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Abstract

An important diagnostic muscle biopsy finding in patients with mitochondrial DNA disease is the presence of respiratory-chain deficient
fibres. These fibres are detected as cytochrome ¢ oxidase-deficient following a sequential cytochrome ¢ oxidase-succinate dehydrogenase
reaction, often in a mosaic pattern within a population of cytochrome ¢ oxidase-normal fibres. Detailed analysis of muscle biopsies from
patients with various mitochondrial DNA defects shows that a spectrum of deficiency exists, as there are a large number of fibres which do
not correspond to being either completely cytochrome ¢ oxidase-normal (brown staining) or cytochrome ¢ oxidase-deficient (blue staining).
We have used a combination of histochemical and immunocytochemical techniques to show that a population of cytochrome
¢ oxidase-intermediate reacting fibres are a gradation between normal and deficient fibres. We show that cytochrome ¢ oxidase-intermediate
fibres also have different genetic characteristics in terms of amount of mutated and wild-type mtDNA, and as such, may represent an
important transition between respiratory normal and deficient fibres. Assessing changes in intermediate fibres will be crucial to evaluating
the responses to treatment and in particular to exercise training regimes in patients with mitochondrial DNA disease.
© 2012 Elsevier B.V. Open access under CC BY license
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1. Introduction

A central finding in the investigation and diagnosis of
patients with mitochondrial myopathies is the presence of
respiratory deficient muscle fibres in skeletal muscle. These
fibres are identified using a histochemical assay for cyto-
chrome ¢ oxidase (COX) activity, with COX-deficient
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fibres first identified in patients with chronic progressive
ophthalmoplegia [1]. The technique was subsequently
enhanced by combining the assay of COX activity with
that of succinate dehydrogenase (SDH) activity [2]. The lat-
ter enzyme is fully encoded by the nuclear genome whereas
the three catalytic subunits of COX are encoded by the
mitochondrial genome (mtDNA) [3]. The presence of
COX-deficient, but SDH-reactive or normal muscle fibres,
is indicative of a defect involving mtDNA and can be pri-
mary (mt-tRNA mutations and single, large-scale mtDNA
deletions), secondary changes to the mitochondrial genome
(e.g. multiple mtDNA deletions or mtDNA depletion
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resulting from a disorder of mtDNA maintenance) or
reflect a generalised mitochondrial translation deficiency.
In these patients there is typically a mosaic pattern of
enzyme deficiency with both COX-normal and COX-defi-
cient fibres present in the same biopsy. Subsequent studies
have extensively used this technique to explore the molecu-
lar mechanisms involved in mitochondrial myopathies, and
the COX deficient fibres show high levels of mutated
mtDNA (in patients with heteroplasmic mtDNA defects)
associated with low levels of wild-type mtDNA [4,5].

The value of assessing COX-deficient fibres is well-estab-
lished in the diagnosis of mitochondrial disease [6] but we
wished to use this technique to explore the response of skel-
etal muscle to exercise training in patients with mitochon-
drial myopathies. However, when we analysed the biopsies
of patients with mitochondrial myopathy undergoing resis-
tance training we noted the presence of fibres demonstrating
variation in COX activity, which we termed “COX-interme-
diate fibres” [7]. These intermediate-staining fibres appear to
show activity levels between true COX-normal fibres and
fully COX-deficient muscle fibres. Since with exercise train-
ing, any changes observed in the transition from COX-defi-
cient to COX-normal may prove to be very subtle, it seemed
highly likely that these changes with exercise would involve
a fibre going through transition from COX-deficient
through intermediate to COX-normal. Indeed, following a
period of resistance exercise training we observed a detect-
able decrease in the proportion of truly COX-deficient fibres
and a concomitant increase in COX-intermediate reacting
fibres, although no detectable differences in the proportion
of COX-normal fibres were noted [7].

