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Abstract
Structural covariance networks are able to identify functionally organized brain regions 
by gray matter volume covariance across a population. We examined the transcriptomic 
signature of such anatomical networks in the healthy brain using postmortem microarray 
data from the Allen Human Brain Atlas. A previous study revealed that a posterior cin-
gulate network and anterior cingulate network showed decreased gray matter in brains of 
Parkinson's disease patients. Therefore, we examined these two anatomical networks to 
understand the underlying molecular processes that may be involved in Parkinson's dis-
ease. Whole brain transcriptomics from the healthy brain revealed upregulation of genes 
associated with serotonin, GPCR, GABA, glutamate, and RAS- signaling pathways. 
Our results also suggest involvement of the cholinergic circuit, in which genes NPPA, 
SOSTDC1, and TYRP1 may play a functional role. Finally, both networks were enriched 
for genes associated with neuropsychiatric disorders that overlap with Parkinson's dis-
ease symptoms. The identified genes and pathways contribute to healthy functions of the 
posterior and anterior cingulate networks and disruptions to these functions may in turn 
contribute to the pathological and clinical events observed in Parkinson's disease.
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1 |  INTRODUCTION

Parkinson's disease (PD) is a neurodegenerative disorder char-
acterized by the impairment of diverse motor and nonmotor 
symptoms that get progressively worse over time (Goedert 
et  al.,  2012). The decline in clinical performance has been 
associated with changes in morphological properties of struc-
tural and functional neuroimaging networks (Lucas- Jiménez 
et al., 2016; de Schipper et al., 2017; Wang et al., 2016). In 
turn, studies have investigated the relationship between im-
aging networks and genetic risk factors associated with PD to 
provide new insights into the pathogenesis of PD (Aarsland 
et al., 2017; Sampedro et al., 2019; van der Vegt et al., 2009; 
Winder- Rhodes et al., 2015). However, less is known about 
the functions that underlie the spatial organization of brain 
regions contributing to PD. To identify the molecular mech-
anisms underlying changes in structural and functional 
networks in PD, imaging data have been integrated with 
brain- wide healthy gene expression from the Allen Human 
Brain Atlas (AHBA) (Arnatkevic̆iūtė et al., 2019; Hawrylycz 
et  al.,  2015). Regional brain atrophy in PD patients was 
correlated with the expression of genes implicated in trans- 
synaptic alpha- synuclein transfer (Freeze et al., 2018), and a 
loss of regional connectivity in PD patients was correlated 
with the regional expression of MAPT in the healthy brain 
(Rittman et al., 2016). These studies showed that combining 
imaging data in PD and gene expression from the healthy 
brain can shed light on the molecular mechanisms underlying 
the morphological differences between PD and controls.

Structural covariance networks (SCNs) identify brain re-
gions that covary in gray matter volume across a population 
and can reveal functional network organizations (Alexander- 
Bloch et al., 2013). SCNs have been shown to be dysregu-
lated in different neurological disorders (Alexander- Bloch 
et  al.,  2013; Coppen et  al.,  2016; Huang et  al.,  2017; Liu 
et al., 2019; Spreng & Turner, 2013), and gray matter varia-
tions in SCNs can be explained by transcriptomic similarity 
and structural connectivity (Romero- Garcia et al., 2018; Yee 
et  al.,  2018). Hafkemeijer et al. (Hafkemeijer et  al.,  2014) 
identified nine SCNs based on gray matter variation among 
healthy middle- aged to older adults. Gray matter volume in 
four of these nine networks was negatively associated with 
age: a subcortical network, sensorimotor network, posterior 
cingulate networks, and anterior cingulate network. Two 
of these networks were found to show loss of gray matter 
volume in PD patients beyond the effects of aging: the pos-
terior cingulate network and anterior cingulate network (de 
Schipper et  al.,  2017). Atrophy within these two networks 
was also associated with cognitive impairment and daytime 
sleepiness, respectively. Together, these studies revealed 
how brain networks change in aging and PD, but the molec-
ular mechanisms contributing to the relevant SCNs remain 
unclear.

