes with an extensive Shiny application that makes ex-
ploration of the cell type identification process and the gene
expression differences that support the classification very
intuitive. CHETAH has been created bearing tumor anal-
yses in mind, but as is demonstrated, it also complements
existing methods for exploring previously uncharacterized
non-cancerous tissues and cell types.

MATERIALS AND METHODS

An outline of the CHETAH algorithm is depicted in Figure
1. The method requires a reference scRNA-seq dataset, an-

notated for cell type. Throughout this study, the reference
dataset is completely independent from the dataset that is
being classified. First a hierarchical classification tree is con-
structed from the reference scRNA-seq data (Figure 1A).
Each input cell is classified individually by traversing the
tree (Figure 1B). At each step of the process the cell to be
classified is correlated to the expression profiles of the refer-
ence data cell types. This is done by first selecting the set of
genes that best discriminates each reference cell type from
all the cell types, collectively, in the opposite branch of the
tree (Figure 1C). The input cell correlation to a reference cell
type is compared to the distribution of correlations of the
reference cells to assess whether there is enough evidence to
allow this cell to take the next step (Figure 1D and E). If the
confidence threshold is not passed, further classification of
the cell stops and it is marked as unassigned if the evidence
runs out at the top of the tree, or as intermediate if this hap-
pens within the classification tree. Classification also stops
when a cell reaches one of the leaves of the tree, yielding
assignment to a specific cell type.

Reference data

In order to classify input cells CHETAH requires scRNA-
seq reference data along with cell type labels for each refer-
ence cell. Here, the reference dataset is always a completely
independently generated dataset, from a different study and
in several cases using a different scRNA-seq platform. The
reference data needs to be normalized to an identical to-
tal number of transcripts per cell and should be expressed
in log-scale. Malignant cells are best left out of the refer-
ence because they are too ill-defined and too patient-specific
(34). In all the reference datasets used here, such cells clus-
ter by patient whereas non-malignant cells largely cluster
by cell type. The reference must contain at least 10 cells per
cell type to adequately represent its transcriptional program
as well as its variance (Figure 3C). More than 10 cells per
reference cell type improves performance. More than 200
cells per cell type is superfluous. Since this also increases
the computational burden it is useful to restrict the num-
ber of cells per reference cell type to a maximum of 500.
This does not restrict the number of cells that can be ana-
lyzed in the query dataset. The selection of genes from the
reference dataset for classification at each step (Figure 1B)
is aimed at finding those with the highest discriminatory
power. When using a reference dataset with a high drop-
out rate, i.e. low transcript coverage per cell, it is advocated
to remove highly expressed genes such as ribosomal protein
genes from reference datasets beforehand, since their drop-
out can reduce classification accuracy. For the sake of uni-
formity, ribosomal protein genes were removed here from
all reference datasets although this only increased classifi-
cation accuracy in one case (Figure 3C).

Unless stated otherwise, the reference dataset used here,
called ‘Tumor ref.’, consists of a combination of datasets
of Colorectal (35), Breast (36), Melanoma (24) and Head-
Neck tumors (25). The data for all these studies was gener-
ated using the Smart-seq2 platform. The cell types of the
reference dataset were based on published manual classi-
fication of cell clusters using marker gene expression. The
Melanoma and Head-Neck studies discuss the T cells in

https://github.com/jdekanter/CHETAH
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The method requires reference scRNA-seq data consisting of reference cells 
(RC) annotated with their cell type.
Reference profiles (RPs) are created for each cell type in the reference 
dataset by averaging their expression profiles. A classification tree is comput-
ed from these RPs using Spearman correlation and average linkage.

The input cells are classified in a top-to-bottom, stepwise process traversing 
the tree. In each node, each input cell j goes through the steps shown in 
panel C-E. They determine the path through the tree by deciding which of the 
two branches to choose as well as whether the confidence to do so is 
sufficient. If confidence is too low, the cell is assigned the 
intermediate type represented by the current node (if this is the root node the 
cell remains unclassified), and the classification stops. If confidence is 
sufficient, steps C-E are repeated with the chosen branch as the next node. 
If this is a leaf node (i.e. a final cell type), the classification is completed. 

A confidence score determines if cell j’s classification can proceed or should 
stop. Cell j is assigned to the branch containing the RP with the maximal 
profile score (here: branch “RP1+2”), but only if the confidence score is large 
enough. 

The confidence score is calculated as the difference of the highest profile 
score in the branch about to be chosen (here: 0.6), and the average of profile 
scores in the other branch (here: 0.2 + 0.5 / 2 = 0.35). If the difference (here: 
0.6 - 0.35 = 0.25) is greater than the threshold (default: 0.1), the branch is 
chosen. Otherwise, the cell type is unassigned (if it is the top node of the 
tree) or one of the intermediate types (if it is further down). 