In view of the potential importance of the COX-inter-
mediate fibres in the transition from COX-normal to
COX-deficient, or vice versa, we have undertaken a com-
prehensive study of the biochemical and molecular genetic
characteristics of these fibres. We show that fibres with
COX-intermediate activity are frequently observed in mus-
cle biopsies from a range of different mitochondrial myopa-
thies. However, since they remain a rather imprecise
definition based on visualisation of the histochemical
COX/SDH reaction, we wished to establish a more robust
way of characterising these fibres to be able to reliably
detect subtle but important muscle biopsy changes in
response to disease progression or treatment. We have fur-
ther assessed their characteristics using a combination of
histochemical and immunohistochemical techniques and
are able to show that indeed there is an observable transi-
tion between COX-normal and COX-deficient fibres, with
concomitant changes in the mitochondrial genome.

2. Materials and methods
2.1. Muscle needle biopsy
Skeletal muscle samples (quadriceps) were obtained by

open or needle muscle biopsy from 31 patients with
mtDNA defects. The 31 patients comprised a group of 10

patients with nuclear-driven, multiple mtDNA deletions,
11 patients with single, large-scale mtDNA deletions and
10 patients with specific mt-tRNA point mutations, includ-
ing the following: two patients with m.3243A>G, and sin-
gle cases with mutations at m.5543T>C, m.5560G>A,
m.8328G>A, m.10010T>C, m.12206T>C, m.12315G>A,
m.15967G>A and m.16023G>A. Samples were frozen in
isopentane cooled by liquid nitrogen for histological and
histocytochemical analysis. Ethical approval was obtained
from Newcastle and North Tyneside LREC.

2.2. Mitochondrial enzyme histochemistry

Cryostat sections (10 um) were cut from transversely ori-
entated muscle blocks and subjected to histochemical stain-
ing as previously described for the individual activities of
COX, SDH and the sequential assay of COX/SDH activity
[8]. Briefly sections were reacted for 45 min at 37 °C with
COX reaction media (4 mM diaminobenzidine tetrahydro-
chloride, 100 uM, cytochrome ¢ and 20 pg/ml catalase in
0.2 M phosphate buffer, pH 7.0) and 40 min at 37 °C with
SDH media (1.5 mM nitroblue tetrazolium, 1 mM sodium
azide, 200 uM phenazine methosulphate, 130 mM sodium
succinate, in 0.2 M phosphate buffer, pH 7.0).

2.3. COX reaction rates

In order to assess if COX-normal, COX-intermediate
and COX-deficient muscle fibres have different reaction
rates, we measured the rates of COX activity in groups
of fibres correcting for fibre type. COX reaction media
was added to 10 pm thick muscle tissue sections, images
were taken every 10 min for 1h using a Zeiss Axioplan
ZiE microscope with an Axiocam HRc digital camera
and Axiovision image-capture software. Densitometric
measurements were taken for 73 fibres from three serial
sections using Zeiss KS-300 densitometry software. The
densitometry scale is an inverse linear scale ranging from
0 (black) to 255 (white) [9]. The data for each fibre were
combined to provide an average density for each fibre at
different time points. These averages were then plotted
and the reaction rate was calculated by determining the
gradient of the line. The mean of all the densitometric read-
ings for each time point for each fibre group was taken,
thus providing an overall reaction rate for COX-normal,
COX-deficient and COX-intermediate activities based on
visualisation of the histochemical reaction.

2.4. Immunohistochemistry

Muscle biopsy sections (10 um) were fixed in 4% para-
formaldehyde (PFA) for 10 min at 4 °C before being per-
meabilised in solutions of Tris-buffered saline Tween-20
pH 8.0 (TBST) then 70% methanol and then 95% methanol
with 0.3% H,0O, for 10 min each and 100% methanol for
20 min followed by rehydration. A monoclonal antibody
raised against NDUFBS (a structural component of mito-
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chondrial complex I (complex 1-20)) were purchased from
Abcam (UK) and used at a concentration of 1:400. The
Menapath X-Cell Plus HRP Polymer detection system
(A. Menarini Diagnostics, Wokingham, UK) was used
for primary antibody detection without a blocking step
as per manufacturing guidelines. DAB was added and the
sections were dehydrated in grades of ethanol 70%, 95%
and 100% twice. Then Histoclear was applied before sec-
tions were mounted in DPX®. The degree of immunostain-
ing was then quantified using densitometry.