Here, we investigated the transcriptomic signatures of the 
anterior and posterior cingulate networks within the healthy 
brain. By integrating the nine SCNs with spatial gene expres-
sion data from the Allen Human Brain Atlas, we showed that 
genes highly expressed in the posterior and anterior cingu-
late networks were associated with multiple neurotransmitter 
signaling pathways as well as with memory- related, pain- 
related, and neuropsychiatric disorders. In addition, both net-
works showed high expression of cholinergic marker genes 
that are known to act as regulators of extracellular signaling. 
Our results provide new insights into the molecular processes 
underlying anatomical network function and aids in better un-
derstanding the selective progression of PD.

2 |  MATERIALS AND METHODS

2.1 | Transcriptomic data preprocessing

To understand transcriptomic signatures of nine anatomical 
networks of the healthy brain, we analyzed gene expression 
data from the AHBA, a postmortem microarray data set of 
3,702 anatomical brain regions from six nonneurological 
individuals (5 males and 1 female, mean age 42, range 24– 
57 years) (Hawrylycz et  al.,  2015). For two out of six do-
nors, samples were available for two hemispheres, while for 
the remaining four donors there were only samples from the 
left hemisphere. We analyzed both hemispheres simultane-
ously whenever this was possible; otherwise, we used data 
from one hemisphere. Normalized gene expression from the 
AHBA was downloaded online (http://human.brain - map.
org/). To filter and map probes to genes, the data were con-
catenated across the six donors. We removed 10,521 probes 
with missing Entrez IDs, and 6,068 probes with low pres-
ence as they were expressed above background in <1% of 
the samples (PA- call containing presence/absence flag) 
(Hawrylycz et al., 2015). The remaining 44,072 probes were 
mapped to 20,017 genes with unique Entrez IDs using the 
collapseRows- function in R- package WGCNA v1.64.1 
(Langfelder & Horvath, 2008) as follows: (a) if there is one 
probe, that one probe is chosen, (b) if there are two probes, 
the one with maximum variance across all samples is cho-
sen (method=”maxRowVariance”), (c) if there are more than 
two probes, the probe with the highest connectivity (summed 
adjacency) is chosen (connectivityBasedCollapsing=  
TRUE).

For visualization of gene expression in heatmaps, data 
were Z- score normalized across all samples for each brain 
donor separately. Heatmaps were plotted using R- package 
ComplexHeatmap v2.0.0 (Gu et  al.,  2016). Genes were 
clustered using complete linkage with Euclidean distances. 
The same color scale for gene expression was used for all 
heatmaps.

http://human.brain-map.org/
http://human.brain-map.org/
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2.2 | Mapping AHBA samples to 
SCNs of the healthy brain

We focused on anatomical networks that were previously de-
fined in an MRI study based on whole brain gray matter vol-
ume covariation in 370 middle- aged to older adults between 
45 and 85 years (51.9% females) (Hafkemeijer et al., 2014). 
All subjects in this MRI study did not have a history of psy-
chiatric or neurodegenerative disorders. Written informed 
consent was obtained from all participants in accordance with 
the Declaration of Helsinki. The Medical Ethical Committee 
of the Leiden University Medical Center approved the study. 
Nine networks were defined and named according to the 
presence of the main structures: thalamus (Network A), lat-
eral occipital cortex (Network B), posterior cingulate cortex 
(Network C), anterior cingulate cortex (Network D), tempo-
ral pole (Network E), putamen (Network F), and cerebellum 
(Networks G, H, and I). The same networks were previously 
investigated for loss of integrity in 159 PD patients from the 
same age range (36.5% females) (de Schipper et al., 2017). 
PD patients were recruited from the outpatient clinic for 
Movement Disorders of the Department of Neurology of 
Leiden University Medical Center (LUMC) and nearby uni-
versity and regional hospitals. Written consent was obtained 
from all participants, and the Medical Ethics Committee of 
the LUMC approved the study. Samples from each one of the 
six donors in the AHBA were mapped to regions defined by 
the nine SCNs in MNI coordinate space. With this mapping, 
we identified which AHBA samples are located in one of the 
nine SCNs.

