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Abstract: Percutaneous electrolysis is an emerging intervention proposed for the management of
tendinopathies. Tendon pathology is characterized by a significant cell response to injury and gene
expression. No study investigating changes in expression of those genes associated with collagen
regeneration and remodeling of extracellular matrix has been conducted. The aim of this pilot
study was to investigate gene expression changes after the application of percutaneous electrolysis
on experimentally induced Achilles tendinopathy with collagenase injection in an animal model.
Fifteen Sprague Dawley male rats were randomly divided into three different groups (no treatment
vs. percutaneous electrolysis vs. needling). Achilles tendinopathy was experimentally induced
with a single bolus of collagenase injection. Interventions consisted of 3 sessions (one per week)
of percutaneous electrolysis or just needling. The rats were euthanized, and molecular expression
of genes involved in tendon repair and remodeling, e.g., Cox2, Mmp2, Mmp9, Col1a1, Col3a1, Vegf
and Scx, was examined at 28 days after injury. Histological tissue changes were determined with
hematoxylin–eosin and safranin O analyses. The images of hematoxylin–eosin and Safranin O
tissue images revealed that collagenase injection induced histological changes compatible with a
tendinopathy. No further histological changes were observed after the application of percutaneous
electrolysis or needling. A significant increase in molecular expression of Cox2, Mmp9 and Vegf genes
was observed in Achilles tendons treated with percutaneous electrolysis to a greater extent than after
just needling. The expression of Mmp2, Col1a1, Col3a1, or Scx genes also increased, but did not reach
statistical significance. This animal study demonstrated that percutaneous electrolysis applied on an
experimentally induced Achilles tendinopathy model could increase the expression of some genes
associated with collagen regeneration and remodeling of extracellular matrix. The observed gene
overexpression was higher with percutaneous electrolysis than with just needling.
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1. Introduction

The prevalence of lower extremity injuries is extremely common in sport players but also in the
general population [1]. Among injuries within the lower extremity, Achilles tendinopathy is highly
prevalent and affects approximately 9% of recreational runners, 5% of professional athletes, and 5.6%
of the sedentary population [2]. Tendinopathy can occur in tendons that receive excessive loads and
can result in considerable pain and related-disability.

Cook et al. proposed a continuum model for human tendinopathy with three progressive and
continuous potential stages: (1) initial reactive stage characterized by a noninflammatory proliferative
tissue reaction with minimal collagen damage; (2) a second disrepair stage characterized by a greater
tissue collagen disruption/tearing due to a failed attempt of the tendon to properly heal; in this stage
proliferation of abnormal tenocytes and neovascularization can be present; (3) a degenerative stage
characterized by further disruption of collagen, cell response, and the presence of neovascularization [3].
These authors emphasized the relevance of associating structural tendon changes with the clinical
presentation of the patient due to the complexity in this association (or lack of). In fact, they proposed
the tendinopathy as a hybrid reactive and degenerative pathology [3].

Based on current evidence, the pathophysiology of tendinopathy is not yet completely understood,
different and multifactorial theories are plausible [4]. The first mechanism includes the presence
of collagen degradation, disorganization and fragmentation of the cellular matrix, and increase of
proteoglycan content [5]. The presence of neovascularization with the appearance and organization of
a new non-functional vascular/neural network has also been proposed as a second theory [6]. These
hypotheses have been confirmed by several experimental animal studies showing histopathological
changes including proteoglycan accumulation, collagen fiber disorganization, increased blood vessel
infiltration, increased cellularity, and cellular rounding in injured tendons [7,8]. In addition to
histological changes, it has been observed that increases in gene expressions of proteoglycans,
and disturbances in expression of matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs
(TIMPs) exist in pathological and healing tendons [9,10]. Current evidence supports that, regardless of
the initiating event or the phase of the process, tendon pathology is characterized by a significant cell
response to injury [3].