2.5. Fibre typing

Cryostat sections (10 um) were air dried for 30 min and
ATPase activities determined at either pH 4.3 or 4.6 to
determine fibre type [10].

2.6. Real-time PCR

A quantitative real-time PCR approach was used to cal-
culate both the percentage level of deleted mtDNA and
total mtDNA copy number. Fresh frozen muscle sections
(20 pm) were mounted on PEN (polyethylenenaphthalate)
slides (Leica Microsystems, Milton Keynes, UK) and sub-
jected to sequential COX/SDH histochemistry as described
above or SDH staining only, then air-dried after dehydra-
tion. Specific muscle fibres were isolated from the section
using a Leica Laser Microdissection (AS-LMD) system.
The fibres were digested in proteinase K in lysis buffer con-
taining Tris—HCI and 1% Tween, and amplified using PCR
primers and fluorogenic probes (Applied Biosystems, War-
rington, UK) for regions of MTNDI (which is highly con-
served) and MTND4 (which is commonly deleted) as
previously described [11-13].

2.7. Statistical analyses

All data were analysed statistically using Graph Pad
Prism® 5 software. Unpaired r-tests were used to compare
the differences in densitometry between COX-normal Type
2 fibres and COX-intermediate Type 1 fibres at the 60 min
time point, the amount of intermediate fibres within each
group of patients with differing mtDNA defects and to com-
pare differences in percentage mtDNA deletion level,
MTNDI and MTND4 copy number per unit volume
between the different COX fibre types as well as to compare
the calculated values with observed fibre type COX status.
Paired #-tests were used to compare muscle fibre copy num-
ber in fibres reacted sequential for COX/SDH activity and
SDH activity alone.

3. Results
3.1. The COX-intermediate reacting fibre

COX activity is demonstrated by an increase in the
brown, insoluble indamine polymer, a product of oxidative

polymerisation and cyclisation of DAB at the level of cyto-
chrome ¢ [14]. Following incubation in the COX reaction
medium, an inactive subunit of COX or a defect of the
mitochondrial genome resulting in decreased COX synthe-
sis (mtDNA deletion or mt-tRNA mutation) leads to an
absence of COX reaction product and this fibre is subse-
quently termed COX-deficient; when the fibre shows
normal activity, it appears brown and is termed COX-nor-
mal. Sequential determination of SDH (which is entirely
nuclear encoded) activity leads to the formation of a blue
reaction product in COX-deficient fibres due to the reduc-
tion of NBT by SDH. As the positive staining for COX
activity prevents the precipitation of the NBT product in
fibres which are already COX-normal, the sequential dem-
onstration of COX/SDH activity is helpful to identify
COX-deficient, COX-normal and COX-intermediate react-
ing fibres [7]. Interestingly, 30 of the 31 patient samples
showed fibres that appeared to be neither fully COX-nor-
mal nor fully COX-deficient following sequential COX/
SDH histochemistry. We subjectively determined these as
COX-intermediate reacting fibres (Fig. la). There was
marked variation within these intermediate fibres as
regards the COX/SDH reactivity with fibres appearing
purple or grey rather than distinctly brown or blue
(Fig. 1b). COX deficiency is segmental along a muscle fibre
with the segments ranging from a few to several hundred
microns [15]. The COX-intermediate zones will, in part,
represent the transitional zone between COX-normal and
COX-deficient fibres (Fig. 1c) but there is also variation
in the intensity of reactivity between different areas of the
same fibre (Fig. 1c).