If the chosen branch contains only one cell type (i.e. if it is a leaf node), the 
cell type assignment is final. If there are two or more cell types in the chosen 
branch, steps C-E are repeated in the chosen branch. 

To express input cell j's similarity to each RP relative to all the RP's under the 
other branch as a whole, a profile score is calculated (shown for RP2).

The selected genes for the RP (here RP2) are used to correlate individual 
cells RC2 to RP2. This results in a distribution of expected correlations of 
reference cells of the cell type under consideration (green curve). The 
distribution of correlations of the reference cells of all cell types under the 
other branch (here RC3 and RC4) to RP2 is calculated similarly (red curve). 

The profile score of input cell j is calculated from the position of input cell j 's 
correlation corj within these two reference cell distributions. From corj 's 
cumulative density of correlations with the considered RP (here: green area, 
0.7), corj 's complementary cumulative density in the distribution of 
other-branch correlations (here: red area, 0.1) is subtracted to obtain the 
profile score (here: 0.7 - 0.1 = 0.6). 

For each RP under the current node, the genes that best discriminate it from 
all the RPs of the other branch as a whole, are selected. To this end, the 
fold-changes in expression of all genes between the RP (here: RP2) and the 
average of all the RPs in the other branch (here RP3 and RP4) are
calculated. 

The 200 genes with the highest absolute fold-change are selected. 
Note that this gene set is different for each node and RP.
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Figure 1. The CHETAH algorithm.
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terms of their CD4+, CD8+ and T-reg subtypes but not all
of these labels are available for all the cells in the online ma-
terial of these publications. These reference cells were there-
fore classified manually using the same marker genes as used
in the publications. Cells of a dataset being classified are of
course excluded from the reference. In other words, all re-
sults reported are by classification using reference datasets
completely independent from the query dataset. When com-
paring CHETAH and SingleR (31) results, the latter was
run with averaged single-cell data because SingleR uses
bulk, rather than single-cell expression profiles as its refer-
ence. Further details of the datasets used in this work, in-
cluding pre-processing, are given in Table 1.

Classification tree

The first step is to create a reference profile (RP) for each
cell type in the set of reference cells by averaging, for each
cell type, the logged gene expression over all cells of that
type (Figure 1A). The RPs are subsequently clustered hier-
archically using Spearman correlation and average linkage
to obtain the classification tree.

Hierarchical classification

The classification of input cells proceeds in a stepwise fash-
ion, from the root to the leaves of the classification tree. At
each step, the branch is selected that contains the reference
cell type most likely to be the correct one, but the classifi-
cation stops if the confidence in this decision becomes too
low (see confidence score below). As described under pro-
file score, the choice of the most likely cell type and therefore
which branch to choose, is based on the cell’s similarities to
each of the individual RPs under each branch. The simi-
larity of a cell to a RP under consideration (called the can-
didate RP), in the branch under consideration (called the
candidate branch), is always in relation to all the RPs un-
der the (so-called) other branch. During the classification
process, only the leaf node data (i.e. from all cells of a par-
ticular reference cell type) are used. Any details of the tree
topology under either branch are ignored, i.e. no hypothet-
ical expression profiles are inferred for the intermediate tree
nodes. After calculating the cell’s similarities to all RPs un-
der both branches, the cell is assigned to the branch that
contains the cell type to which it is most similar, provided
the evidence is strong enough based on the confidence score.

Feature selection

The similarity of a cell to a reference profile is based on their
Spearman correlation. This choice is based on its identical
performance to other correlation methods (Supplementary
Figure S1A) and on the fact that there is no assumption
about the underlying distribution. The correlation is calcu-
lated using the subset of genes that best discriminates be-
tween the candidate RP in the candidate branch, and the
average expression profile of the other branch as a whole.
(The latter is calculated as the mean of all RPs under that
branch). The selection of the best subset of genes, a pro-
cess known as feature selection, is not critical and good re-
sults are achieved when simply using the 200 genes that have

the largest absolute fold-change between the candidate RP
and the average expression profile of the other branch. This
choice is based on a variety of parameter sweeps and shown
in Supplementary Figure S1. It is important to note that
the feature set, i.e. the subset of genes used to calculate sim-
ilarities, is different for each RP and for each node of the
classification tree. Many different feature selection methods
work well (Supplementary Figure S1). The use of different
discriminatory gene sets at each decision node and for each
RP is an important, novel aspect of the method.