A better understanding of molecular changes accounting for tendinopathies could improve
their management. In fact, the continuum model suggests that management may be optimized by
tailoring therapeutic interventions to the stage of pathology and targeting the primary driver (cell
activation) and inter-related alterations in tendon matrix integrity [3]. Currently, a wide range of
interventions, i.e., extracorporeal shockwave therapy [11], injections [12], platelet-rich plasma [13],
or exercises [14] have been proposed for the treatment of tendinopathies. These interventions
can influence tendon biology by promoting its regeneration, but they are not able to influence the
inflammatory process. An emerging strategy, i.e., percutaneous electrolysis, has been proposed for
the management of tendinopathies [15]. Percutaneous electrolysis consists of the application of a
continuous (galvanic) electrical current through a filament needle in a targeted tissue, usually tendon
or muscle. There is preliminary evidence suggesting that application of percutaneous electrolysis is
effective for patellar [16], plantar [17], elbow [18], or supraspinatus [19,20] tendinopathies; although
more clinical trials are needed.

It is proposed that percutaneous electrolysis combines two physiological effects, a mechanical
effect resulting from the needle insertion and a biological effect associated with the galvanic electrical
current [15]. By inducing a non-thermal electrolytic reaction in the tendon, percutaneous electrolysis
could potentially lead to a controlled inflammatory response, which may facilitate an organic reaction
ultimately leading to the regeneration of the injured and healed tendon [15]. These hypotheses have been
confirmed by recent studies. There is evidence suggesting that percutaneous electrolysis is able to induce
an acute inflammatory reaction, mainly characterized by the presence of polymorphonuclear neutrophils
and macrophages, in both healthy tendon [21] and collagenase-induced tendinopathy [22] in animals.
The inflammatory response was most remarkable 7 and 14 days after the intervention [21,22]. Similarly,
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percutaneous electrolysis has been also able to induce an immediate and transitory vasodilation effect
when applied to healthy animal tendons, which could facilitate the arrival of pro-inflammatory cells
(essential for the regeneration of a healed tendon) and the drainage of nociceptive substances [23].
Although it seems that percutaneous electrolysis is able to promote an inflammatory response, the
underlying mechanisms of this process are not yet known. In fact, a recent study found that changes in
pH after the application of percutaneous electrolysis were relatively small and could not fully explain
the neurophysiological and clinical effects of this intervention [24].

No previous study has investigated changes in expression of genes associated with collagen
regeneration and remodeling of extracellular matrix in an experimentally injured tendon model after
the application of percutaneous electrolysis. The use of animal models assists in understanding
tendinopathies because they allow for the study of each progressive stage of the process in a controlled
and reproducible environment. In the current animal pilot study, we used an experimentally induced
tendinopathy model with a single collagenase injection in the Achilles tendon of rats to investigate
gene expression changes after the application of percutaneous electrolysis. We hypothesized that
the application of percutaneous electrolysis will be able to promote the healing process of an injured
tendon by increasing the gene expression when compared with no intervention.

2. Methods

2.1. Experimental Design

This animal study was conducted at the Institute of Neurosciences of Castilla y Leon (University
of Salamanca), and fulfilled the ethical requirements of and was approved by the Bioethics Committee
of this institution (201899900014183). Procedures were conducted according to the European (Directive
2010/63/EU) and Spanish legislation (Royal Decree 53/2013; BOE 34/11370-421,2013) on experimental
animal studies. All environmental conditions such as light or temperature during the experiment
followed the regulations contained in Royal Decree 1201/2005. The study was designed to minimize
the number of sacrificed rats.

Fifteen (n = 15) Sprague-Dawley male rats, aged 8 weeks, weighing approximately 250 g, were
used. Rats were randomly divided into different groups according to the nature of the tissue (healthy
vs. injured based on whether a tendinopathy was or not induced) or treatment applied (no treatment
vs. percutaneous electrolysis vs. needling). The first groups (C, T1) were used to determine if
changes induced by the collagenase injection were compatible with those observed in tendinopathies.
The remaining groups were used for comparing the application of percutaneous electrolysis (T2 + PE)
or control needling (T2 + N) versus no treatment (T2). Table 1 shows the distribution of the rats on the
different groups.
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Table 1. Random Distribution of Rats with Experiment Procedures by Group.