2.3 | Differential expression analysis

For differential expression analysis we focused on the pos-
terior cingulate network (Network C) and anterior cingu-
late network (Network D) that were previously associated 
with gray matter loss in PD (de Schipper et al., 2017). Gene 
expression in each of the two networks, Network C and 
Network D, was compared to the other seven networks to-
gether (A, B, E, F, G, H, and I). A two- tailed t test was used 
for each gene and the analysis was done separately for each 
donor from AHBA. Since the microarray data were log2- 
transformed, the mean expression difference is interpreted as 
the log2- transformed fold- change (FC). The effect sizes for 
each one of the six donors were combined by meta- analysis 
(metafor R- package 2.0). For the meta- analysis, a random ef-
fects model was applied which assumes that each brain is 
considered to be from a larger population of brains and there-
fore takes the within- brain and between- brain variance into 
account. The between- brain variance (tau2) was estimated 
with the Dersimonian– Delaird model. Variances and confi-
dence intervals were obtained using the escalc- function. The 

significance of summary effect sizes was assessed through 
a two- sided t test (H0: FC = 0; unequal variances). P- values 
of the effect sizes were Benjamini– Hochberg (BH) corrected 
for all 20,017 genes. Genes were differentially expressed 
within the posterior cingulate network or the anterior cingu-
late network compared to the other networks combined when 
the absolute FC  >  1 and the BH- corrected p- value  <  .05. 
To asses the reproducibility of the differentially expressed 
genes, we calculated the differential stability of all 20,017 
genes in our dataset. This value was calculated as the aver-
age Pearson's correlation between all 15 possible pairs of 
six donors from the AHBA. The individual correlations for 
each pair of donors were calculated across samples that were 
shared between two donors.

2.4 | Functional enrichment analysis

Pathway analysis was done with the ReactomePA R- package 
version 1.28 using the function enrichPathway searching for 
human pathways. All 20,017 genes in the AHBA dataset were 
set as background genes. Pathways with a minimum size of 
10 genes and BH- corrected p < .05 were considered signifi-
cant. An additional functional enrichment test for GO- terms 
was done with clusterProfiler R- package version 3.18.1. The 
same background genes were used as before and GO- terms 
with BH- corrected p < .05 were considered significant.

2.5 | Cell- type marker enrichment

Gene markers for 28 cell- types were downloaded from the 
NeuroExpresso database (http://neuro expre sso.org/) using 
markers from all brain regions. These have been identified in 
a cross- laboratory dataset of cell- type specific transcriptomes 
from the mouse brain (Mancarci et al., 2017). To assess their 
expression, Entrez IDs of the mouse cell- type specific markers 
were converted to human homologs (homologene R- package 
version 1.4) and filtered for genes present in the AHBA data-
set (Table S1). Two markers with different mouse gene IDs 
(14,972, H2- K1, microglial, and 15,006, H2- Q1 seroton-
ergic) were converted to the same human gene ID (3,105, 
HLA- A) and therefore removed before analysis. For cell- type 
enrichment, we assessed which cell- type markers were over-
represented among the differentially expressed genes. For 17 
cell- types that had at least six markers (astrocyte, Bergmann, 
cerebellar granule, dentate granule, ependymal, GabaReln, 
hypocretinergic, microglia, activated microglia, deactivated 
microglia, noradrenergic, oligo, purkinje, serotonergic, spi-
nal cord cholinergic, spiny, and thalamus cholinergic), we 
assessed the significance with the hypergeometric test and 
p- values were corrected for all 17 cell types (BH- corrected 
p < .05).

http://neuroexpresso.org/
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We performed an additional functional enrichment test 
with expression weighted cell- type enrichment (EWCE) 
analysis (Skene & Grant, 2016) that makes use of single- cell 
transcriptome data to estimate the probability of a gene list 
being associated with a cell- type. For this purpose, we pro-
cessed cell- type data from the NeuroExpresso database and 
selected gene markers for 28 cell- types that were proposed 
by NeuroExpresso. BH- corrected p- values <  .05 were con-
sidered significant.

2.6 | Enrichment of disease- associated genes

Differentially expressed genes were also assessed for the over-
representation of disease- associated genes from DisGeNET 
(Piñero et al., 2017). A table of 628,685 gene- disease associ-
ations was obtained from DisGeNET version 6.0 (July 2019) 
from http://www.disge net.org/ website. A hypergeometric 
test was used to assess the significance of overlapping genes 
(p <  .05), and p- values were BH- corrected for 24,166 dis-
eases. The odds ratio (OR) for cell- type and disease enrich-
ment was calculated using the DescTools R- package.