3.2. Investigating COX activity reaction rates

In order to assess if COX-intermediate fibres had mea-
surable COX activities that differed from true COX-normal
and COX-deficient cells, we determined COX reaction
rates for these three groups of fibres within a patient with
a single, large-scale mtDNA deletion (Fig. 2). Since the rate
of enzyme activity will inevitably be affected by the mito-
chondrial content of a particular muscle fibre, we also com-
pared activities in both Type 1 (oxidative) and Type 2
(glycolytic) fibres as determined by serial ATPase staining.
In total, 73 fibres were reacted three times and an average
densitometry reading for each fibre over each time point
taken and the average densitometry for each of the individ-
ual groups time points compared to each other (these 73
fibres consisted of 17 COX-normal Type 1 fibres, 16
COX-normal Type 2 fibres, 5 COX-intermediate Type 1
fibres, 19 COX-intermediate Type 2 fibres, 6 COX-deficient
Type 1 fibres and 10 COX-deficient Type 2 fibres). We
showed that for COX-deficient, intermediate and normal
fibres as determined subjectively (irrespective of fibre type
as determined by ATPase staining), there was an observa-
ble difference between the reaction rates, suggesting that
the COX-intermediate reacting fibres do represent a dis-
tinct population of fibres (Fig. 2). However, we found that
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Fig. 1. Differences in COX activity differences in individual muscle fibres. (A) Sequential COX/SDH histochemistry of muscle section from a patient with
the m.15967G>A mtDNA mutation highlighting an example of an intermediate staining fibre (denoted by asterisk). Scale bar = 50 pm. (B) Illustrative
muscle biopsy images from a patient with a single, large-scale mtDNA deletion showing the variation of reaction products observed in individual fibres
following sequential COX/SDH histochemistry. (C) A longitudinal muscle fibre from a patient with multiple mtDNA deletions reacted for COX/SDH
activities, highlighting the segmental nature of COX deficiency and the COX-intermediate transition zones between COX-deficient and COX-normal

segments. Scale bar = 50 um.

using COX activity alone was not sufficient to differentiate
between a COX-normal Type 2 fibre and a COX-interme-
diate Type 1 fibre (Fig. 2). For example, when we compare
the differences in densitometry at the 60 min time point
between COX-normal Type 2 fibres (145.2 4+ 6.158) and a
COX-intermediate Type 1 fibres (144.2 + 14.48) using an
unpaired z-test, we find that the differences are not signifi-
cant (P = 0.827).

3.3. COX-intermediate fibre prevalence within different
mitochondrial myopathies

Further analysis of 30 patients with both primary and
secondary mtDNA defects revealed that intermediate fibres
are present in muscle biopsies from patients with varying
mtDNA mutations, who were not undergoing any form
of specific exercise training as illustrated in Fig. 3. The inci-
dence of these subjectively observed fibres varied within the
groups (mt-tRNA patients 23.89 + 16.32% intermediate

fibres within 3016 fibres counted from 10 patients; single,
large-scale mtDNA deletion patients 20.32 £+ 16.96%
within 2899 of fibres counted from 10 patients; multiple
deletion patients 11.76 £+ 6.06% within the 4407 fibres
counted from 10 patients). Whilst there may seem to be a
difference between patients with primary mtDNA defects
compared to those with multiple mtDNA deletions, the
patients with multiple mtDNA deletions had much fewer
respiratory deficient fibres and this is likely to be the major
factor in the differences.

3.4. MtDNA differences between COX fibre types

Given our particular interest in evaluating the effects of
exercise in patients with single, large-scale mtDNA dele-
tions, we wished to investigate any molecular differences
between COX-normal, COX-intermediate and COX-defi-
cient muscle fibres. Individual muscle fibres were isolated
by laser microdissection from serial sections on PEN slides
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which had been reacted for either COX/SDH activity or
SDH activity alone, prior to the investigation of mtDNA

% of total fibres
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deletion load and mtDNA copy number by real-time
PCR. When studying the same fibres which had been
reacted for sequential COX/SDH activity and SDH activ-
ity alone, we observed using a paired ¢-test, a significantly
lower total mtDNA copy number for COX/SDH reacted
muscle fibres (9.48 £+ 13.62 (mean + SD) for MTNDI
(total mtDNA); 7.72+11.39 for MTND4 (wild-type
mtDNA) compared to just SDH stained muscle fibres
(21.40 + 8.85 for ND1 (P <0.003); 17.96 + 8.82 for ND4
(P <0.003)) in the COX-normal fibres (n = 12). For COX
deficient muscle fibres (n = 9) the copy number for COX/
SDH stained muscle fibres (17.73 +24.51 for NDI;
0.80 4 0.70 for ND4) was not significantly different when
a paired r-test was applied to the same cell stained for
SDH only (20.53 +18.48 for NDI (P =0.92); and
1.09 + 1.20 for ND4 (P = 0.22)). Together these data sug-
gest that the deposition of DAB in the COX reaction may
be affecting the real-time PCR assay used to determine
mtDNA copy number. The mechanism of this is uncertain
but may be due to the reactive nature of DAB within the
mitochondria potentially damaging mtDNA or preventing
binding of the PCR primers specific to this real-time PCR
assay.