Group
Number Group Number of

Rats
Collagenase

Injection
Day Collagenase

Injection
PE

Treatment
Days of PE

Intervention
Needling
Treatment

Day of Needling
Treatment

Day of
Sacrifice

Validation of Collagenase-Induced Tendinopathy
1 C * 3 No No No 7
2 T1 # 3 Yes 1 No No 7

Experimental Study
3 T2 # (no treatment) 3 Yes 1 No No 28
4 T2 + PE 3 Yes 1 Yes 7, 14, 21 No 28
5 T2 + N 3 Yes 1 No Yes 7, 14, 21 28

C: control; T: Tendinopathy model; PE: Percutaneous Electrolysis; N: Needling. * Control group (C) was injected with saline solution; # Experimentally induced tendinopathy groups
(T1 and T2) were injected with collagenase. T1: Experimentally induced tendinopathy group used for confirming the collagenase model. Rats were sacrificed 7 days after the collagenase
injection. T2: Experimentally induced tendinopathy groups randomly assigned to no treatment, percutaneous electrolysis (PE) or needling (N). Rats were sacrificed 28 days after the
collagenase injection.
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2.2. Collagenase Experimentally Induced Tendinopathy

Rats were individually placed in a chamber. Anesthesia was induced with isoflurane (concentration
4–5%, oxigen 0.5–1 L/min). Subsequently, a collagenase injection was carried out with a 30-gauge
needle 2 mm away from each rat Achilles osteotendinous junction. To induce Achilles tendon injury,
a total of 250 units (30 µL) of collagenase (in 0.9% saline solution; bacterial type I; Sigma-Aldrich)
previously filtered throughout a 0.22 µm Nalgene filter was injected [25]. We used one bolus injection
of collagenase to mimic the acute reactive phase of a tendinopathy [25]. Rats serving as controls were
injected with 30 µL of sterile saline solution (0.9% NaCl) to validate the injured model.

2.3. Percutaneous Electrolysis

The application of percutaneous electrolysis treatment was performed by using an approved EPI®

device (Epiadvanced, Barcelona, Spain), certified according to the Directive 93/42/CEE. The positive
electrode was placed on the tail of the rat with a cinch. The negative electrode consisted of a sterile
solid needle (0.3 mm diameter; 0.25 mm length; Agupunt, Barcelona, Spain). The needle was inserted
at an angle of approximately 70◦ with the tip oriented towards the calcaneous bone of the rat (Figure 1).
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electrical current was set at 3 mA and applied for 4 s on each puncture [21,22]. A total of three sessions 
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Figure 1. Application of Percutaneous Electrolysis (EPI© device) on the Achilles tendon of a rat.
The positive electrode was placed on the tail of the rat with a cinch (figure on the left top corner).

Each percutaneous electrolysis session consisted of three punctures targeting the Achilles
intra-tendon 2 mm away from the osteotendinous junction. The intensity of the continuous (galvanic)
electrical current was set at 3 mA and applied for 4 s on each puncture [21,22]. A total of three sessions
(a total of 9 punctures), once per week, were applied 7, 14, and 21 after the application of collagenase
(Figure 2).

2.4. Control Needling

To determine if the observed changes were related to the electrical current applied during the
percutaneous electrolysis and not just to the needle, a group of rats receiving the same needle insertion
procedure was used as a control. Rats received needling for three sessions (3 punctures on 3 sessions)
following the same procedure than for percutaneous electrolysis, i.e., 7, 14, and 21 after the application
of collagenase, but without application of electrical current (Figure 2).
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2.5. Tissue Sampling Preparation

Rats were euthanized by exsanguination while deeply anesthetized one week after collagenase
injection in both groups to validate the collagenase model (C, T1) and 7 days after the last experimental
session (28 days after collagenase injection) within the remaining groups (Table 1), and tissue samples
were obtained.

The Achilles tendon was surgically removed from each rat leg using a sterile surgical knife.
The skin was longitudinally cut from the calcaneous osteotendinous junction to the musculotendinous
junction of the soleus and twin muscle.

Tissue samples for the histological analyses were embedded into an Optical Cutting Temperature
compound (OTC) and frozen in methylbutane precooled to its freezing point using liquid nitrogen and
stored at −80 ◦C until analysis.

Samples allocated to genetic analysis were embedded in 1 mL of Trizol®, frozen under liquid
nitrogen, and stored at −80 ◦C until analysis.

2.6. Histological Analysis

Tissue samples were longitudinally cut into 10 µm sections on a cryostat (HM550, Thermo Fisher
Scientific, Waltham, MA, USA) and mounted on poly-L-lysine-coated (Menzel-Glazer) microscopic
slides. Samples were stained with hematoxylin-eosin and safranin O. The hematoxylin-eosin staining
allows observation of collagen structures and identification of tenocyte nuclei and muscular fibres,
whereas safranin staining allows the identification of cartilaginous tissue cells.