Similarities

The similarity of a cell to an RP in the candidate branch
is of course reflected in their correlation, but the values of
these correlations to the various RPs cannot be directly used
for comparisons. The reason is that the subset of genes used
for each correlation is generally different for each RP and
for each node. The similarity of an input cell j to candidate
RP x is therefore cast in relative terms by using the cumu-
lative probabilities of this correlation within two different
distributions of correlations. The first one is the distribu-
tion of self-correlations, that is, the distribution of the cor-
relations of the individual cells constituting the candidate
RP to that candidate RP itself. These self-correlations rep-
resent the typical correlation values for a cell that is really
of that type. The second distribution is that of the non-self
correlations. They are the correlations, again to the candi-
date RP, of all the individual reference cells under the other
branch. They represent the correlation values that can be
expected for cells that are not of any type under the candi-
date branch. By contrasting the two cumulative probabili-
ties a profile score is obtained that robustly points the way
through the classification tree.

Profile scores

The two cumulative probabilities just defined are used to
define the profile score Px( j ), representing cell j’s similarity
to candidate RP x, as follows:

Px ( j ) = Fc ( rs ( j, x)) − [1 − Fo ( rs ( j, x))] (1)

with
rs( j, x) the Spearman correlation of input cell j ’s expres-

sion with candidate reference profile x
Fc( rs( j, x)) the cumulative probability of j’s correlation

within the distribution of self-correlations rs(k, x), that is,
of all reference cells k of type x with their ‘own’ candidate
reference profile x

Fo( rs( j, x)) the cumulative probability of j’s correlation
within the distribution of correlations rs(l, x) of all reference
cells l under the other branch, again with reference profile x

The profile score Px( j )has a value between 1 and −1 and
is, in a particular node, a measure for the likelihood that cell
j is of type x. A value of 1 means that cell j is much more
likely to be of type x (and therefore belong to its branch)
rather than any of the types in the other branch and, con-
versely, −1 represents the lowest likelihood of this being so,
and therefore cell j is much more likely to belong in the other
branch. In each node, one set of genes is selected for each
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Table 1. Datasets used in this study

Name
(publication) Protocol

No. of
healthy
cells

No. of
tumor
cells

No. of cell
types

Pre-processing after
download Biopsies No. of donors

Melanoma
(24)

Smart-seq2 3262 1251 9 discarded cells without
annotation

melanoma 19

Head-Neck
(25)

Smart-seq2 3345 2215 12 discarded cells without
annotation

primary head and neck
squamous cell carcinoma

18

Colorectal
(35)

Smart-seq2 272 92 7 no colorectal cancer 11

Breast (36) Smart-seq2 198 317 3 no breast cancer 11
Tumor ref.
(24,25,35,36)

Smart-seq2 6122 none 12 combined Melanoma,
Head-Neck, Breast and
Colorectal datasets,
discarding malignant cells.

Detailed above 19+18+11+11

Ovarian (18) InDrops 2814 300 9 no ovarian cancer ascites 4
PBMC (27) 10X

Genomics
68579 none 16 no healthy PBMC cells 1

CBMC (39) Drop-seq 7830 none 13 as described (39) cord blood CBMCs unknown
Pancreas1 (16) inDrops 8569 none 14 no healthy pancreas 4
Pancreas2 (41) CEL-seq2 2292 none 9 no healthy pancreas 4

The PBMC and CBMC datasets were labeled identically to ensure comparability of annotated cell types.

RP under that node. This gene set is used for all the correla-
tions (of both input and reference cells) needed to calculate
the profile scores. Note that due to the different gene subsets
used in each step of the tree traversal, the most similar RP
for a cell may change during the steps of the classification
process. For example, during the first few steps a cell that in
reality is of type CD4 T-cell could initially, and incorrectly,
appear more similar to a CD8 T cell than to the expected
CD4 T-cell type. This would however still lead to the cor-
rect branch choice, namely that of all T cells. In later steps
the similarity to the actual CD4 T-cell type would become
strongest, guiding the cell to a correct final CD4 T-cell label.

Confidence score

Each input cell is assigned to the branch containing the can-
didate reference cell type for which it has the highest profile
score. This assignment represents the choice between the left
and right branch, but a key design goal of the algorithm is
its ability to stop classification at an intermediate node. The
choice for each cell j, between stopping classification or con-
tinuing to the next round, is based on its confidence score
C( j ) defined as

