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We present a simple three-dimensional model to describe the autonomous
expansion of a substrate whose growth is driven by the local mean curvature
of its surface. The model aims to reproduce the nest construction process in
arboreal Nasutitermes termites, whose cooperation may similarly be
mediated by the shape of the structure they are walking on, for example
focusing the building activity of termites where local mean curvature is
high. We adopt a phase-field model where the nest is described by one con-
tinuous scalar field and its growth is governed by a single nonlinear
equation with one adjustable parameter d. When d is large enough the
equation is linearly unstable and fairly reproduces a growth process in
which the initial walls expand, branch and merge, while progressively
invading all the available space, which is consistent with the intricate struc-
tures of real nests. Interestingly, the linear problem associated with our
growth equation is analogous to the buckling of a thin elastic plate under
symmetric in-plane compression, which is also known to produce rich pat-
terns through nonlinear and secondary instabilities. We validated our
model by collecting nests of two species of arboreal Nasutitermes from the
field and imaging their structure with a micro-computed tomography scan-
ner. We found a strong resemblance between real and simulated nests,
characterized by the emergence of a characteristic length scale and by the
abundance of saddle-shaped surfaces with zero-mean curvature, which
validates the choice of the driving mechanism of our growth model.
1. Introduction
Self-organized growth phenomena are ubiquitous in physics, societies and
biology, with examples ranging from dunes and ripples in the sand, to crystals
and cities, to developing plants and embryos (see [1] for a review). All such
phenomena are associated with autonomous processes in which a substrate
increases its size while simultaneously developing a characteristic shape.

In some systems, growth is driven directly by volumetric expansion. This
process is common, for instance, in living tissues, where cell proliferation can
happen both at the surface and inside the volume. In other systems, growth
is driven mainly by accretion processes, whereby new material is added or
removed only at the surface of the growing object (crystals, concretions,
corals and shells are examples of this latter type of growth) [2]. As a conse-
quence, accretive growth is inevitably related to the dynamics of the
interfaces between the growing substrate and the external environment. Impor-
tantly the shape of the interface can contribute to focusing the growth-driving
quantity at specific positions, thus causing the onset of positive feedback loops
that produce fingering and tip-splitting. The growth-driving quantity itself can
be different in different systems. For example it could be pressure, as in the
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Figure 1. Fragments of nests built by Nasutitermes walkeri (a) and Nasutitermes ephratae (b).
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seminal work of Saffman & Taylor [3]—where one fluid
invades a more viscous one—or it could be the concentration
of a protein as in the more recent work of Clément et al. [4],
which was aimed at modelling the branching morphogenesis
of lungs. At small length scales, negative feedbacks (viscous
dissipation, capillarity) stabilize the system and fix the typical
scale of the final pattern [5]. Growth is then often a self-
sustained process where the form of the substrate is the main
ingredient as well as the main outcome of the growth process.

A particular example of self-organized accretive growth is
nest building by social insects. At first sight, collective nest
building by social insects may look different from the
examples above because the transport and deposition of build-
ing material is mediated by active agents—the insects—that
are capable of multiple regulations of activity, and of complex
movement patterns. In fact, there is extensive evidence that
nest building can be influenced by a number of factors, includ-
ing insects responding to environmental gradients [6],
crowding [7], the insects using their own body as a template
[8] and individual abilities such as path integration [9] (see
[10] for a review). Yet, while insect movement itself can
follow complex rules, the decisions that insects take of
adding or removing pellets at a particular place obey simple
‘stigmergic’ principles whereby the local configuration of the
environment is the main driver that determines the probability
of deposition and collection of material [11,12]. When insect
density is high, the effect of such stigmergic regulations is
likely to dominate the other factors and the nest growth
resembles an accretive growth. In this continuum approach,
the construction process should be described by a Turing-
like system of coupled equations, one for each of the
interacting fields—for example, density of agents, pheromones
and CO2 concentration—which are constrained by the shape of
the structure under construction.