Stained tissue samples were observed using an Olympus AX-70 microscope coupled with
an Olympus Apogee digital camera. Images brightness and contrast were adjusted using Adobe
Photoshop CS4.

2.7. Genetic Analysis

Ribonucleic acid (RNA) was extracted using a modified version of the procedure described by
Chomczynsky and Sacchi [26]. Total RNA was sequentially extracted using 1 mL of Trizol® per 100 mg
of tissue and purified using a commercial kit (RNeasy Mini Kit® Qiagen, Hilden, Germany). The RNA
was quantified and its quality assessed by using an Agilent 2100 Bioanalyzer. Only samples with an
RNA integrity number (RIN) >8.0 were used.

Complementary DNA (cDNA) was synthesized using messenger RNA (mRNA) contained
in purified RNAs via a retrotranscription enzymatic reaction using the kit ImProm-IITM Reverse
Transcripción System (Promega). Total RNA (2 µg), primed with a mix of oligo-dT and random
hexamer primers, was reverse-transcribed into cDNA at 37 ◦C for 2 h using the first-strand cDNA
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synthesis kit (Promega Corporation, Madison, WI, USA) into a 20 µL volume, and stored at −20 ◦C of
temperature until use, according to the manufacturer’s instructions. In all cases, a reverse transcriptase
negative control was performed to rule out genomic DNA contamination.

The DNA was amplified using polymerase chain reaction (PCR) and quantified using real time
quantitative PCR (RT-qPCR). Before quantification of amplified DNA samples, efficiency analysis for
each primer (specific for each targeted gene) was performed (Table 2). These analyses allowed us to
establish the expression dynamic range for each primer. The RT-qPCR was performed following the
SYBR-Green method [27] and using the primers listed in Table 2. Three genes (β-actin, β-act; 60 S
ribosomal protein L19, Rpl19; and glyceraldehyde 3-phosphate dehydrogenase, Gapdh) were selected
as internal standards to allow RT-qPCR data normalization. The NormFinder software was used to
calculate the intra- and inter-group variations in their expressions. Finally, the mean of the threshold
cycle (Ct) value and the primer efficiency value of Gapdh were used for normalization, as Gapdh was
the most stable gene.

The comparative Ct method was used for presenting quantitative data [28]. Following removal of
outliers, raw fluorescence data were used to determine PCR amplification efficiency (E) as follows:

E = [10(−
1

slope )100]

All amplifications had an E value of 100 ± 10%, an E value close to 100% being an indicator of
efficient amplification.

FC = E−∆∆Ct

The statistical significance level of qPCR analysis was determined using a one-sample t-test for
each gene, testing whether |FC| > 1 is significant (p < 0.05).

The targeted genes for the current study included the cyclooxygenase 2 (Cox2) gene, which triggers
inflammatory processes and the expression of some proteinases such as matrix metalloproteinases
(MMPs) and tissue inhibitors of metalloproteinases (TIMPs). The expression of metalloproteinase
2 and 9 (Mmp2 and Mmp9), Collagen type I alpha 1 chain (Col1a1) and collagen type III alpha 1 chain
(Col3a1) genes were also evaluated, all components of the tendon extracellular matrix. We also analyzed
growth factor genes, particularly the vascular endothelial growth factor (Vegf ) gene, which is able to
promote angiogenesis and vascular permeability, as well as the Scleraxis gene (Scx), a relevant gene
key in the development of fetal tenocytes and in tendon remodeling processes in adults.
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Table 2. Oligonucleotide Primer Sequences used for qPCR.

Gene Name GenBank
Number *

Oligonucleotide Primer Sequence
(Forward; 5′-3′)

Forward
Location*

Oligonucleotide Primer Sequence
(Reverse; 3′-5′)