C ( j ) = Pmax( j ) − Po ( j ) (2)

with Pmax( j ) the highest profile score for cell j in the branch
about to be chosen and Po( j ) the mean of the profile scores
in the other branch, i.e. the branch not containing the ref-
erence profile having the highest profile score (Figure 1C).
Equation (2) is always positive because branches leading to
a negative score are by definition never chosen by the algo-
rithm. The confidence score is a measure for the evidence to
assign a cell to a branch, with 2 representing maximal evi-
dence and 0 representing no evidence. The confidence score
has an easy explanation. If it is close to 0, the best candidate
cell type in the branch about to be chosen is as good as the
average of the cell types in the other branch. This implies
that there is no basis to justify the choice between either

branch, so none should be taken and classification of the
cell should therefore stop in the current node. In contrast, a
large score represents good support to continue the classi-
fication because there is a cell type in the candidate branch
that has a much better profile score than the average pro-
file score of the other branch. By default, cells are assigned
to the branch if the confidence score is >0.1, but different
values can also be specified in the algorithm’s parameters.
Cells that remain in a non-leaf node of the tree are called
unassigned or of intermediate type whereas cells assigned to
a leaf-node are of a final type. The labels for the intermedi-
ate types are generated automatically (Node1, Node2, etc.)
but biologically meaningful names such as T cell can often
readily be given. By choosing a cut-off >0.1, only the more
confident calls will be made, hence more cells will be labeled
as being unassigned or of intermediate type. Conversely, by
lowering the confidence cut-off, the algorithm will classify
more cells to a final type, however such calls are supported
by less evidence. A cut-off of 0.0 forces the method to clas-
sify all cells to a final type, as is exemplified later. The above
stepwise calculations of the profile scores and confidence
scores yield an elegant and, importantly, transparent algo-
rithm.

Parameters

CHETAH comes with an extensive Shiny application, is im-
plemented in R (32), is available at github.com/jdekanter/
CHETAH and has been incorporated in Bioconductor (33)
release 3.9. Easily selectable parameters include the choice
of correlation measure (default: Spearman), the discrimina-
tory gene set selection method (default: the 200 genes with
largest absolute expression difference between reference cell
type under consideration and all reference cell types in the
opposite branch), the hierarchical clustering method (de-
fault: Spearman, average linkage) and the confidence score
threshold (default: 0.1). These default settings are uniformly
applied throughout this study.

https://github.com/jdekanter/CHETAH
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RESULTS

The CHETAH algorithm is summarized in the first para-
graph of the ‘Materials and Methods’ section and in Fig-
ure 1. The method makes use of a reference dataset with
cell type annotations. Throughout this study the reference
dataset is always a completely independently generated
dataset, from a different study and in several cases using a
different scRNA-seq platform. Reference cell types are hi-
erarchically clustered into a classification tree which guides
the cell type identification process (Figure 1A). The classi-
fication tree aids cell type identification but is not intended
as a recapitulation of cell taxonomy. The cells to be classi-
fied are shunted from the root of this tree to its leaves (Fig-
ure 1B), but only to the most specific tree node that is still
supported by the available evidence, as quantified by a ro-
bust measure of confidence (Figure 1D and E). Confidence
is based on passing a threshold. This is determined by the
degree to which the input cell’s correlation to a reference
cell type fits with the distribution of correlations of refer-
ence cells of the same type and contrasted with the degree
to which it fits with that of other reference cells to this type
(Figure 1D and E). The genes on which the classification is
based are selected to be those that are most discriminatory
for each step in the classification (Figure 1C). This too is an
important aspect of the method. Many parameters such as
correlation measure, number of discriminatory genes, num-
ber of cells per reference type, etc., are selectable by the user
(Materials and Methods) and the choice for the single set of
default parameters used throughout this study is explained
in the ‘Materials and Methods’ section. Cells for which clas-
sification confidence runs out are typically of a type that is
not present in the reference dataset, and are said to be ei-
ther unassigned or of an intermediate type. Intermediate en-
tails that classification has halted at a node due to lack of
confidence to proceed. Unassigned entails that this already
occurred at the first step in the classification tree. Note that
there are several intermediate types, each corresponding to
one of the internal nodes of the classification tree.

CHETAH’s accuracy is investigated by comparing its
classifications with published cell type labels. The aim is
to reproduce these using only the reference data. The ref-
erence datasets used here are always from a source that
is completely independent of the query dataset, ensuring
that the reported accuracies do not reflect bias from over-
fitting. Since the accuracy might be lower if the scRNA-
seq technology of the input data and the reference differs,
cross-platform results are also examined. CHETAH is sub-
sequently compared to other cell type identification meth-
ods and the effectiveness of the intermediate cell type as-
signments is also demonstrated in an analysis of previously
published pancreas datasets. For an overview of the datasets
see Table 1.