3 |  RESULTS

3.1 | Transcriptomics of the posterior and 
anterior cingulate networks

We analyzed the transcriptomes of healthy subjects across 
nine anatomical networks defined by structural covariance 
of gray matter volume among healthy middle- aged to older 
adults (Hafkemeijer et al., 2014). For this we used the AHBA 
microarray dataset of spatial gene expression in postmor-
tem brains of six nonneurological donors and samples were 
mapped to each one of the nine Networks A- I (Table 1) based 
on their spatial location (Figure 1). We focused on the poste-
rior cingulate network (Network C) and the anterior cingulate 
network (Network D) that showed loss of gray matter in PD 

patients (Figure 2a,b) (de Schipper et al., 2017) and charac-
terized their transcriptional signatures by comparing them to 
the remaining seven networks together.

Whole genome differential expression analysis showed 
a large overlap of genes that were differentially expressed 
in the same direction in the two networks. We found that 
73 genes in Network C and 39 genes in Network D were 
downregulated, of which 25 genes overlapped between both 
networks (Figure 2c,d and Tables S2 and S3). Furthermore, 
200 genes in Network C and 269 genes in Network D were 
upregulated, for which 144 genes overlapped (Tables S4 and 
S5). To find out whether our significant genes have repro-
ducible expression across the six donors, we assessed the 
differential stability, which is the average Pearson's cor-
relation between all 15 possible pairs of the six donors, an 
approach that has previously been applied to the same data-
set (Hawrylycz et al., 2015). Most differentially expressed 
genes (>92%) were among the top decile of all 20,017 
genes corresponding to a differential stability value >0.73 
(Figure S1). Among the differentially expressed genes in the 
posterior and anterior cingulate networks, no PD- implicated 
genes were found that arouse from familial and genome- 
wide association studies (Bonifati, 2014; Chang et al., 2017; 
Nalls et al., 2014).

For functional interpretation of the differentially up-
regulated genes, we further assessed the enrichment of 
genes associated with biological pathways in the Reactome 
Pathway Database (see Methods, Table  S6). As both 
Networks C and D shared many differentially expressed 
genes, they also shared similar pathways: transcriptional 
regulation by MECP2, GPCR (G protein- coupled recep-
tor) signaling, voltage gated potassium channels, and 
neurotransmitter receptor and postsynaptic signal trans-
mission (Figure 2e). For better interpretation, we assessed 
the hierarchical relationships between enriched pathways 
based on the ontology of the Reactome Pathway Database. 
Pathways that describe more general biological functions 
are found at the top of the hierarchy (closer to the root) 
and were enriched for both Networks C and D. Pathways 

Donors

Network

A B C D E F G H I

Donor 9,861 72 67 157 47 74 90 26 39 83

Donor 10,021 79 46 121 65 49 84 25 55 91

Donor 12,876 37 24 57 28 42 45 6 17 25

Donor 14,380 38 33 52 30 45 61 7 27 53

Donor 15,496 34 24 41 21 39 55 13 24 69

Donor 15,697 49 20 38 33 47 64 29 37 49

Total 309 214 466 224 296 399 106 199 370

Note: A: Thalamus; B: Lateral occipital cortex, C: Posterior cingulate cortex, D: Anterior cingulate cortex, E: 
Temporal pole; F: Putamen; G, H, I: Cerebellum.

T A B L E  1  Number of samples from the 
Allen Human Brain Atlas (AHBA) that fall 
within networks A- I

http://www.disgenet.org/
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that describe more specific biological functions are lower 
in the hierarchy and were enriched for either Network C or 
Network D. Network C was additionally related to more 
specific pathways such as lysosphingolipid and LPA re-
ceptors, GABA receptor activation, RAS- signaling medi-
ated by NMDA receptors, glutamate binding, activation 
of AMPA receptors and synaptic plasticity, and long- term 
potentiation. Network D was additionally associated with 
serotonin receptors. To verify our results, we performed 
another functional analysis and assessed the enrichment 
of Gene Ontology (GO) terms. Again, Network C and 
Network D shared similar functional terms, for example, 
potassium ion transport, GPCR signaling pathway, and 
regulation of neurotransmitter receptor activity. Overall, 
we found GO terms that were similar to the pathways iden-
tified with Reactome (Table S7 and S8).

3.2 | Cholinergic cell markers are highly 
expressed within cingulate networks

The composition of specific cell- types can shape the tran-
scriptomic features of anatomical networks. Therefore, we 
analyzed whether genes differentially expressed in the pos-
terior and anterior cingulate networks were enriched for cell- 
type specific marker genes from the NeuroExpresso database 
(Mancarci et al., 2017). To assess the expression of cell- types, 
we averaged the expression of marker genes associated with 
a cell- type. Both Network C and Network D showed high 

expression of marker genes for brainstem cholinergic cells, 
GabaSSTReln, GabaVIPReln, glutamatergic, and pyramidal 
cells (Figure 3 and Figure S2).