Reverse
Location

Amplicon
Size

Primer
Efficiency

Cox2 S67722 CCCATGGGTGTGAAAGGAAA 566–586 GGGATCCGGGATGAACTCTC 636–655 90 1.96
Col1a1 NM_053304 GCCTCAGCCACCTCAAGAGA 3681–3701 GGCTGCGGATGTTCTCAATC 3801–3820 140 2.06
Col3a1 NM_032085 CCAGGACAAAGAGGGGAACC 1194–1213 CCATTTCACCTTTCCCACCA 1277–1297 103 1.99
Mmp2 NM_031054 ACACCTGACCTGGACCCTGA 615–634 TTCCCCATCATGGATTCGAG 700–719 105 1.98
Mmp9 NM_031055 GCAGGGCCCCTTTCTTATTG 1659–1679 CTGGCCTGTGTACACCCACA 1769–1788 130 2.02
Vegf NM_031836 GCAATGATGAAGCCCTGGAG 1271–1290 GCTGGCTTTGGTGAGGTTTG 1338–1357 87 1.97
Scx NM_001130508 GAGAACACCCAGCCCAAACA 700–720 CGAATCGCCGTCTTTCTGTC 769–788 89 2.00
β-act NM_031144 AGCCATGTACGTAGCCATCC 415–434 ACCCTCATAGATGGGCACAG 510–529 115 1.98

Gapdh NM_017008 ACATGCCGCCTGGAGAAACCT 805–824 GCCCAGGATGCCCTTTAGTGG 874–894 90 1.96
Rpl19 NM_031103 TCGCCAATGCCAACTCTCGTC 123–143 AGCCCGGGAATGGACAGTCAC 191–211 89 2.07

*: Oligonucleotide location within its corresponding GenBank sequence. Scx: Scleraxis; Vegf : vascular endothelial growth factor; Cox2: cyclooxygenase 2; Col1a1: collagen type I alpha
1 chain; Col3a1: Collagen type III alpha 1 chain; Mmp2: Matrix metalloproteinase 2; Mmp9: Matrix metalloproteinase 9: β-act: Beta actin; Gapdh: Glyceraldehyde-3-phosphate; Rpl19: 60 S
ribosomal protein L19.
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3. Results

3.1. Changes after Collagenase Injection (C vs. T1)

The images of hematoxylin–eosin and Safranin O stained tissue corresponding to the injured
tendon of rats euthanized one week after the injection of collagenase (induced tendinopathy, T1)
showed substantial damage as compared with tissue images from the tendon acting as control (C) one
week after the injection of sterile saline solution (Figures 3 and 4). In particular, increased tenocyte
number, misalignment of collagen fibres, and loss of extracellular matrix organization as well as
increased vascularization (Figure 3B) was seen in the experimentally induced Achilles tendinopathy.
Safranin O staining images also identified the presence of fibrocartilaginous tissue (Figure 4B).
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In addition, a significant increase in the expression of Cox2, Mmp2, Mmp9, Col1a1, Col3a1, Vegf
and Scx genes (Figure 5) was also observed within the experimentally induced tendinopathy group
compared with the control group (Table 3).
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Table 3. Gene Expression Levels in healthy (C) and experimentally injured (T1) Achilles Tendons of
Rats (sacrificed at 7 days after the injection).

Gene Name Group Fold Change Standard Deviation p-Value

Cox2
Healthy tendon (C) 1.001 0.049
Injured tendon (T1) 3.367 1.184 0.02

Mmp2 Healthy tendon (C) 0.941 0.106
Injured tendon (T1) 7.137 2.783 0.02

Mmp9 Healthy tendon (C) 1.004 0.128
Injured tendon (T1) 8.972 4.478 0.015

Col1a1
Healthy tendon (C) 0.923 0.158
Injured tendon (T1) 6.691 2.801 0.025

Col3a1
Healthy tendon (C) 0.967 0.062
Injured tendon (T1) 3.119 0.631 0.004

Vefg Healthy tendon (C) 1.011 0.183
Injured tendon (T1) 1.708 0.274 < 0.001

Scx
Healthy tendon (C) 1.023 0.221
Injured tendon (T1) 6.935 2.851 0.004

Cox2: cyclooxygenase 2; Mmp2: Matrix metalloproteinase 2; Mmp9: Matrix metalloproteinase 9; Col1a1: collagen
type I alpha 1 chain; Col3a1: Collagen type III alpha 1 chain; Vegf : vascular endothelial growth factor; Scx: Scleraxis.
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Scx (G) genes in an healthy control Achilles tendon (C) and experimentally induced tendinopathy
tendon (T1). Data were quantified and normalized by using the RT-qPCR procedure. Each bar
represents the fold change (FC) ± standard deviation (SD) of the normalized values. *** p < 0.001;
** p < 0.01; * p < 0.05.