However, the stigmergic nature of interactions between
insects and the growing substrate justifies an alternative
and simplified approach where only the growing substrate
is modelled explicitly and the nest grows by itself as a
function of its own shape, similarly to a crystal or a tissue.

Here, we focus in particular on modelling the nests built
by arboreal termites of the genus Nasutitermes. These are
lightweight—but robust—structures that are usually built
up on trees, typically around a branch or a tree fork. Their
structure is often isotropic and very homogeneous, to the
point that different parts of the nest can hardly be distin-
guished; galleries show a typical length scale and there are
no chambers or other specialized structures (figure 1). As a
consequence, these nests resemble a continuum substrate
with a coherent morphology, which makes them particularly
suitable to be treated as the result of accretive growth. Our
task is to identify a relevant and minimal ‘stigmergic func-
tion’ that summarizes the results of the interactions of
termites with the building material (i.e. the local rules of
growth and remodelling of the built structure) and that is suf-
ficient to produce structures comparable to those observed in
the real nests.

The actual construction process is difficult to observe, as
termites concentrate their building activity in short and
unpredictable bursts. The only available descriptions of ter-
mite behaviour during nest expansions come from the
laboratory experiments of Jones [13] (see also [14]). Jones
observed that construction always happens by deposition of
material on the edge of existing walls, and that these edges
progressively bend, split and merge in order to form an intri-
cate matrix, where the local surface of the walls often
resembles a saddle. The observation that wall edges concen-
trate the building activity indicates that the growth of the
structure is enhanced where the mean curvature is high;
nest growth would instead be inhibited in regions where
mean curvature is close to zero, as is suggested by the
appearance and relative stability of saddle-shaped surfaces.

The idea that curvature can guide termite aggregation
and building behaviour was investigated much more recently
in experiments by Calovi et al. [15], who demonstrated the
existence of a positive correlation between termite activity
and surface curvature in Macrotermes michaelseni termites
(an African termite species not too closely related to
Nasutitermes).

A role of surface curvature in directing building behav-
iour is also consistent with the observations by Fouquet
et al. [16], where elevated structures act as substrate aggrega-
tion points, and by Green et al. [17], who report that pellet
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depositions happen mostly at the edges of excavation sites.
However, we want to stress here that identifying local curva-
ture as a guiding factor in termite construction does not
equate to stating that termites respond to curvature directly.
Termites could impregnate the building material with a
‘cement pheromone’ that stimulates pellet depositions, or
respond directly to the gradient of humidity evaporating
from the built structure. While there is scarce evidence in sup-
port for a specific role of ‘cement pheromones’ in termite
building [18], and these putative pheromones often covary
with the water content of the building material [19],
our reasoning remains unchanged as long as these stimuli
correlate with the local surface curvature of the structures.

Based on these observations, we develop a model of sur-
face evolution that depends directly on surface curvature. The
model is reminiscent of gradient growth processes, where the
local curvature of the surface concentrates gradients and fuels
instabilities. In these processes, the instability is strong and
results in separate branches that compete together [20], and
cannot fuse [21]. Here the nest surfaces are tightly intercon-
nected so we have to find a new way of expressing this
growth, allowing both separation and fusion.
93
2. Growth model
A large set of growth phenomena can be identified with the
dynamics of the interface that divides the growing substrate
from the medium that supports the growth. We are then con-
fronted with a two-phase problem where boundary
conditions change in time and take the form of a curve or a
surface, depending on whether the geometry of the problem
is highly confined in one direction or fully three-dimensional
like our nests. Whenever this curve or surface largely deviates
from a planar front, it is quite challenging to treat the pro-
blem analytically, and predictions can be done only locally.
Implementing a time-evolving boundary condition in three
dimensions is also difficult and would certainly require
additional computing resources compared with a regular
domain. As an alternative approach, here we adopt a
phase-field model [22], or diffuse interface method, which
consists in replacing the substrate and the medium with a
continuous phase endowed with a scalar field f which is
defined everywhere in the considered volume and deter-
mines the presence of the first or the second entity
according to a threshold value. The frontier between the
two phases can then be easily retrieved as an iso-contour of
f in the considered volume. As long as f is continuous, the
geometry of the frontier can also be obtained from f via differ-
entiation [23], the growth model is then extremely simple and
consists of only one differential equation for the field f. The
growth equation should be nonlinear because we want the
growth process to saturate at some point, and we also want
to impose that new walls are only built adjacent to pre-exist-
ing ones, i.e. we want to describe an accretion process. We
define our scalar field f in the interval [0, 1], and assume
that the actual surface of the walls corresponds to the iso-sur-
face f = f0; for example, f0 = 0.5. We will then say that a point x
is inside the wall whenever f (x) > f0 and outside otherwise. If
the nest growth is a function of its own shape, the growth
equation must take the form

