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Abstract 

Medication regimen may be optimized based on individual drug efficacy identified by pharmacogenomic testing. 

However, majority of current pharmacogenomic decision support tools provide assessment only of single drug-gene 

interactions without taking into account complex drug-drug and drug-drug-gene interactions which are prevalent in 

people with polypharmacy and can result in adverse drug events or insufficient drug efficacy. The main objective of 

this project was to develop comprehensive pharmacogenomic decision support for medication risk assessment in 

people with polypharmacy that simultaneously accounts for multiple drug and gene effects. To achieve this goal, the 

project addressed two aims: (1) development of comprehensive knowledge repository of actionable pharmacogenes; 

(2) introduction of scoring approaches reflecting potential adverse effect risk levels of complex medication regimens 

accounting for pharmacogenomic polymorphisms and multiple drug metabolizing pathways. After 

pharmacogenomic knowledge repository was introduced, a scoring algorithm has been built and pilot-tested using a 

limited data set. The resulting total risk score for frequently hospitalized older adults with polypharmacy 

(72.04±17.84) was statistically significantly different (p<0.05) from the total risk score for older adults with 

polypharmacy with low hospitalization rate (8.98±2.37). An initial prototype assessment demonstrated feasibility of 

our approach and identified steps for improving risk scoring algorithms. 

 

Introduction 

Polypharmacy has been characterized as a significant risk factor for adverse drug events in multiple studies. High 

prevalence of polypharmacy in older adults has been widely reported1. Multiple studies have mentioned that 

polypharmacy increases the risk of adverse drug reactions, hospitalization, falls, mortality, and other adverse health 

outcomes in elderly patients2. Polypharmacy represents a significant risk for drug-drug, drug-disease and drug-gene 

interactions2 and, undoubtedly, has become a significant source of health care utilization and costs. 

Previous studies showed high utility of pharmacogenomics for preventing potential side effects of polypharmacy. 

Pharmacogenomics allow identify how hereditary profile affects an individual response to drugs. As a strategy for 

optimizing medication usage, pharmacogenomics became an important element of precision medicine. A recent 

study has demonstrated that precision medicine has significant potential in people with polypharmacy particularly in 

older adults with history of urgent care utilization3. 

However, majority of current pharmacogenomic decision support tools are based only on assessment of single drug-

gene interactions without taking into account complex drug-drug and drug-drug-gene interactions which are 

prevalent in people with polypharmacy and may result in adverse drug events or suboptimal drug efficacy. Many of 

the most frequently prescribed medications for older adults are metabolized by multiple cytochrome pathways, each 

of which, taken alone, insufficiently represents the actual metabolic pharmacokinetics. With increasing number of 

drugs, growing complexity of multiple contemporaneous drug-drug and drug-gene interactions results in a 

significant cognitive workload for a practicing provider preventing optimal regimen prescription. Thus, development 

of comprehensive decision support tools accounting for multiple drug interactions is a crucial step in promoting 

precision medicine in people with polypharmacy. 

The main objective of this project was development of comprehensive pharmacogenomic decision support for 

medication risk assessment in people with polypharmacy. To achieve this goal, the project addressed two aims: (1) 

development of comprehensive knowledge repository of actionable pharmacogenes; (2) introduction of scoring 

approaches reflecting potential adverse effect risk levels of complex medication regimens accounting for 

pharmacogenomic polymorphisms and multiple drug metabolizing pathways. 

142



  

Methods 

Multiple open database sources and online literature repositories were used in this project to obtain verified drug 

metabolism information and metabolic phenotypes of cytochrome P450 (CYP) alleles. Available knowledge 

repositories containing pharmacogenomic information have been reviewed based on literature reports and citation 

index and their content compared. After a comprehensive review of available pharmacogenomic information 

resources, the following sources were utilized to build knowledge base for this project: PharmGKB, Indiana 

University Cytochrome P450 Drug Interaction Table (IU), SuperCyp, UpToDate, and SNPedia (Figure 1). 

Wikipedia was initially considered however it was 

eventually excluded from further consideration due to 

inconsistencies in its article format preventing from 

automated data extraction. The Indiana University (IU) 

portal provides information on major P450 drug 

interactions which were included in our initial database4. 

SuperCyp contains exhaustive Cytochrome-Drug 

interaction data5. UpToDate is one of the most trusted 

clinical decision support resources6. It was used in this 

project to retrieve information about substrate weight status 

for particular drug metabolism pathways. CYP450 enzyme 

activity for various single nucleotide polymorphisms 

(SNP), deletions and copy number variations (CNV) were 

imported from PharmGKB and SNPedia7, 8.  