Accuracy

The performance of CHETAH is first evaluated by applying
it to Melanoma (24) and Head-Neck (25) cancer datasets.
The classifications of the these datasets is shown in Figure
2 and Supplementary Figure S2, summarized in Table 2.
Throughout this study all classification results are obtained

by applying CHETAH on a new query dataset, with a com-
pletely different, independent dataset as reference. The re-
ported results are therefore without bias toward the query
dataset, as could be the case if reference and query datasets
are the same. Since the reference datasets do not contain
malignant tumor cells, such cells should not be classified
to any final type, but as unassigned or any of the intermedi-
ate types instead. CHETAH correctly classifies practically
all (mean > 99%) malignant cells as unassigned or interme-
diate types. Note that in the published data the classifica-
tions were manual while the identification of tumor cells
was based on estimated copy number variations. In con-
trast, CHETAH’s type assignments are fully automatic and
the aberrant nature of the malignant cells is indicated by
their classification as unassigned or intermediate. This selec-
tivity is an important quality of the method, essential for
preventing the type of misclassification that readily occurs
when methods forcefully assign every cell to a type regard-
less of the evidence. Selectivity is especially relevant when
dealing with tumor samples, as well as with samples con-
taining cell types not present in the reference dataset.

CHETAH classifies the majority (mean 79%) of non-
malignant cells the same as in the original publication. Of
the cells classified differently, the majority (mean 61%) are
classified as an intermediate type. In the inferred classifi-
cation tree these intermediate assignments are overwhelm-
ingly in the correct classification lineage (85, 91 and 95% for
Melanoma, Head-Neck and Ovarian, respectively). Only a
small number of cells are labeled differently by CHETAH.
For many of them there is in fact strong evidence from es-
tablished marker gene expression that the assignment from
CHETAH is correct (Supplementary Figures S4 and 5).
Taken together, these results show that the selective ap-
proach works well. Cells of an established type that are
present in the reference dataset are classified correctly. Sam-
ples cells of a new or aberrant type, not represented in the
reference dataset are either not assigned to a type or are
classified as an intermediate type, an outcome that should
indeed be regarded as a pointer for a more detailed inspec-
tion.

Cross-platform classification

The data from the Melanoma and Head-Neck studies were
obtained using Smart-seq2 (37) and were also classified
using reference data originating from the same platform.
To evaluate CHETAH’s performance across platforms, an
Ovarian dataset (18) produced on the inDrops platform (38)
was analyzed with CHETAH using the ‘Tumor ref.’ ref-
erence (Smart-seq2-based) and conversely, the Melanoma
dataset (Smart-seq2-based) was classified using the Ovarian
dataset as a reference. The results, presented in Figures 2D–
F and 3A, respectively, show a performance similar to that
obtained within one platform. Taking the first of the two
cross-platform classifications as an example (Figure 2F), it
is clear that the majority of cells (79.9%) that are not tumor
or unknown retain the published labels. Of all the cells get-
ting a different cell type label most become unassigned or
intermediate (87.3%) and this is especially true for the Un-
known (80.0%) and tumor cells (99.3%), in line with expec-
tation. The robustness of the cross-platform classification
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Figure 2. CHETAH’s classification of two tumor sample datasets is nearly identical to the published manual classification. The t-SNE plots depict each cell
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as Node1, Node2, etc. For the corresponding classification trees see Supplementary Figure S2. Rows of panels: datasets classified (A-C: Melanoma, Tirosh
et al. (24); D-F: Ovarian, Schelker et al. (18)); columns: classification method. For an overview of the datasets see Table 1.

Table 2. Percentages of cell type labels as inferred by CHETAH, compared with the published cell types

Reference dataset Input dataset
% correctly
unassigned

% identical
final type

%
intermediate
type, same
lineage

%
intermediate
type,
different
lineage

%
Incorrectly
unassigned

% different
final type

Tumor ref. without
Melanoma

Melanoma (24) 99.5 86.9 4.1 0.8 0.5 7.7

Tumor ref. without
Head-Neck

Head-Neck (25) 89.2 71.2 14.6 1.1 1.9 11.2

Tumor ref. Ovarian (18) 99.3 79.9 9.0 0.7 6.8 3.6

The reference and input datasets are shown. For an overview of the datasets see Table 1. When classifying the Melanoma and Head-Neck datasets, these
datasets are left out of the ‘Tumor ref.’ reference, as indicated. The column correctly unassigned shows the percentage of cells of a type that was absent
from the reference that were classified as unassigned or any of the intermediate types. The other columns refer to sample cells of a type represented in the
reference that should therefore be assigned and contain percentages of cells of final or intermediate type, summing to 100%. The term lineage refers to the
classification tree determined by CHETAH.

is probably due to the use of rank-based similarities, imply-
ing that other combinations of scRNA-seq technologies will
likely yield similar good results. This is further exemplified
by accurate classification of a Drop-seq dataset (39) using a
Chromium 10× Genomics dataset (27) (Figure 3C).