@f
@t

¼ A(f), (2:1)
where the operatorA is meant tomimic themain features of the
growth process as they are inferred from nest observations, and
we construct it as follows:

A(f) ¼ �fa(1� f)b � d(r � n̂)� D(r � n̂), (2:2)

where the constant d is strictly positive and the equation is pre-
sented in a non-dimensional form. The unit vector n̂ is the
normal to the local iso-surface and is given by n̂ ¼ rf=jrf j;
for example, n̂(x0) ¼ (rf=jrf j)jx0 will be the normal to the iso-
surface f(x) = f(x0) at the point x0.

The first term of the equation represents the actual growth
and can be decomposed into two factors: a differential oper-
ator �d(r � n̂) and a nonlinear kernel fα(1− f )β. The first
factor is precisely the mean curvature of the local iso-surface
multiplied by a constant, and is intended to mimic how local
curvature enhances the building or digging activity: the field
f increases (decreases) whenever the local curvature is positive
(negative). The second factor vanishes at f = 0, 1 and is maxi-
mum at f = f0 = α/(α + β); it is meant to damp any variation
of f far from the iso-surface f = f0, which is the only accessible
space for our walking agents: there cannot be any growth in
the empty space far from the pre-existing nest nor deep
inside a pre-existing wall. Finally, the exponents α and β are
intended to grasp the possible lack of symmetry between the
walls and the empty space, but this scenario is not discussed
in the present work, i.e. we will always consider α = β = 1.

The second term in equation (2.2) is proportional to the dif-
fusion of the mean curvature, which consequently
compensates the growth term whenever the local curvature
is too high. Technically, this is a dissipative term which pro-
vides a cut-off at the highest wavelength and is necessary to
produce a meaningful pattern, as is highlighted below in the
linear analysis. Phenomenologically, there are several reasons
to introduce this term. On the one hand, the growth of a wall
happens (field and experimental observations) by the sequen-
tial deposition of faecal pellets and soil/sand particles of finite
size, thus we can expect the existence of a minimum scale in
the spatial structure. On the other hand, one can expect that,
although it is mostly organized, the contributions of thou-
sands of agents must show a certain level of randomness
whose average effect likely produces some diffusion. Finally,
an explicit justification can be found in the experimental obser-
vations of Jones [24], which include a smoothing process
among the tasks performed by individual workers.

Now that a growth equation is defined we want to make a
further approximation. In fact the curvature operator r � n̂ is
highly non-analytical (and nonlinear) while we would like
our equation to be as simple as possible for both analytical
and numerical purposes. In the hypothesis that jrf j is
almost constant in the vicinity of f = 0.5, one can approximate
r � n̂/ Df . In addition we take α = β = 1, which fixes the maxi-
mum of the nonlinear kernel and the contour of the actual nest
at f0 = 0.5. Thus, our simplified growth equation reads