3.2. Percutaneous Electrolysis on Experimentally Induced Achilles Tendon

The images of hematoxylin–eosin- and Safranin O-stained tissue revealed similar histological
changes, e.g., increase of tenocytes, loss in extracellular matrix organization, misalignment of collagen
fibers and striking neovascularization, between injured Achilles tendons subjected to no treatment (T2,
Figure 6A), Achilles tendon treated with percutaneous electrolysis (T2 + PE, Figure 6B,C) and injured
tendon treated with needling (T2 + N, Figure 6D). Nevertheless, tendinous tissues of injured Achilles
tendons treated with percutaneous electrolysis showed slightly more signs of inflammation (presence
of leukocytes) than others, but this was not significant.
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Figure 6. Stained longitudinal images with hematoxylin–eosin of injured Achilles tendon with
collagenase injection by group: no intervention (A), treated with percutaneous electrolysis (B,C),
or treated needling (D). Arrows in C shows several leucocyte cells. The scale bar is at 50 µm (A,B,D)
and 10 µm (C).

A significant increase in the expression of Cox2, Mmp9 and Vegf genes was observed in the injured
Achilles tendons treated with percutaneous electrolysis (Figure 7A,C,F; Table 4) in comparison with
Achilles tendons without treatment (T2). Expression of Mmp2, Col1a1, Col3a1 and Scx genes was also
higher in the group treated with percutaneous electrolysis, but this did not reach statistical significance
(Figure 7B,D,E,G; Table 4). The application of a needling procedure only on injured Achilles tendons
(T2 + N) also increased the expression of Mmp2, Mmp9, Col1a1 and Vegf genes when compared to
non-treated injured Achilles tendons (T2), but to a lesser extent than after percutaneous electrolysis
(Table 4).
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Figure 7. Levels of expression of Cox2 (A), Mmp2 (B), Mmp9 (C), Col1a1 (D), Col3a1 (E), Vegf (F) and
Scx (G) genes in an injured Achilles tendon with collagenase injection by group: no intervention (T2),
percutaneous electrolysis (T2 + PE) and needling (T2 + N). Data were quantified and normalized by
using the RT-qPCR procedure. Each bar represents the fold change (FC) ± standard deviation (SD).
*** p < 0.001; ** p < 0.01; * p < 0.05.
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Table 4. Gene Expression Levels in Experimentally induced Tendinopathy Achilles Tendon of Rats (T2)
according to intervention (no intervention, percutaneous electrolysis and needling).

Gene Name Group Fold Change Standard
Deviation

p-Value (T2 vs.
T2 + PE/T2 + N)

p-Value (T2 + PE
vs.T2 + N)

Cox2
T2 (28 days) 0.056 0.031

T2 + PE 1.392 0.697 0.03 *
T2 + N 0.937 0.365 0.05 0.3

Mmp2
T2 (28 days) 0.523 0.163

T2 + PE 3.468 2.251 0.07
T2 + N 2.275 0.911 0.03 * 0.3

Mmp9
T2 (28 days) 0.040 0.006

T2 + PE 8.977 5.069 0.02 *
T2 + N 0.658 0.225 0.01 * 0.02

Col1a1
T2 (28 days) 0.364 0.345

T2 + PE 3.875 2.547 0.07
T2 + N 2.009 0.336 <0.001 *** 0.25

Col3a1
T2 (28 days) 0.452 0.348

T2 + PE 4.654 2.972 0.06
T2 + N 0.219 0.026 0.15 0.05

Vefg
T2 (28 days) 0.133 0.001

T2 + PE 2.229 0.117 0.025 *
T2 + N 1.248 0.462 0.005 ** 0.007 **

Scx
T2 (28 days) 2.256 1.087

T2 + PE 2.886 1.373 0.5
T2 + N 1.860 0.672 0.45 0.25

Cox2: cyclooxygenase 2; Mmp2: Matrix metalloproteinase 2; Mmp9: Matrix metalloproteinase 9; Col1a1: collagen
type I alpha 1 chain; Col3a1: Collagen type III alpha 1 chain; Vegf : vascular endothelial growth factor; Scx: Scleraxis;
*** p < 0.001; ** p < 0.01; * p < 0.05.