Among the differentially upregulated genes in Network 
C and Network D, we found 10 marker genes representing 
six cell- types: astrocyte, Bergmann, GabaVIPReln, hypo-
cretinergic, pyramidal, and thalamus cholinergic (Table  2). 
Markers that were significantly upregulated in Network C 
were also significantly upregulated in Network D. In both 
networks, the 10 markers were highly expressed in cortical 
regions, including the cingulate gyrus and lowly expressed in 
limbic regions (Figure 4 and Figure S3).

Cell- type enrichment analysis revealed that only mark-
ers for thalamus cholinergic cells were significantly over-
represented among genes that were upregulated in Network 
D (OR = 17.12 and p = 2.01e- 02). The responsible mark-
ers NPPA, SOSTDC1, and TYRP1 showed high expression 
within Network D, as well as in most parts of Network C 
(Figure 4). An additional enrichment analysis that makes 
use of single cell transcriptome data (EWCE) revealed that 
genes upregulated in both Networks C and D were signifi-
cantly enriched for thalamus cholinergic cells (Figure 5). 
Interestingly, while other thalamus cholinergic marker 
genes showed high expression in limbic samples and 
low expression in cortical samples within both networks, 
NPPA, SOSTDC1, and TYRP1 showed opposite expression 
patterns with low expression in limbic samples, includ-
ing the thalamus, and high expression in cortical samples 
(Figure S4).

F I G U R E  1  Study overview. Transcriptomic data from the Allen Human Brain Atlas (AHBA) were mapped to nine anatomical networks 
that have been defined based on healthy subjects. Network C (posterior cingulate network) and Network D (anterior cingulate network) have 
been associated with gray matter loss in Parkinson's disease (PD), while the seven remaining networks were not related to PD. We compared 
gene expression in Network C and Network D to gene expression in Networks A, B, E, F, G, H, and I together. Upregulated genes were assessed 
for the overrepresentation of pathway- specific genes, cell- type marker genes, and disease- associated genes [Colour figure can be viewed at 
wileyonlinelibrary.com]
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3.3 | Cingulate networks are enriched for 
genes associated with disorders relevant to PD

Dysregulation of functional networks may result in a 
broader spectrum of disorders than PD. Therefore, we 

assessed which disease- associated genes from DisGeNET 
were overrepresented among the differentially upregu-
lated genes in Network C as well as Network D. Since 
both networks shared many upregulated genes, simi-
lar disease associations were also found. We found that 
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genes upregulated in both networks were significantly as-
sociated with epileptic and nonepileptic seizures, many 
mental disorders (bipolar, panic, autistic, [age- related] 
memory, mood, major depressive, and anxiety disorder), 
pain, and schizophrenia (Figure 6). Network C, the pos-
terior cingulate network, was more related to memory 
and pain- related disorders, while Network D, the ante-
rior cingulate network, was more related to mental and 
neuropsychiatric disorders. Furthermore, we found that 
differentially expressed genes were associated with dis-
orders related to alcohol and drug abuse. These included 
withdrawal symptoms, drug withdrawal symptoms, alco-
hol withdrawal syndrome, cocaine dependence, cocaine 
abuse, and cocaine- related disorders. In summary, we 
found associations with disorders that relate to defects in 
brain functions that are relevant to PD.

4 |  DISCUSSION

We examined transcriptomic signatures of the healthy brain 
in brain regions defined by SCNs that were identified in an 
earlier imaging analysis study (Hafkemeijer et al., 2014). In 
particular, we focused on molecular mechanism underlying 
two SCNs that were previously associated with decreased 
gray matter in PD patients (de Schipper et al., 2017) and 
were named the posterior cingulate network (Network 
C) and anterior cingulate network (Network D) as they 
mostly covered these anatomical areas. Pathway analysis 
revealed genes related to GPCR signaling, transcriptional 
regulation by MECP2, and neurotransmitter receptors and 
postsynaptic signal transmission. We found that genes 
that were upregulated in the posterior cingulate gyrus and 
anterior cingulate gyrus were also enriched for thalamus 