@f
@t

¼ �f(1� f)dDf � D2f , (2:3)

where Δ is the standard Laplacian or diffusion operator and Δ2

is the bi-Laplacian operator that commonly enters elasticity
problems [25] and was recently included in a phenomenologi-
cal model for vegetation patterns [26]. One observes that Δf
appears here with the opposite sign of a common diffusion
equation, that is, the first term in equation (2.3) is anti-
diffusive, while the second term is a diffusive term of higher
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Figure 2. Time sequence of a vertical cut of the field f for a simulation starting with a noisy half-sphere at the bottom of the simulation domain. Boundary
conditions are periodic at the lateral boundaries, and f = const. at the top and bottom boundaries. The time is normalized by the growth rate of the most unstable
mode in electronic supplementary material, figure S1.
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order or a hyper-diffusion. Note that the difference in the
derivative order of the two operators is the key ingredient
for pattern formation, as will be shown below through linear
analysis. Finally, one may remark that equation (2.3) does
not conserve the total mass (or volume) because of the non-
linear pre-factor f(1− f ). We stress that these two elements
are necessary to produce an organized structure like our
termite nests, as already observed by Deneubourg [27].

2.1. Linear analysis
In its simplified form (2.3), the growth equation can be easily
linearized around f0 = 0.5 and solved in Fourier space with
solutions of the form f ¼ f0 þ f̂ exp [ik � xþ st], which give
the following dispersion relation:

s(k) ¼ ~fdk2 � k4, (2:4)

where for simplicity we wrote |k| = k and
~f ¼ f0(1� f0) ¼ 0:25. The dispersion relation is shown in elec-
tronic supplementary material, figure S1. The parameter d is
strictly positive, which means that σ(k) changes sign at
k0 ¼ (~fd)1=2 and has a local maximum at kmax ¼ (~fd=2)1=2:
equation (2.3) is linearly unstable with the most unstable
length at λmax = 2π/kmax while all the small-scale disturbances
beyond the cut-off length λ0 = 2π/k0 are damped. Note that
k0 > 0 independently of d, thus the system is formally always
unstable. Nonetheless, a threshold is fixed by the smallest k
that can appear in a given domain of size L, which is k = 2π/
L. The instability threshold dc is then fixed by the size L of
the domain, with dc ¼ (2p=L)2=~f being themarginal condition.
One also remarks that the cut-off length λ0 is only

ffiffiffi

2
p

smaller
than λmax. This means that, while inspired by the granular
nature of the building material, the dissipative term smooths
away any details smaller than wall thickness. As a conse-
quence, our model cannot reproduce any internal porosity of
the walls, a parameter that termites could control through
the choice of the building material [28] and that plays an
important role for ventilation [29] of termite mounds.

Interestingly, in two dimensions, the same eigenvalue pro-
blem arises when studying the buckling modes of a thin plate
under symmetric in-plane compression [30]. The stationary
two-dimensional version of equation (2.3) coincides with a
particular case of Föppl–von Kármán equations that were dis-
covered more than a century ago [31]. Nonetheless, a very
similar problem has gathered new attention in recent decades
to explain delamination patterns occurring in multi-layered
material where the coating material does not have the same
elastic properties as the underlying substrate [32–34]. Notably
a similar mechanism was also invoked to explain the for-
mation of Miura-ori folding patterns that approximately
appear in nature; for example, in insect wings and blooming
leaves [35]. In most cases, emerging patterns significantly
differ from the planar solution (i.e. the solution we chose at
the beginning of this section) and likely arise from secondary
instabilities [36], which rather select a superposition of
planar waves that reflects the invariance of their orientation
at the instability onset.
3. Numerical simulations
We simulate equation (2.3) on a cubic grid with a finite differ-
ence code written in Python and automatically parallelized
with the Numba compiler. The largest domain we considered
is 256 × 256 × 256, where a growth simulation can be accom-
plished within about 5000 cpu hours. Both Laplacian and bi-
Laplacian operators are implemented with a first-order explicit
Euler scheme. Two different boundary conditions were con-
sidered: in the first configuration boundary conditions are
triply periodic, while in the second one lateral faces of the
simulation box are still periodic but Dirichlet boundary con-
ditions (i.e. f = const.) are imposed on the bottom and top
faces. Initial conditions are also varied. In the simplest case,
the whole simulation domain is initiated with white noise,
mainly to characterize the long-term (or quasi-stationary) sol-
utions of the equation within the bulk. Alternatively, we
initiate simulations with part of the volume copied from a pre-
vious simulation where a distinct pattern has already
appeared, while the remaining part of the domain is set to
zero. In this case, we also forbid any evolution for all the
points that are initially above a certain threshold which main-
tains the initial seed unchanged. This configuration is intended
to mimic the expansion process of a pre-existing nest, or a new
one which starts from an arbitrary shaped support (in the
following, we will refer to that as a nest-like seed).
4. Results
As a first result, we report that our model reproduces a
growth process. In figure 2, we show the evolution of the
field f for a simulation initiated with a nest-like seed with
the shape of a half-sphere at the bottom of an empty
domain (f = 0), and time is normalized using the growth
rate of the most unstable mode smax ¼ f20d