4. Discussion

This animal study found that application of percutaneous electrolysis in experimentally induced
Achilles tendinopathy with collagenase injection increased the expression of some genes related to
collagen regeneration and tissue remodeling of extracellular matrix, without significant induction of
further histological changes. Gene overexpression was higher than that observed after application of a
needling procedure. In particular, we observed changes in three (i.e., Cox2, Mmp9, and Vegf ) out of
seven of the gene expressions analyzed.

4.1. Experimentally Induced Tendinopathy with Collagenase Injection

Before determining the effect of percutaneous electrolysis, we determined if the experimentally
induced model with collagenase injection was able to mimic acute tendinopathy changes. We found
an increase in the number of tenocytes, misalignment of collagen fibers, loss of extracellular matrix
organization, and increased vascularization in experimentally injured Achilles tendons of rats. The presence
of these changes agrees with previous experimental studies in animal models [29–31].

An increase in the expression of Cox2, Mmp2, Mmp9, Col1a1, Col3a1, Vegf and Scx genes is also
consistent with data reported in previous human studies [10,32,33]. Riley found an overexpression
of the collagen genes Col1a1 and Col3a1 in human tendinous tissue was correlated with extracellular
matrix organization loss in the acute phase [34]. Past studies have also reported an overexpression of
these pro-inflammatory genes as well as significant increases within the expression of extracellular
matrix metalloproteinases (MMPs) such as Mmp2 and Mmp9 [35,36]. Finally, an overexpression of Vegf
has been also reported to be present in tendinopathies and is attributed to an increase in vascularization
due to the creation of new, but not functional, blood vessels [37,38].

Previous studies have also reported overexpression of proinflammatory genes such as Cox2
during the healing process after a tendon injury [39,40]. Another important gene related to tendon
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remodeling is Scx, which also plays a relevant role in triggering Col1a1 gene transcription [41,42].
This generalized gene overexpression has been related to the synthesis of new collagen, necessary to
restore the tendon extracellular matrix organization. We found overexpression of all these genes in
experimentally induced Achilles tendinopathy 7 days after injection of collagenase in the rats.

In conclusion, tissue images of Achilles tendons of rats euthanized one week after a collagenase
injection showed histological and genetic changes that were characteristic of human tendinopathy,
which was also observed in previous experimentally induced animal models. These results suggest
that the collagenase-induced model used in our study was adequate.

4.2. Gene Expression Changes after Percutaneous Electrolysis

It has been suggested that percutaneous electrolysis triggers an acute inflammatory response in
the tendon leading to activation of restoring and healing tissue mechanisms [15]. The hypothesis of
an inflammatory response after the application of percutaneous electrolysis has been confirmed in
animal models [21,22]. This study is the first experimental animal model investigating changes in
gene expression in an injured tendon. We observed a statistically significant increase in expression
of Cox2, Mmp9 and Vegf genes, but a non-significant increase in Mmp2, Col1a1, Col3a1 and Scx genes
after the application of three sessions of percutaneous electrolysis in comparison with no treatment.
The application of a needling procedure also resulted in increases in gene expression, but to a lesser
extent than with percutaneous electrolysis.

Previous studies have reported an overexpression of Cox2 [43], Mmp2 [44], Mmp9 [45], Col1a1 [39],
Col3a1 [46], Vegf [47,48], and Scx [49] genes at the initial stage of an inflammatory process after acute
tendon injury but with a progressive decrease during the following 7–28 days. This time trend suggests
that these proinflammatory genes and metalloproteinases participate in the initial (acute) degradation
of extracellular matrix, but their long-term overexpression plays a relevant role within collagen
regeneration and extracellular matrix remodeling during tendon healing [39,43–49]. In this pilot
study, rats with experimentally induced Achilles tendinopathy treated with percutaneous electrolysis
exhibited a generalized increase in gene expression in comparison with the needling intervention or
no treatment at 28 days after collagenase injection; however, only overexpression of Cox2, Mmp9 and
Vegf genes was statistically significant. Although Mmp9, Col1a1, Col3a1 and Scx gene expression also
increased after percutaneous electrolysis application, the changes did not reach statistical significance.
A possible explanation is that rats were euthanized 28 days after collagenase injection and 7 days after
the last treatment session, a potential time window for the natural decrease in gene expression [43–49].
A second potential reason explaining the lack of statistical significance in the Mmp2, Col1a1, Col3a1 and
Scx genes could be related to the small number of rats included in this pilot study, which could lead to
underpowered results.