Due to the observation that the COX reaction product
appeared to be affecting the real-time PCR assay, we cut
serial sections from patients with single, large-scale
mtDNA deletions onto both glass and membrane slides,
staining the glass slide for sequential COX/SDH activity
to determine the COX status of individual muscle fibres.
These fibres were then identified on the membrane slide
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which was reacted for SDH activity alone to ensure that
the real-time PCR was not affected by deposition of the
DAB reaction product in the COX reaction (Fig. 4). We
showed that there was a significant difference in the per-
centage level of deleted mtDNA between COX-normal
(n=28) and COX-intermediate fibres (n=23)
(» <0.0001) and between COX-intermediate fibres and
COX-deficient fibres (n=25) (p <0.0001), although we
did not observe a significant difference in the total mtDNA
copy number per pm® (MTNDI probe) between COX-nor-
mal and COX-intermediate fibres (p = 0.098) or between
COX-intermediate and COX-deficient fibres (P = 0.98). A
highly significant difference in the wild type mtDNA copy
number per pm? between COX-intermediate reacting and
COX-normal muscle fibres (P <0.0003) and between
COX-intermediate reacting and COX-deficient muscle
fibres (P < 0.0004) was noted, providing further evidence
that wild-type mtDNA copy number is the critical deter-
mining factor in COX activity status.

3.5. Further characterisation of the intermediate fibre

We wanted to better define the biochemical characteris-
tics of the COX-intermediate reacting fibres using an objec-
tive measure rather than the subjective observation of the
colour of the reaction product. In addition to COX (com-
plex IV of the mitochondrial respiratory chain), complexes
I, IIT and V also contain subunits encoded by the mito-
chondrial genome. Unfortunately it has not been possible
to develop histochemical assays to determine the activities
of these complexes in tissue sections; however, defects in
immunoreactive protein expression can be detected by
immunocytochemistry using monoclonal antibodies to spe-
cific respiratory chain subunits [16,17]. We chose to inves-
tigate complex I since biochemical deficiency of this
complex is a common observation in tissues from patients
with mtDNA mutations causing defects in mitochondrial
protein synthesis due to the large number of subunits of
this complex encoded by the mitochondrial genome. In
the absence of antibodies to the mitochondrial-encoded
subunits of complex I, we used an antibody to the 20-
kDa subunit NDUFB8 (CI-20). In the absence of the
mitochondrially encoded subunits the assembly of the
holocomplex is impaired at an early stage [18] and there
is loss of nuclear-encoded mitochondrial subunits including
NDUFBS. To determine if we could better define which
fibres were respiratory-normal, intermediate and deficient,
we used the densitometric measurements for COX, SDH
and CI-20 of individual fibres from serial sections. Both
COX and complex I contain key catalytic subunits encoded
by the mitochondrial genome and we believed that both
would be low in fibres with high levels of mtDNA muta-
tion; SDH activity was used as a measure of mitochondrial
respiratory chain content (thus removing the need to fibre
type). The advantage of measuring COX and SDH is that
their activities are still linear at the end of the histochemical
assay. Illustrative images of staining techniques used are
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there is a significant difference in the level of mtDNA deletion between
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(P<0.0001) and between COX normal fibres (n=28) and COX
intermediate fibres (n = 23) (P < 0.0001). (B) Assessment of total mtDNA
copy number reveals no significant difference in total mtDNA copy
number (MTNDI) between COX-normal fibres and COX-intermediate
fibres or between COX-intermediate and COX-deficient fibers. (C)
Assessment of wild-type mtDNA copy number (MTND4) indicates highly
significant differences between COX-intermediate and COX-normal
muscle fibres (P <0.0003) and between COX-intermediate and COX-
deficient muscle fibres (P < 0.0004).