2=4 (see electronic
supplementary material, figure S1). One observes that the
initial seed grows, and progressively invades the empty
space; even more interestingly we notice that far from the
interface between the empty space and the growing nest
the field f is essentially stationary (for example, there is
little rearrangement of the pre-existing nest). This indicates
that equation (2.3) describes an accretion phenomenon
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Figure 3. Evolution of the f = 0.5 iso-surface over a period of five time scales: one recognizes at least one branching episode and one merging episode (red circles).
The simulation is the same as the one described in figure 2.
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happening at the interface between the growing walls and the
empty space, even if we did not implement any drying or
ageing effect and the field f could, in principle, change every-
where and at any time. Finally, we remark that the growing
interface frequently branches and merges, as is shown in
figure 3. Note that merging and branching episodes cover a
few time units, which confirms that local growth is correctly
described by linear analysis and our time scale is well chosen.

Secondly, we observe that in the growing pattern of
figure 2 a characteristic length scale appears which is the typi-
cal distance between two walls. We report that a similar result
was obtained for all the initial conditions and boundary con-
ditions we considered. In figure 4a–d (top), we show a two-
dimensional slice of the f field for two different simulations
(a,b), where (a) has triply periodic boundary conditions and
was initiated with white noise everywhere, while (b) is the
one already presented in figure 2. Both simulations were con-
sidered at large time, namely at t = 64 time scales for
simulation (a) and t = 93 time scales for simulation (b). To
track the existence of a characteristic length scale in our objects
we perform a three-dimensional fast Fourier transform (FFT),
which is shown in electronic supplementary material, figure
S2. The dominant frequency of the FFT was then obtained
and superimposed (squares) on the patterns in figure 4 as a
comparison. We remark that the dominant length indicated
by the FFT is consistent with the observed patterns. Finally,
we note that the emerging lengths are fairly consistent with
the most unstable length indicated by linear analysis, as
shown in electronic supplementary material, figure S1. Never-
theless, the observed patterns significantly differ from the
planar solutions we consider in §2.1, and appear to be modu-
lated in multiple directions. To quantify this feature, we
compute the auto-correlation functions Cf(x), Cf(y), Cf(z) in
the three Cartesian directions (symbols) and the function
Cf(|x|) averaged over all directions (solid line), with all the
distances rescaled by the typical length given by the FFT.
The results are shown at the bottom of figure 4a–d. First, one
observes that in all the diagrams Cf(|x|) shows a first maxi-
mum around d = 1, which is consistent with FFT analysis.
Then we remark that in simulation (a) all the directional corre-
lation functions present the same peak as Cf(|x|), which
indicates that the observed pattern is highly isotropic, while
in simulation (b) there is no peak in the vertical correlation
function Cf(z), which indicates that there is low modulation
in the vertical direction. Indeed, all the simulations we per-
formed ultimately show a similar sheet-like anisotropy. This
happens after a very slow process of rearrangement, which
usually takes tens or even hundreds of time scales after the pat-
tern has invaded the entire domain. Our interpretation is that
this particular pattern is always selected by nonlinear inter-
actions or secondary instabilities similar to those observed in
elastic plates [35,36], but different initial conditions can
either enhance or not enhance this effect, determining the
time at which this pattern takes over.
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Figure 4. Top: Cross section of the nest volume for two simulations (a,b) and two computed tomography scans of real samples (c,d ). The walls are in orange and
the empty space is in blue. The red square indicates the peak of the three-dimensional FFT over the whole volume. Bottom: Auto-correlation functions Cf, each one
corresponding to the nest above it. Symbols correspond to the value of Cf when computed only in one Cartesian direction, while the solid lines correspond to the
average value of Cf over all possible directions. For each nest, lengths are rescaled by the corresponding FFT peak.
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Figure 5. Effect of an f = 0 boundary on the nest growth. Panels (a) and (b) correspond to a two-dimensional vertical cut and a three-dimensional rendering of
simulation (b) at t = 128. The top face of the simulation domain was maintained constant at f = 0. One observes that, approaching the forbidden boundary f = 0,
the simulated nest closes itself, forming a roof which resembles the thin external layer of Nasutitermes nests (c).
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5. Comparison with real nests
We collected nest fragments of two different species of Nasuti-
termes, namely Nasutitermes walkeri from the Sydney area
(Australia) and Nasutitermes ephratae from Guyana; two of
these are shown in figure 1. The walls of these nests are some-
times infra-millimetric, thus a correct reconstruction of their
structure was possible only with the use of a micro-computed
tomography (micro-CT) scanner whose resolution was set to
0.1mm. A typical scan consists of a stack of images, where
higher intensity corresponds to the walls and lower intensity
to the empty space, analogously to the field f that we consider
in our model and simulations. We repeated our scale analysis
on two CT scans of fragments belonging to real nests of the
species N. ephratae (c) and N. walkeri (d), which are reported in
figure 4. As for simulated nests, the FFT of real nests indicates
a dominant length scale which is consistent with the observed
distance between the walls (see electronic supplementary
material, figure S2). Looking at the auto-correlation functions
one sees that fragment (d) is scarcely modulated in the horizon-
tal direction, which is consistent with the observed pattern,
while fragment (c) appears fully isotropic. Note that for these
fragments vertical and horizontal directions were completely
arbitrary. Indeed different degrees of isotropy or different
local structures can be encountered in different species and
even within the same nest at different depths, as in the case of
N. ephratae [37]. Interestingly, Jones [13] reported that, in Nasu-
titermes costalis, if the nest is cut open along a plane parallel to
the growth direction one observes a tall columnar structure
whose description highly resembles our simulation (b). As a
summary our model appears complex enough to reproduce
the variety of structures encountered in real nests as a response
to different initial conditions, which suggests that sensitivity to
initial conditions also matters in the real growth process.