The fact that greater gene expression changes were observed after the application of percutaneous
electrolysis than with just the needling application provides preliminary evidence suggesting that the
application of continuous (galvanic) current leads to a greater (or faster) increase of gene expression
than with application of a needling procedure. A facilitated-gene overexpression could promote
collagen regeneration and extracellular matrix remodeling in healed tendons supporting the potential
clinical application of this intervention for the treatment of tendinopathies.

An important finding of the current study was that histological images did not reveal significant
changes between experimental groups, suggesting that the application of percutaneous electrolysis
or needling promoted overexpression of genes associated with tendon healing but without inducing
further histological damage to the tendon. Nevertheless, these findings should be considered in the
scenario of the current study, since only three sessions of percutaneous electrolysis were applied, which
may have been not enough to observe changes within the extracellular tendon matrix, as well as the
small number of rats included. It is possible that a greater number of sessions or a greater electrical
current voltage could lead to structural tendon changes and higher gene overexpression.
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4.3. Clinical Implications

Our results have potential implications for clinical practice. All genes investigated in this study
were present at the initial stage of the inflammatory process after a healed tendon but they progressively
decrease over the following 7–28 days [43–49]. A long-term overexpression, as observed after the
application of percutaneous electrolysis, may play a role for promoting collagen regeneration and
extracellular matrix remodeling in a healed tendon. Nevertheless, the current study did not assess
changes in protein levels; therefore, we cannot conclude that gene overexpression observed after the
application of percutaneous electrolysis was able to produce better regeneration of the tendon matrix
and, hence, to improve collagenase-induced tendinopathy. Future studies should investigate changes
in protein levels after the application of percutaneous electrolysis. Current and previous data suggest
that application of percutaneous electrolysis can trigger an initial biological (inflammatory) response in
the tendon, preparing the tissue for better loading. In fact, controlled tendon loads with exercise will
be clearly needed to be combined with percutaneous electrolysis to facilitate the process of collagen
tissue proliferation, thus improving the biomechanical properties of the tendon. This hypothesis is
partially supported by randomized clinical trials showing that combining percutaneous electrolysis
with a progressive exercise program represents a promising management strategy for tendinopathies
of the elbow [19], shoulder [21], or knee [17]. Future trials determining the biological effects of combing
percutaneous electrolysis with active therapies such as exercise would help to elucidate the underlying
mechanisms of the clinical benefits of this intervention.

4.4. Limitations

Finally, we should recognize potential limitations to the current study. First, the number of rats
on each group was small, which could lead to a lack of power in some comparisons. Therefore,
this study should be considered as a pilot study. Due to the lack of previous studies investigating
changes in gene expression, it was not possible to make “a priori” calculation of the most appropriate
sample size. Considering the data obtained in this pilot study, an estimated sample size calculation
was conducted to get statistical significance in all the analyzed genes. Assuming a pooled standard
deviation ranging from 0.1 to 2.1 units, a two-tailed alpha level (α) of 0.05 and a desired power (1-β) of
80%, it was estimated that a sample of 5 to 7 rats per group would be required to detect between-group
differences from 1.0 to 3.0 units. Nevertheless, it is important to consider that we found significant
differences in three out of seven gene expressions with the current sample of rats. Second, it seems
that the dosage of the galvanic electric current plays a relevant role in the inflammatory response
elicited by percutaneous electrolysis. Future studies should investigate changes in gene expression
with different dosages. In fact, clinicians apply this intervention with different doses and frequencies
of sessions depending on the clinical presentation of the patient. Therefore, current results should be
considered in the investigated scenario. Finally, the application of percutaneous electrolysis is usually
ultrasound-guided [16–21]. In the current study, the technique was not ultrasound-guided, which
could have influenced the results.

5. Conclusions

This experimental animal pilot study found that the application of three sessions (once a week)
of percutaneous electrolysis into an experimentally induced Achilles tendinopathy with collagenase
injection increases the expression of some genes related to collagen regeneration and remodeling of
extracellular matrix, particularly the Cox2, Mmp9 and Vegf genes. These changes were greater than
those observed after the application of a needling procedure. No additional histological changes were
found with either intervention, suggesting that both interventions did not provide further damage
into the tendon. Current results should be considered as preliminary and need to be confirmed in
future studies.
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