                                                 Figure 1. Data sources for knowledge repository. 

We created our own relational database to merge complex data from different data sources. The database was 

designed to be scalable, pluggable, and platform-independent. The key component was represented by two tables 

consisting of drug names and 

enzyme names. Extended from 

that, we had detailed 

information about the drugs 

and enzymes, saved in 

individual tables respectively 

based on content and source. 

We had four kinds of detailed 

tables, with each category 

shared the same schema. The 

Interactions table contained 

drug metabolism effects; the 

IteractionStatus table included 

effect weight information; the 

Allele table stored the allele 

name of the enzymes and the 

functionality of those allelic 

variations, and the DrugNames 

table had the drug aliases such 

as brand names or chemical 

names of the drugs that helped 

normalize drug names coming 

from different sources. Figure 

2 depicts the relational schema 

of the database. 

 

Figure 2. Relational database schema. 

Figure 3 represents the structure of computer program that implemented data aggregation and scoring. The program 

was mostly written in Java to make it platform-independent. For each data source, we created different modules to 
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fetch the data, cleaned them and modified the data format to fit our database. Python scripts were used to perform 

the batch operations in this step. We wrote a Database class and used JDBC module to connect with the database. 

Drug, Enzyme and Patient classes were created to bring the data into instances. We built a user-friendly interface 

using JavaFX in UI class, but one could still use the Batch class to start a batch process, or use the Console program 

to trace the results.  

User can easily change parameters through the APIs we provided in Score class, or create their own algorithms by 

overriding the Parser class. The program is guaranteed to be thread safe and have limited memory usage. We 

implemented a module for low level Excel access through Java API to Access Microsoft Excel Format Files (POI-

XSSF). 

Figure 3. Program structure (each rectangular represents a Java class). 

 

 

Model 

To account for simultaneous contribution of 

multiple cytochrome pathways and cytochrome 

polymorphisms, we introduced a scoring 

framework for medication risk in people with 

polypharmacy (Figure 4). The framework 

reflects contemporaneous impact of cytochrome 

allele types based on corresponding metabolic 

phenotypes (i.e. extensive, poor or rapid 

metabolizer) and individual drug effect on 

activity of specific cytochrome enzymes (i.e. 

substrate, inhibitor, or inducer) to account for 

phenoconversion phenomena.  

 

         Figure 4. A scoring framework for medication risk. 
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Initially, we experimented with two algorithms, the additive and multiplicative algorithms, to numerically represent 

the risk on potential drug interactions through CYP450 metabolism in patients. In our previous study, we found that 

the multiplicative approach had limited ability to distinguish two patients’ drug-gene interactions9. This study 

represents further development of an additive algorithm. 

 

Figure 5. Flowchart of medication risk score calculation. 

 

The overall algorithm for medication risk score calculation is delineated in Figure 5. We divided the medication risk 

score into three parts: (1) drug-drug interaction representing contemporaneous effect of multiple drugs on 

cytochrome pathways affecting drug metabolism, (2) drug-gene interaction reflecting impact of individual 

cytochrome polymorphisms on metabolic phenotypes, and (3) gene function representing deleteriousness of 

cytochrome polymorphisms in a particular patient. For each drug the patient takes, the drug-drug interaction score ��� can be represented as 

��� = � � ���
�

��	



��	  �1� 

Where � is the binding enzyme of that drug, � is total number of enzymes; � is the other drugs that the patient also 

takes and will have effects on the same enzyme �, and � is the number of drugs the patient is taking. 

For each drug, the drug-gene interaction score ��� is defined as 

��� = � ��



��	
�2� 

where �� represents the metabolic phenotype of enzyme �. 
Drugs are often metabolized through multiple cytochrome pathways, each pathway has different contribution to 

drug's pharmacologic action. We collected weight data of the most common drugs from UpToDate.com and saved 
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this information in our database. Then we assigned a weight percentage for each drug. The weighted score for each 

drug (��) is 

�� = ���� ��� � ��
�

��	 � ∗ ���

��	

�3� 

where �� is the weight on enzyme � for drug �. 

Since allele functionality has decisive effect on drug metabolism, we added a term named gene function in our 

equation, to represent the impact of pharmacogene mutations. For each patient, the final risk score � is defined as 

� = � |��|�
�=1 � � ��



��	

�4� 

where �� is the gene function score. Still, � represents total number of enzymes and � represents the number of 

drugs the patient is taking. 