As a second comparison we report that, whenever the
growing interface approaches a boundary where f is set to
0, the growing tips tend to connect, forming a sort of roof
scattered with holes, as is shown in figure 5. Waiting even
longer the holes tend to be filled and the connections between
the roof and the rest of the structure are progressively eroded.
Very interestingly in all the species of arboreal Nasutitermes,
nests are covered with a uniform thin crust, which in species
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such as N. ephratae happens also to be poorly connected to the
bulk structure [14,37].

There is no clear indication in the published literature of
what factors control the initiation and termination of a con-
struction activity burst, which is usually extremely rapid
compared with the lifetime of a colony [13].

These processes likely involve several external (weather
conditions, material availability, etc.) and internal (size and
health of the colony) variables that have been completely
ignored in our model. However, it is remarkable that our
simple model incorporates the boundary sensitivity of the
real process. Moreover, we could observe in the field that
whenever the external layer of a thriving colony is disrupted,
termites rapidly construct a patch that seals the internal struc-
ture from the exterior. This suggests that boundary conditions
could mimic the maintenance of a non-expanding stage.

At this point, we have already established strong corre-
spondence between our model and real nests: the very
convoluted structure (frequent merging and branching), the
existence of a typical scale and the sensitivity to external con-
straints both in space (boundary conditions) and in time
(initial conditions). However, all these are mostly qualitative
comparisons. Below we define a protocol to make our com-
parison quantitative. The difficulty of this task is due to the
fact that our objects are fundamentally disordered so that a
statistical approach is the only possible route. The choice of
the relevant quantity to compare may also be discussed,
but, coherently with our observations of real nests and with
our growth model, the local curvature is the best candidate.
The local curvature of a three-dimensional surface in one
point P can be entirely defined by two principal curvatures
k1 and k2, which are defined as the minimum and the maxi-
mum among the curvatures k of all the normal sections, i.e.
the planar curves given by the intersection between the sur-
face and a normal plane. Given the osculating circle to such
a curve, the value of k is the reciprocal of its radius while
the sign is positive or negative depending on whether the
curve turns in the same or the opposite sense of the local
normal vector n̂. Equivalently, one can define the mean cur-
vature H (which we already encountered in §2) and the
Gaussian curvature Γ,

H ¼ k1 þ k2
2

G ¼ k1k2: (5:1)

The sign of Γ tell us if the surface is more similar to a sphere
(Γ > 0), a cylinder (Γ = 0) or a saddle (Γ< 0), while the sign of
H tells us if we are at the exterior (H > 0) or the interior (H <
0) of our spherical, cylindrical or saddle-like surface. Finally,
H= 0 characterizes peculiar saddle-like surfaces which are
known as minimal surfaces where no interior or exterior can
be defined, the two sides being indistinguishable. To define
our statistical sample, we take advantage of the discrete rep-
resentation of our objects. As we defined them, both
simulations and real nests are scalar fields defined on a grid
of voxels, from where we extract an iso-surface in the form of
three-dimensional triangular meshes obtained via the Lewiner
Marching Cube [38] algorithm implemented in Python.