696 J.L. Murphy et al. | Neuromuscular Disorders 22 (2012) 690-698

shown in Fig. 5 and the data from these staining methods
allowed us to determine the respiratory status of the fibre
using the following equation:

COX densitometry x CI-20 densitometry 100
SDH densitometry

We then compared the value we obtained using our
objective method with the subjective observations. We
compared the values obtained for individual fibres using
this equation and grouped them according to the subjective
visualised observation of COX/SDH status in a vertical
scatter plot. There is a significant difference in the objective
values using the equation which depends on the individual
COX status (Fig. 6). In addition the objective method
shows the variation seen in the mitochondrial enzyme
activity within the intermediate fibre group and allows us
to detect subtle changes in enzyme activity (Fig. 7).

4. Discussion

Muscle biopsies from patients with mitochondrial myo-
pathies often show a mosaic picture of COX-deficient and
normal reacting, COX-normal fibres. The striking blue
fibres seen on a combined COX/SDH histochemical stain
strongly indicate the presence of a genetic defect involving
the mitochondrial genome. Here we show that in addition
to segments of muscle fibres with a clear biochemical phe-
notype, there are often many fibre segments in a diagnostic
muscle biopsy which show intermediate COX reactivity,
with evidence of partial loss of COX activity. We also dem-
onstrated that within a muscle biopsy from a patient with a
single, large-scale mtDNA deletion there was a different
genetic profile (at the mtDNA level) for these cells, con-
firming they are between COX-normal and COX-deficient.

To obtain an objective measure of the respiratory status
of individual muscle fibres to a mitochondrial genetic
defect, we have used the densitometric changes seen in
complex I (protein expression) and COX (enzyme activity),
both of which would be affected by a generalised defect in
mitochondrial protein synthesis due to a single, large-scale
mtDNA deletion or an mt-tRNA mutation, together with
the activity of SDH (complex II) within the muscle fibre.
The advantage of this approach is that it quantifies the

5.5= P <0.0001 P <0.0001
[ ]
)
5.0+
g 4.5+
[
g
.__3 4.0 ...
H (L e
-
s * .
als e ° s
’é_ § 3.04 ° ]
o= L] [ ]
E£|X . ®
2|8 254 ¢
@
c
@
T
x 2.0
[e]
o
1.54
1.0+
0.5+
0.0 T T T
AN 2 X
3 x9 O
040 6\6 "é}%
< & e
oF &."6‘\ ¥
$ 4 &
)

Fig. 6. Objective measurements of COX reactivity compared with
subjective sequential COX/SDH reactivity. We assessed 172 muscle fibres
from a patient with a single, large-scale mtDNA deletion. Significant
differences are observed between COX-intermediate and COX-normal
muscle fibres (P <0.0001) and between COX-intermediate and COX-
deficient muscle fibres (P < 0.0001).

progressive alteration in the stoichiometry of respiratory
chain complexes that occurs as a consequence of the sever-
ity of the molecular defect. Using this objective measure we
not only observe a clear difference between COX-normal
reacting, COX-intermediate and COX-deficient muscle
fibres, but also document a gradation of the biochemical

WP

Fig. 5. Histochemical and immunohistochemical assessment of mitochondrial function in a patient with a single, large-scale mtDNA deletion. A, B, C,
and D show sequential COX/SDH activity, COX activity, SDH activity and CI-20 immunoreactivity respectively in serially-cut sections. Shown is a single
COX-deficient muscle fibre (asterisk), highlighting the relationship between COX deficiency as determined with the dual enzyme reaction with both the

individual COX reaction and CI-20 immunoreactivity. Scale bar = 50 um.
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reactivity. Serial sections (10 um) of muscle tissue from a patient with

single, large-scale mtDNA deletion were reacted for dual COX/SDH
activities and individual COX, SDH and CI-20 reactivity in order to
determine the biochemical status in 200 fibres. In serial sections the dual
COX/SDH reactivity was determined and the images overlaid on the
biochemical results for each fibre. Larger representative images are also
displayed on the X axis. This figure illustrates the normal stoichiometry of
respiratory chain complexes as shown by the initial line, followed by the
gradual and then steep increase in this value as a function of the
progressive loss of complex I and COX whilst the SDH is maintained and
then increases. The final few values represent a complete loss of both
complex I and COX and maximal over expression of SDH.

defect in COX activity in COX-intermediate fibres. This
confirms our theory that these fibres represent an interme-
diary stage between COX-normal and COX-deficient
fibres.