 

Results 

The resulting knowledge repository contained information on 763 drugs, 11 cytochrome enzymes, and 132 alleles. It 

included 2076 unique pairs of drug-enzyme interactions reflecting effect of medications on cytochrome activity, 132 

allele phenotype characteristics of individual cytochrome polymorphisms, and 721 enzyme-drug associations 

reflecting multiple metabolizing pathways of individual drugs. Out of 2076 drug-enzyme interactions, 691 were 

obtained from IU, 1848 – from SuperCyp, with 463 overlapping relationships. All 721 enzyme-drug associations 

were extracted from UpToDate. Out of 132 allele phenotype characteristics, 54 were obtained from SNPedia, and 

132 – from PharmGKB, with 54 characteristics overlapping between these two data sources. A summary of alleles 

for which metabolic phenotypes were collected is presented in Table 1.  

Table 1. Cytochrome alleles represented in the resulting knowledge repository. 

Cytochrome Alleles with Metabolic Phenotypes 

CYP1A2 *1A *1C *1F *1K *3 *4 *6 *7 

CYP2B6 *1A *4A *6A *16 *26 

CYP2C19 *1A *1B *1C *2A *2B *2C *2D *2E *2F *2G *2H

 *2J *3A 

*3B *4A *4B *5A *5B *6 *7 *8 *9 *10 *11

 *13 *15 

*16 *17 *18 *19 *22 *24 *25 *26 *28 *35 

CYP2C8 *1A *5 

CYP2C9 *1A *2A *3A *3B *4 *5 *6 *8 *9 *11A *12

 *13 *14 

*15 *31 *59 *60 

CYP2D6 *1A *1B *1C *1XN *2A *2XN *3A *4A *4B *4C *4D

 *4K *4X2 

*5 *6A *6B *6C *7 *8 *9 *10A *10B *10X2 *11

 *12 *13 

*14A *15 *17 *18 *19 *20 *21A *21B *29 *31 *33

 *35A *35X2 

*36 *38 *40 *41 *42 *44 *45A *45B *46 *68A *68B

 *69 *92 

*100 *101 

CYP2E1 *1A *2 *3 *4 

CYP3A4 *1A *18A *22 

CYP3A5 *1A *3A 

CYP3A7 *1A 
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We used twelve patients whose pharmacogenetic profile, medication list and hospitalization records were available 

for building scoring system. Among the twelve cases, pharmacogenomic testing indicated significant genetic 

polymorphisms in six of them, which affected overall metabolism of their prescribed drugs. These six patients had 

higher urgent care utilization than those without significant pharmacogenomics polymorphisms10. 

To obtain optimal parameters for the scoring algorithm, weights for drug-drug interaction, drug-gene interaction and 

gene function were modeled in series of iterative experiments. 

Figure 6 illustrates the total score for patients over the scaling of gene function score. Patient results from higher 

hospitalization rate (HHR) group are colored in red. The subject pgx15, which is represented in blue color, is the 

patient with the highest total score in low hospitalization rate (LHR) group. Patients in LHR group are supposed to 

have much smaller scores than others. To identify thresholds distinguishing patients in LHR and HHR groups, we 

used the patient with the lowest score in HHR group and the patient with the highest score in the LHR group 

(pgx15). Subsequently, the value of gene function factor was determined to be 30. 

 

 

 

 

Figure 6. Patient general score over gene function score. 

 

 

Figure 6 shows a graphical view the patients’ average score changes over different factors scaling. We still colored 

the HHR group with red, and LHR group with blue. The comparison between Figure 6a and Figure 6b indicated that 

the gene function factor played a key role in distinguishing two groups of patients: the score of HHR group 

increased rapidly through the increasing of gene function factor. The gene function factor had minor impact on LHR 

group as expected.   
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(a) drug-drug interaction and gene function factors           (b) drug-gene interaction and gene function factors 

 

(c) drug-drug interaction and drug-gene interaction factors 

Figure 7. Patient general score over different interaction factors. 

 

Figure 7 demonstrates the impact of drug-drug interaction, drug-gene interaction more clearly. Since all the test 

cases had significant polypharmacy, the change of drug-drug interaction factor lead to obvious changes in total 

score. It also showed that drug-gene interaction factor had more influence in HHR group as well as gene function 

factor. 