Comparison with existing methods

The important challenge of cell type identification has re-
cently also started to be addressed through the develop-

ment of other automated approaches. CHETAH was there-
fore next compared to the state-of-the-art methods CaS-
TLe (40), scmap (30) (both versions, i.e. scmap cell and
scmap cluster) and SingleR (31) by running these programs
with standard settings on the Ovarian, Melanoma and
Head-Neck datasets (Figure 3A). To evaluate the perfor-
mance also on non-tumor tissues, two pancreas datasets,
Pancreas1 (16) and Pancreas2 (41) were included and mu-
tually classified using the other as the reference. The ground
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Figure 3. CHETAH compared with other methods (bottom labels), across six combinations of input and reference datasets (top labels, including the
corresponding scRNA-seq platform: ss2: Smart-seq2; iD: inDrops; cs2: CEL-seq2. Microfluidics methods in blue, well-plate methods in orange). For
scmap, both the ‘cell’ mode (scmap cell) and ‘cluster’ mode (scmap cl.) where evaluated. CHETAH was run with default settings, but also with a zero
confidence score threshold (CHETAH 0), thus forcing it to classify all cells to a final type. (A) Percentages of cells per classification result category as
shown in (B). (B) Classification result categories used in A. (C) The influence of the number of cells per reference cell type on CHETAH’s classification
performance was investigated as follows. The 7830 cells of the (Drop-seq protocol) CITE-seq study (39), were classified with reference cells from the
PBMC dataset (27), generated with the 10× Genomics platform. This dataset contained a total of 68 579 cells. The numbers on the y-axis are the number
of (randomly sampled) cells per reference cell type taken to classify the input dataset. Classification results were divided into the six categories depicted in
(B). Besides investigating the influence of the number of cells in a reference type, this analysis also serves as an example of cross-platform performance, as
well as an example using datasets with large numbers of cells. More details of the datasets used can be found in Table 1. Note that in the other analyses
reported throughout, no limitation is placed on the number of cells per reference type.

truth for the classifications are the cell type labels from the
original publications, but without the malignant cells from
the tumor datasets. They are not part of the reference data
and should therefore be considered an unknown cell type
and should remain unassigned or intermediate.

To compare methods, two classes of input cells can be
distinguished, namely, (i) the cells that are of a type that
is present in the reference and (ii) cells for which no refer-
ence is available (Figure 3B). For the first class it is mean-
ingful to assess the correctness of the classification, because
an optimal method should correctly identify all such cells.
Those cell type inferences can therefore be correct or in-
correct, corresponding to the true and false positives re-

spectively (Figure 3B). In addition, the categories interme-
diate or unassigned are allowed, to accommodate methods
such as scmap and CHETAH that produce intermediate and
unassigned calls. The second class of input cells, those of a
type absent from the reference, should not be classified by an
optimal cell type identification. These are therefore divided
into correctly unassigned cells which can be considered true
negatives, and their false positive counterparts, here called
erroneously assigned, i.e. cells that were, but should not have
been, classified.

In the cancer datasets, CHETAH generally outperforms
other methods (Figure 3A) in terms of combined true pos-
itives (correct assignments) and true negatives (cells cor-
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rectly left unclassified). This is particularly important for
studies of cancer since malignant cells are typically very
patient specific and would almost always be misclassified
by greedy methods. SingleR, having no classification cut-
off, always classifies all cells to a final type, leading to a
large number of erroneously assigned cells in cancer sam-
ples with many malignant cells (Figure 3). For example,
both the cancer-associated fibroblasts (CAFs) and malig-
nant cells are all classified as CAFs by SingleR. In datasets
containing many unknown cells such as the malignant cells
in the cancer samples, such approaches would therefore re-
quire very careful post hoc inspection of the classification
on a per cell or per cluster basis, an approach that auto-
mated methods are meant to obviate. The selective nature of
CHETAH makes the analysis much more efficient. As an-
ticipated, forcing CHETAH to become greedy and classify
all cells by applying a confidence score threshold of zero,
yields a performance almost identical to SingleR’s (Figure
3).

In contrast to the cancer datasets, the pancreas data are
less complex, containing cell types with strong differential
gene expression and few unknown cells. Note that a per-
fect classifier should leave none of the cells in the Pan-
creas2 dataset unidentified, because all its cell types are rep-
resented in the Pancreas1 reference. The converse is not true
because for some of the cell types no distinction is made in
Pancreas1. This is one reason that all the methods perform
better on Pancreas2 (Figure 3A). An additional reason is
the low expression of standard Pancreas markers in one of
the donor samples included in the Pancreas1 dataset (Sup-
plementary Figure S8). In the comparison on non-cancer
datasets, CHETAH’s forte of rarely classifying cells without
sufficient resemblance to the reference cell types is dimin-
ished. This results in a performance similar to that of the
other methods (Figure 3). However, as is exemplified below,
the inclusion of an intermediate assignment can have bene-
fits for such datasets too.