F I G U R E  2  Differential gene expression analysis of structural covariance networks associated with Parkinson's disease. (a, b) Brain regions 
of interest (green) defined by structural covariance networks (SCNs), Network C (posterior cingulate network), and Network D (anterior cingulate 
network) that were identified in a previous study (Hafkemeijer et al., 2014). Colored points correspond to the spatial location of Allen Human 
Brain Atlas (AHBA) samples where colors represent different anatomical structures. AHBA samples were mapped to SCNs based on their position 
inside or outside the regions of interest. Genes were analyzed for differential expression in (c) Network C and (d) Network D compared to seven 
other SCNs. Effect sizes were summarized across the six healthy donors from the AHBA with meta- analysis. For all genes (points) the log2 fold- 
change (FC; x- axis) and −log10 of nominal p- values (y- axis) are shown. Significant differentially expressed genes (t test, BH- corrected p < .05, and 
|FC| > 1) are unique for each network (blue and purple points) or significant in both networks (yellow points). The top 10 genes with the highest 
absolute FC are labeled for each network and highly overlap between both networks. (e) Pathway analysis of differentially upregulated genes 
in Network C and Network D shows similar enriched pathways (yellow) that are hierarchically organized in the Reactome database. Network C 
showed more specific associations with pathways involved in neurotransmitter receptors and postsynaptic signal transmission (blue). Network D 
was more specifically associated with serotonin receptors (purple). See Table S6 for gene counts and BH- corrected p- values [Colour figure can be 
viewed at wileyonlinelibrary.com]

F I G U R E  3  Expression of cell- types in anatomical networks. Gene expression was Z- scored and averaged across cell- type specific markers, 
across samples within anatomical networks, and across the six donors in the AHBA. Networks G, H, and I are cerebellar networks and thus showed 
distinct expression patterns. Network C (posterior cingulate network) and Network D (anterior cingulate network) showed high expression of 
marker genes for brainstem cholinergic cells, GabaSSTReln, GabaVIPReln, glutamatergic cells, and pyramidal cells. Gene expression heatmaps for 
each donor are shown in Figure S2 [Colour figure can be viewed at wileyonlinelibrary.com]
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cholinergic marker genes. Moreover, our results showed 
that both SCNs are associated with multiple neurotrans-
mitter signaling pathways, for example, serotonin, GPCR, 
GABA, glutamate, and RAS.

Genes that were highly expressed in the anterior cingu-
late network were significantly enriched for thalamus cholin-
ergic markers, specifically: NPPA, SOSTDC1, and TYRP1. 
These marker genes, together with other markers of this 
cell- type, were previously defined based on their expression 
in cholinergic cells from the mouse thalamus, more specif-
ically the hubenula (Mancarci et  al.,  2017). According to 
the AHBA ontology, the hubenula is not part of the thala-
mus. In this study, most thalamus cholinergic marker genes 
indeed showed high expression in human thalamic regions. 
However, NPPA, SOSTDC1, and TYRP1 unexpectedly 
showed opposite expression patterns with mainly high ex-
pression in cortical regions and low expression in limbic re-
gions, including the thalamus. Cholinergic circuits are key in 
cognitive functions, and cholinergic denervation of the cortex 

and thalamus in PD patients may contribute to the transition 
from PD to PD with dementia (Ballinger et  al.,  2016). We 
found that glutamatergic and GABAergic marker genes were 
also highly expressed within the posterior and anterior cingu-
late networks, although statistical significance could not be 
assessed due to the small number of marker genes for these 
cell- types. Interestingly, acetylcholine release by choliner-
gic neurons affects glutamatergic and GABAergic signaling 
by altering the synaptic excitability (Buendia et  al.,  2019; 
Granger et al., 2015). Moreover, it is thought that dysfunction 
of cholinergic circuits contributes to cognitive decline associ-
ated with neurodegenerative diseases (Ballinger et al., 2016).