Our sample space will then be constituted by the set of all
surface elements, to which we associate two independent attri-
butes—the mean curvature H and the Gaussian curvature Γ.
These are obtained as a function of the mesh vertex coordi-
nates, as described in electronic supplementary material,
section S.II; importantly, these coordinates are first normalized
by the typical length given by the FFT in order to make the
comparisons consistent. In electronic supplementary material,
figure S4, we report a histogram of the frequency of our two
observables H and Γ for a collection of CT scans of real nest
fragments, simulations and synthetic data. The distribution of
H is always peaked and quite symmetric around H= 0 while
the values of Γ are more frequent at Γ< 0, which indicates
that all our surfaces share the abundance of the saddle-
shaped region. Nonetheless, a full characterization of our
objects demand that H and Γ are considered together.

In figure 6, we have reported the cumulative Gaussian
kernel density estimation (KDE; see electronic supplementary
material, equation (S2)) of the surface elements in the space
(H, Γ ). The regions between two contours indicate where
10% of the total counts occur, from the most frequent area,
in black, to the most rare area, in light grey. In the top and
central rows, we have reported the two simulations (a,b)
and two fragments of real nests (c,d) already analysed in
figure 4. At the bottom, we consider two synthetic bench-
mark surfaces which are a random surface (e) obtained
from a volume of white noise, which has been band-pass
filtered around a certain length, and a gyroid (f ), which is
a minimal surface, i.e. H = 0 everywhere. One recognizes a
strong resemblance in the distribution between simulation
(b) and nest (d). Compared with all the other diagrams one
observes that the curvature distribution is pushed towards
the centre H = Γ = 0 and its shape is squeezed in the direction
of the Γ axis. This distinction is consistent with the one we
have made in figure 4 in terms of isotropy/anisotropy,
since in simulation (b) and nest (d) we observe a higher pro-
portion of quasi-flat regions, which is consistent with higher
anisotropy. Conversely, simulation (a) and nest (c) are more
isotropic and share a broader distribution along the Γ axis,
which indicates a higher abundance of saddle-shaped regions
and is closer to the curvature distribution of a gyroid (f ). One
also remarks that in nest (c) the curvature distribution ismore
spread along the H axis, and it is extremely similar to the cur-
vature distribution of the random surface (e). These results
suggest that the construction process is intrinsically noisy
and that probabilistic rather than deterministic rules control
the building behaviour [39,40].
6. Discussion
Construction, as performed by humans or other animals,
usually involves the interaction between a building agent
and some building material under the guidance of innate or
learned rules of building. By contrast, growth—as it is
known in physics or biology—is an autonomous process
where a substrate grows by itself, depending on its inter-
action with the external environment. Arboreal nests built
by Nasutitermes termites lie in between these two categories
because they originate from the cooperation of thousands of
individual workers but the interactions between them are lar-
gely guided by the shape of the substrate itself, which makes
the nest construction a self-organized process. This justifies
our approach of formulating a model where the agents’ be-
haviour is incorporated in a classical accretion process
where the nest growth is focused in the region of high
curvature.