Intermediate types

In data from tumor samples the classification to an interme-
diate type suggests, by exclusion, that a cell is aberrant and
therefore potentially malignant. The position in the classi-
fication tree, of the node of an intermediate type may shed
further light on the biology of these cells. For example, in
the Melanoma and Head-Neck datasets, 54 and 74%, re-
spectively, of the malignant cells, classify to the node di-
rectly above endothelial. This suggests that the expression
pattern of these cells shares characteristics with endothelial
and fibroblast types (see Supplementary Figure S3A and B
for the classification trees). Conversely, these cells display
no affinity with the hematopoietic lineage, which is consis-
tent with these tumors not being of hematopoietic origin.
Classification to an intermediate type in combination with
the position in the classification tree is therefore useful for
analysis of cancer datasets.

Assignment to an intermediate cell type can also be use-
ful in non-cancer datasets. This is demonstrated by two
examples. In the Pancreas1 dataset, two kinds of stellate
cells were originally identified, both of which are of mes-
enchymal origin (42). PDGFRA and RGS5 were applied as

marker genes for activated and quiescent stellate cells re-
spectively. Pancreas2 only contains the more general label
mesenchymal, and the corresponding cells only exhibit ex-
pression of PDGFRA but not RGS5 (Supplementary Fig-
ure S6), implying that these reference cells more closely re-
semble activated rather than quiescent stellate cells. When
CHETAH classifies the Pancreas1 dataset using the more
limited Pancreas2 reference data, it correctly identifies the
Pancreas1 activated stellate cells as mesenchymal while leav-
ing the quiescent stellate cells unassigned, or assigning them
to the node directly above the endothelial and mesenchymal
types (Supplementary Figure S8B), correctly determining
that these cells are of a mesenchymal type not represented
in the reference.

Acinar–duct cell gradient in pancreas data

Another useful consequence of allowing an intermediate
type is exemplified in Figure 4. Some cells in a cluster iden-
tified as acinar in the Pancreas2 publication are labeled duc-
tal by CHETAH (Figure 4A), while conversely the clus-
ter called ductal in the Pancreas1 study is partly classified
as acinar (Supplementary Figure S8A). The presence of
these mixed acinar–ductal groups in both datasets suggests
a shared underlying phenomenon. Acinar and ductal cells
arise from the same progenitors and are closely related (43).
They are separated by only one node in CHETAH’s clas-
sification tree (Figure 4B and Supplementary Figure S8B),
which is the intermediate type to which CHETAH assigns
the remaining cells of these clusters. When visualizing the
profile score for duct cell in this intermediate node (arrows in
Figure 4B and Supplementary Figure S8B), a smooth gradi-
ent is clear in both clusters (Figure 4C and Supplementary
Figure S8C).

A heatmap of the expression of the genes most strongly
(anti)correlating with this profile score shows the well-
known cell type markers for these cell types (Figure 4D and
Supplementary Figure S8D). These cell type-specific mark-
ers again exhibit a gradient of decreasing ductal and in-
creasing acinar expression. Among the negatively correlat-
ing genes are acinar markers like CPA1, PRSS1 and CTRC
(44,45) and among the positively correlating genes are pan-
creas duct cell markers like KRT7 and KRT19 (46). A sim-
ilar gradient in the expressions of genes having unusually
large loadings in the first principal component of their duc-
tal cell population has been reported previously (16). This
is a different manifestation of the fact that, for these cells,
there is no dichotomy between acinar and ductal. Instead,
the type of these cells is best described as lying on a con-
tinuum between acinar and ductal. The intermediate type
assignment and profile score provide a direct and intuitive
visualization highlighting such cases and the utility of the
approach taken by CHETAH.

DISCUSSION

Classification of cell types in scRNA-seq data is an essen-
tial step that was by necessity initially performed manually
(18,24–26). Owing to the subjective and time-consuming
nature of manual approaches, automated approaches have
recently been developed (30,31,40). CHETAH has several
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features which work in its favor. Importantly, it compares
input cell data with real, rather than imputed reference cell
profiles. Moreover, besides using correlations, the classifica-
tion decision is also based on a confidence score determined
by the degree to which an input cell matches the expression
variance embodied by the cumulative distribution function
of the correlations to the reference cells. This facilitates the
highly selective nature of CHETAH, underlying the ability
to classify cells as specifically as the input and reference data
allows, but without greedy over-classification, as controlled
through the confidence score threshold. One consequence is
the assignment to intermediate or unassigned cell types for
input cells not present in the reference data. The assignment