Cholinergic marker genes NPPA, SOSTDC1, and TYRP1 
were highly expressed in the posterior cingulate network 
and anterior cingulate network of the healthy brain com-
pared to the other seven SCNs. While the functions of these 
genes likely involve cholinergic signaling, several studies 
suggest that they also function as extracellular regulators 
of multiple other signaling pathways, including cAMP, 

Gene Marker

Network C Network D

FC BH Estimate BH

LHX2 Astrocyte 2.21 3.92E- 03 2.00 6.46E- 03

IGFBP2 Astrocyte 0.69 5.80E- 02 1.18 1.78E- 02

RORB Astrocyte 0.82 3.09E- 02 1.19 1.39E- 02

WIF1 Bergmann 1.02 8.74E- 03 1.03 7.95E- 03

VIP GabaVIPReln 1.67 4.23E- 03 1.85 6.89E- 03

PCSK1 Hypocretinergic 1.15 1.25E- 02 1.57 1.06E- 02

NEUROD6 Pyramidal 1.90 4.78E- 03 1.92 6.76E- 03

NPPA ThalamusCholin 1.64 6.98E- 03 2.09 6.39E- 03

TYRP1 ThalamusCholin 0.81 2.41E- 02 1.43 9.82E- 03

SOSTDC1 ThalamusCholin 0.83 1.21E- 02 1.14 6.39E- 03

Note: Fold- change (FC) and Benjamini– Hochberg (BH) corrected p- value are shown for cell- type marker 
genes that were differentially expressed in the two networks compared to the remaining networks. FC >1 and 
BH <0.05 are highlighted in bold text.

T A B L E  2  Differentially upregulated 
cell- type marker genes in Network C 
(posterior cingulate network) and Network 
D (anterior cingulate network)

F I G U R E  4  Expression of differentially upregulated cell- type marker genes in Network C (posterior cingulate network) and Network D 
(anterior cingulate network). Heatmaps of differentially expressed marker genes (rows) are shown for one of the six donors in the Allen Human 
Brain Atlas (donor 10,021). Samples from different anatomical substructures within the networks are color annotated (columns). Expression was 
averaged across samples from an anatomical substructure with the same acronym ignoring left and right hemisphere annotations. See Figure S3 
for heatmaps of all six donors from the AHBA and Table S9 for full names of the region- specific acronyms [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Wnt, and β- catenin signaling (Bansho et al., 2017; Brenner 
et  al.,  1990; De Vito,  2014; Hirobe,  2011; Kutchko & 
Siltberg- Liberles, 2013; Millan et al., 2019).

NPPA (natriuretic peptide precursor A) and other natri-
uretic peptides are thought to be involved in a wide range 
of functions, including neurovascular functions, blood- brain 
barrier, brain homeostasis, neuroprotection, and synaptic 
transmission by regulating the release and re- uptake of neu-
rotransmitters such as noradrenalin, dopamine, and glycine 
(Mahinrad et al., 2016). Impaired function of natriuretic pep-
tides in brains of AD patients could accelerate neurodegener-
ation and may impair structural integrity of the brain leading 
to a higher risk of cognitive decline (Mahinrad et al., 2018). 
Our results suggest that NPPA might similarly be involved in 
PD pathogenesis given its high expression within the anterior 
and posterior cingulate networks.

SOSTDC1 (sclerostin domain- containing 1) is known as a 
negative regulator of bone morphogenetic protein (BMP) and 
Wnt- signaling, but recent studies also show that SOSTDC1 
regulates natural killer cell maturation and cytotoxicity 
(Millan et al., 2019). An increased number of natural killer 

cells have been found in PD, but the actual relevance with 
PD risk is still unclear (Jiang et al., 2017). The BMP signal-
ing pathway promotes the development of midbrain dopami-
nergic neurons (Jovanovic et al., 2018), in which SOSTDC1 
may play a role. Furthermore, SOSTDC1 was upregulated in 
the striatum of Parkinsonian rats that were treated by sub-
thalamic nucleus high- frequency stimulation and is therefore 
suggested to have neuroprotective effects (Lortet et al., 2013).

TYRP1 (tyrosinase- related protein 1) produces 
melanocytes- specific proteins involved in the biosynthesis 
of melanin in brain, skin, and eyes (Lu et  al.,  2011; Wang 
& Hebert,  2006). Melanoma and PD share genes involved 
in the synthesis of melanin and dopamine, including SNCA 
which encodes the α- synuclein protein found in Lewy bodies 
(Pan et  al.,  2012). Furthermore, neuromelanin is produced 
almost exclusively in human catecholaminergic neurons and 
is responsible for the pigmentation of dopaminergic neurons 
of the substantia nigra and noradrenergic neurons of the locus 
cereleus (Pavan & Dalpiaz, 2017). It is considered to be pro-
tective due to its ability to chelate metals, especially iron for 
which levels increases with age (Pavan & Dalpiaz, 2017).