The scaling factor calculation revealed that we should set a higher drug-gene interaction and gene function factors, 

and keep drug-drug interaction factor as low as possible. In our model, the drug-drug interaction factor was 

eventually set to 0.1 for each competing drug (0: none; -0.1: substrate; -0.1: inhibitor; +0.1: inducer), the drug-gene 

interaction factor was set to 16 (0: normal/extensive; -16: poor; +16: rapid; -4: intermediate), and the gene function 

factor was 30 for all significant polymorphisms as mentioned above. 

We calculated the total score for two groups of patients. Table 2 shows the percentage of different contributing 

components in total score depending on patient group (HHR vs. LHR). Depending on the nature of individual 

polypharmacy and pharmacogenomic profile, there is different contribution of each of three total risk score 

components. 

The resulting total risk score for frequently hospitalized older adults with polypharmacy (72.04±17.84) was 

statistically significantly different (p<0.05) from the total risk score for older adults with polypharmacy with low 

hospitalization rate (8.98±2.37). 
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Table 2. Percentage of drug-drug interaction, drug-gene interaction and gene function score in patient’s total score. 

  Subject ID drug-drug drug-gene gene total score (value) 

High hospitalization  

rate (HHR) 

1 0.106 0.690 0.204 146.88 

2 0.186 0.287 0.538 55.75 

6 0.045 0.332 0.623 96.3 

7 0.038 0.115 0.860 34.88 

8 0.028 0.000 0.972 30.85 

10 0.059 0.503 0.444 67.6 

Low hospitalization 

rate (LHR) 

0 1.000 0.000 0.000 9.22 

11 0.314 0.686 0.000 9.72 

12 1.000 0.000 0.000 2.15 

13 0.545 0.455 0.000 8.8 

14 0.167 0.833 0.000 4.8 

15 0.385 0.625 0.000 19.2 

average 

HHR 0.077 0.321 0.607 72.04±17.84 

LHR 0.569 0.433 0.000 8.98±2.37 

Total 0.323 0.377 0.303 40.51±12.81 

 

 

Discussion and Conclusion 

Our initial goal was to build a prototype of platform-agnostic medication risk scoring system that can numerically 

represent the general effects of potential drug-drug and drug-gene interactions based on CYP450 metabolism. Such 

a system may potentially help identify patients with polypharmacy in need for optimizing their drug regimens and 

prioritize pharmacogenomics testing in risk populations with polypharmacy. We built a scalable and comprehensive 

database and a pluggable Java application. The initial prototype testing demonstrated feasibility of our approach and 

helped identify next steps in improving scoring algorithms. 

The main limitation of the study is small data set due to which systematic accuracy evaluation will be performed in 

the next stage of the project. Our next step is to utilize significant number of verified pharmacogenomics cases for 

training and testing the scoring algorithms. We plan to obtain sufficient sample from an ongoing study assessing 

impact of pharmacogenomic polymorphisms on urgent care utilization in older adults with polypharmacy10. We will 

employ a variety of machine learning techniques11 such as support vector machines, neural networks and 

classification and regression trees, to maximize the distance between the total scores representing study groups. A 

Receiver Operating Characteristic (ROC) curve will be used to identify cut-off points which maximize area under 

the curve (AUC) 12. Additional parameters affecting risk for hospital admissions will be included in the model. 

In the next iteration of this work, the granularity of underlying knowledge repository will be significantly expanded. 

We plan to expand our knowledge base using automated extraction of drug-drug13 and drug-herb14 interactions from 

published articles and other authoritative sources15 as well as information on metabolic phenotypes of specific 
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pharmacogenomics polymorphisms16. Patient-reported information on drug side effects17 and drug interaction18 may 

be an additional source of information for our knowledge database. The resulting knowledge base will have to be 

assessed for completeness in relation to other sources. Resulting scoring algorithms will be compared with other 

approaches to evaluate medication regimen risk such as recently introduced combinatorial pharmacogenetics 

approach for treatment of mental health conditions19. 

Once sufficient scoring resolution is achieved, the decision support tool will be tested in routine clinical care for 

identification of individuals with high risk medication regimen. Pharmacogenomic polymorphism has been 

demonstrated to be a significant predictor of frequent hospitalizations in older adults with polypharmacy20. Clinical 

decision support systems for medication optimization may significantly improve clinical outcomes21 and reduce 

medical errors22. Provider23 and patient education24 on use of pharmacogenomic testing via interactive apps coupled 

with pharmacogenomic support embedded into electronic medical records25 will further facilitate patient safety, 

improve quality of care, clinical outcomes and patient satisfaction. 
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