to an intermediate or unassigned type is essential to prevent
overclassification and acts as an automated flag to more
closely inspect such cells. The importance of this is evident
both from the tumor datasets for which the method was ini-
tially devised, but also for non-cancer datasets as is also ex-
emplified. In the tumor datasets analyzed here practically
all malignant cells were classified to intermediate types. Al-
though genetic lesions such as copy number variations can
be used to identify malignant cells (24), this does repre-
sent an additional step. Moreover, such aberrations are not
necessarily present (as in many pediatric tumors (47,48))
and/or may not be readily detectable. Automated highlight-
ing of malignant tumor cells by CHETAH through clas-
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sification as an intermediate or unassigned cell type is a
significant improvement compared to blind misclassifica-
tion. CHETAH’s confidence threshold can be adjusted to
the needs of the dataset at hand, making it a flexible tool
for research. The method is made available as the R (32)
package CHETAH in Bioconductor (33) release 3.9, useful
for application in conjunction with tools such as SCENIC
(9), Scater (10), Census (11), Monocle (12), Seurat (13) and
CellBIC (14). The CHETAH package additionally includes
a Shiny app for intuitive visualization of the type labels, pro-
file and confidence scores in a t-SNE (49) plot, as well as the
inferred classification tree and expression heatmaps of dis-
criminatory genes.

In the pancreas datasets, CHETAH uncovers a group of
cells exhibiting a gradient of profiles between acinar and
ductal, previously suggested to be centroacinar cells (16).
An alternative explanation is that these are acinar cells un-
dergoing acinar-to-ductal transdifferentiation or metapla-
sia (ADM) (45). This is commonly seen in acinar cells that,
like those in both pancreas studies discussed here, are cul-
tured for several days (50) or subjected to stresses or in-
jury (51). Subtle phenomena such as the acinar-ductal gradi-
ent are easily overlooked by greedy methods and especially
by (manual) methods that assign the same cell type to all
cells of one apparent cluster. The accuracy of CHETAH
is dependent on the availability of well-annotated reference
datasets. It is firmly established that hierarchical trees de-
rived from clustering gene expression data reflect many as-
pects of the underlying biology (52). Here such trees are
applied as a guide for classification only, without surmis-
ing accurate cellular taxonomies. Detailed hierarchical trees
that reflect all aspects of cell types and cell states will obvi-
ously perform better for classification. Although the con-
cordance between cell type identification based on cell sur-
face markers and gene expression appears to be good (39),
it is important to point out that gene expression is only one
way of characterizing cells. The definition of cell types and
the difference with cellular state are receiving renewed inter-
est and scrutiny with the advent of quantitative single-cell
techniques such as scRNA-seq (see e.g. ref (53)). For the
method presented here, the definition of cell type is prag-
matic and can best be described as any group of cells anno-
tated within a reference set as belonging together, and hav-
ing sufficiently similar gene expression among themselves
and sufficiently different gene expression with other types
defined in the reference, so as to allow identification with
high confidence. Classification of cells from diverse tissues,
diseases and states will become easier with the increasing
availability of well-annotated scRNA-seq datasets. Efforts
like the Human Cell Atlas (HCA) (23) are aimed at gener-
ating scRNA-seq datasets for almost each (healthy) tissue
and cell type. CHETAH’s accurate handling of unknown
cell types should prove useful in discovering novel cell types
in such data. Conversely, the annotated HCA data would
be very suitable as a reference for CHETAH.

Approaches for analysis of scRNA-seq data are being de-
veloped at a rapid pace. A recent addition is SuperCT (54)
which incorporates supervised classification into a frame-
work for cell-type classification. Although complementary
in application scope (the reference dataset is fixed), we nev-
ertheless compared accuracies, with CHETAH performing

at a similar level of 92% concordance as analyzed by the
cross-validation method in the SuperCT study, albeit by ne-
cessity as tested on different datasets. CHETAH is not lim-
ited to the use of scRNA-seq and can likely be used with
other quantitative single cell data such as those obtained us-
ing DNA accessibility (55,56), chromatin state (57), methy-
lome (58), epitope (39) or RNA velocity (59) sequencing
methods, provided sufficiently rich reference data is avail-
able. Although the full range of single cell genome-wide ap-
proaches can be expected to increase further in the near fu-
ture, the need for methods such as CHETAH that improve
the ease and precision of the analysis of the resulting data
is evident.

SOFTWARE AVAILABILITY

CHETAH is available at github.com/jdekanter/CHETAH
and through Bioconductor (33). All scripts that are needed
to perform the analyses mentioned in this paper and to
create the t-SNE plots using Seurat (13) are deposited at
github.com/jdekanter/CHETAH paper figures.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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