An unexpected finding during these studies was the
observation that the DAB reaction product within the
COX histochemical reaction had an adverse effect on the
efficiency of our real- time PCR assay for mtDNA copy
number, as shown by the significant difference between sec-
tions stained for SDH activity alone versus those in which
had been reacted for sequential COX/SDH activities. Inter-
estingly, the effect was not seen in totally COX-deficient
cells due to the lack of the DAB COX reaction product
in these cells. This finding has significant consequences
for studies in which the molecular mechanisms of COX
deficiency are being explored, in particular when looking
to determine the absolute amount of wild-type or mutated
mtDNA copy number [19]. For diagnostic studies in which
this assay is used to quantify mtDNA deletion levels [6] this
does not appear to be an issue since the effect seems to be
the same on both templates.

Why might the characterisation of COX-intermediate
reacting fibres be important? In terms of making a diagno-
sis in patients with suspected mitochondrial myopathy, the
presence of clearly detectable, blue-staining COX-deficient,
SDH-positive fibres remains a very robust measure for
detecting the presence of a respiratory chain defect [6].

However, when we consider the use of muscle biopsies in
the evaluation of clinical studies, such as response to exer-
cise training protocols or in terms of disease progression,
then small and subtle changes in the respiratory activity
of individual muscle fibre segments, themselves reflecting
subtle changes in either mtDNA mutation load or mtDNA
copy number, will not be detected by the histochemical
techniques currently employed. Measuring mitochondrial
respiratory chain enzyme activities in tissue homogenates
offers one approach, but the individual complex assays
are challenging to perform and are not sensitive enough
to detect small overall changes in activity. It is worth not-
ing that patients with mosaic COX defects can demonstrate
normal muscle respiratory chain enzyme activities simply
because of the relatively small number of COX-deficient
fibres in some muscle biopsies [20]. If, as we believe, the
COX-intermediate reacting fibre segments are an impor-
tant transitional stage from normal enzyme activity status
to COX-deficient, and vice versa, therefore an increase in
the number of these transition zones indicates that these
fibre segments have elongated or COX activity status has
changed. It is crucial that these are accurately documented
in different biopsies and this can only be done using the
methods proposed.

The link between the respiratory chain activity and
mtDNA status was further explored in individual muscle
fibres from a patient with a single, large-scale mtDNA
deletion. We were able to show a different genetic profile
for each fibre type but the defining factor was the level of
wild type mtDNA, not the level of deleted mtDNA. When
describing a threshold for respiratory chain deficiency, we
often discuss this in terms of levels of mutated mtDNA
but these data and those from other studies confirm the
importance of the amount of wild type mtDNA in deter-
mining the biochemical phenotype [21]. It is therefore
clear that subtle changes in the copy number of wild type
mtDNA could have major effects on the biochemical
properties of individual muscle cells. Thus strategies to
increase mtDNA copy number such as endurance exercise
are likely to be effective in improving muscle function
[22,23].

In conclusion, we have explored the respiratory chain
phenotype in individual muscle fibres from patients with
mtDNA disease and shown that COX-intermediate react-
ing fibres are commonly observed in association with a
variety of different mitochondrial genetic defects. These
fibres represent a distinct population of cells with levels
of activity which are between those seen in fully COX-nor-
mal reacting and COX-deficient fibres, and therefore repre-
sent a potentially important phenotype to assess if accurate
measures of mitochondrial disease progression or the posi-
tive effects of treatment on mtDNA mutation levels and
biochemical activities are to be investigated. We show this
is possible using a combination of histochemical and
immunocytochemical techniques and are currently apply-
ing this practice to our ongoing studies.
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