F I G U R E  5  Expression weighted cell- type enrichment (EWCE) analysis of cell- types for upregulated genes in Network C (posterior cingulate 
network) and Network D (anterior cingulate network). Cell- type expression and selection of cell- type informative genes (markers) are based on the 
NeuroExpresso database [Colour figure can be viewed at wileyonlinelibrary.com]
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The posterior and anterior cingulate networks shared sim-
ilar highly expressed genes and were likewise associated with 
similar diseases. Based on our analysis of transcriptomic sig-
natures in the healthy brain, we found that the posterior cin-
gulate network showed stronger associations with memory 
and pain- related disorders compared to the anterior cingulate 
networks which showed stronger associations with mental 
and neuropsychiatric disorders. As part of the default mode 
network, both the posterior and anterior cingulate cortex have 
been shown to be dysregulated in neuropsychiatric disorders 
(Broyd et al., 2009; Öngür et al., 2010). We also found that 
both networks were associated with alcohol and drug with-
drawal symptoms and more specifically cocaine- related 
disorders. Cocaine abuse has been ambiguously related to 
PD, for example, cocaine binds to dopamine transport pro-
teins, and cocaine users show excess iron accumulation in 
the brain. However, there has been no direct association be-
tween cocaine usage and an increasing risk to develop PD 
(Ball et  al.,  2019). Furthermore, alcohol use disorder has 
been associated with neurodegenerative diseases, including 
Alzheimer's disease and PD, as chronic alcohol intake can in-
duce oxidative stress and trigger the neuroimmune response 
and excitotoxicity (Kamal et al., 2020).

Although we are interested in brain regions that are vul-
nerable to PD, our study is limited to transcriptomic data 
from the healthy brain. In this study, the regions of interest 
are defined by brain networks based on SCNs and one such 
a network can comprise of multiple distant and disconnected 

regions. Therefore, a region of interest in this study cannot 
be compared with the typical anatomical structures that have 
been analyzed in previous PD transcriptomic studies. In ad-
dition, validation with PD brains is challenging due to the 
scarcity of spatial transcriptomic data of PD brains. There are 
few studies that analyzed multiple brain regions in PD, but 
they only cover few brain regions of interest. To map tran-
scriptomic samples to brain regions defined by SCNs, a high 
spatial resolution is needed for the transcriptomic data, which 
is currently not available for PD. Therefore, it will be inter-
esting for future studies to profile the transcriptomes of PD 
brain regions at a higher spatial resolution.

In transcriptional maps, such as the AHBA, samples are 
strongly spatially autocorrelated meaning that nearby brain 
regions share more similar expression patterns than distant 
brain regions (Fulcher et  al.,  2020). This may cause a bias 
in enrichment analyses towards gene sets that are higher co- 
expressed in the brain and thus describe more general brain- 
related functions. While there are interesting methods to 
correct for this spatial bias, they are still being developed. In 
addition, we believe that our results are not affected by spatial 
autocorrelation, as our regions of interests, two SCNs, consist 
of separate distant brain regions that span parts of multiple 
anatomical brain regions.

In summary, our results highlight molecular mechanisms 
that underlie two specific SCNs in the healthy brain: the pos-
terior cingulate network and anterior cingulate network. Both 
SCNs represent anatomical networks that function normally 

F I G U R E  6  Disease associations of Network C (posterior cingulate network) and Network D (anterior cingulate network). Differentially 
upregulated genes in each network were assessed for the enrichment of disease- associated genes from DisGeNET (hypergeometric test, BH- 
corrected p < .05). Top plot shows odds ratios (ORs) for the number of overlapping genes, and bottom plot shows the significance of overlap 
indicated with – log10p- values (y- axis). Disorders (columns) are sorted based on highest ORs in either one of the networks [Colour figure can be 
viewed at wileyonlinelibrary.com]
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in healthy brains, but their activity is reduced in aging and 
PD (Hafkemeijer et al., 2014; de Schipper et al., 2017). Our 
findings suggest that genes involved in multiple signaling 
pathways, such as serotonin, GPCR, GABA, glutamate, and 
RAS, contribute to healthy functions of the posterior and an-
terior cingulate networks. While these observations apply to 
the healthy brain, they provide insight into the structures that 
are vulnerable in PD. Further research will be needed to bet-
ter understand the transcriptomics of brain networks and how 
they are involved in PD.
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