By identifying local surface curvature as the only trigger-
ing stimulus of termite construction, our model certainly
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ignores a large part of the complexity of behaviour of ter-
mites, and it does not include the possible effects of direct
termite interactions, such as traffic and crowding at the build-
ing site. Yet, the identification of curvature as an important
stigmergic stimulus that can guide termite building activity
is well supported in the scientific literature [13,15,16], and
our model is sufficient to reproduce some key features of
arboreal Nasutitermes nests: the intricate structure, the exist-
ence of a typical length scale, the sensitivity to boundary
and initial conditions and the abundance of saddle-shaped
structures of zero mean curvature. On these grounds, we
can conclude that, while real termite behaviour could be
more complex, a response to curvature alone is in itself suffi-
cient to explain a large part of the complexity observed in
arboreal termite nests. The nests of other termite genera
such as Apicotermes or Cubitermes present other structures
such as chambers and pillars (reviewed in [10]) that are not
naturally produced by our simulations. We can speculate
that saddle-like structures such as those observed in arboreal
Nasutitermes nests could be relatively ancestral features of ter-
mite constructions—supported by the fact that such
structures are also observed across distant taxa—which can
be produced through relatively simple building rules, but
other termites have probably evolved more complex building
rules that rely on additional stimuli and regulations.

We have designed a minimal nonlinear equation which
reproduces a growth process where the growing substrate pro-
gressively invades the available space, through a rich
dynamics of branching and merging which produces intricate
structures similar to Nasutitermes nests. We stress here that,
while branching is commonly observed in many gradient-
driven growth phenomena in both inert [5] and biological
matter [4,41], merging is impossible in such simple models
[20]. Only recently was merging observed when the gradient
was reintroduced on both sides [42]. With regard to our
model, we report that merging occurs only in three dimen-
sions, while in two dimensions the symmetry f→ (1− f )
must be broken in order to observe it. We also report that,
far from the front of freshly grown substrate, rearrangement
of the interface is negligible, although it is permitted. This is
consistent with empirical observations [13,43], which report
that, in Nasutitermes, nest walls are barely rearranged after
the initial construction. In a narrow band around the growing
front, minor rearrangements are possible; for example, freshly
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grown material (where f > 0.5) can be partially dug later. This
is intrinsic to our continuous phase-field approach, but is not
in contrast with termites’ behaviour, which may keep modify-
ing the wall shape as long as the building material is still
humid and easy to mould. In future work, it would be interest-
ing to explore how the pattern produced in the simulations is
modified with the addition of an explicit drying effect;
for example, coupling our equation with a moisture and
temperature field.

All the simulated patterns clearly show the emergence of
a characteristic length which corresponds to the one predicted
by linear analysis and scales as 1=

ffiffiffi

d
p

. This feature constitutes
a strong similarity to nest samples collected in the field,
which show a characteristic distance between neighbouring
walls. In real nests such a distance is comparable to termite
body size, which suggests that termites may use their body
as a template, as recently proposed for ants [8]. However,
our model shows that there is no need to enforce the use of
a template to observe the appearance of a typical distance.
Interestingly, at linear order our problem is analogous to
the buckling instability of a thin elastic plate under a sym-
metric in-plane compression of magnitude d: when d is
large enough the plate buckles and the compression energy
is released in the form of bending energy of the plate. This
classical problem has received renewed attention in recent
studies that showed how observed bending patterns usually
differ from the planar waves predicted by linear analysis
[36]. Instead richer patterns appear that are a combination
of multiple planar waves oriented in different directions,
because of secondary instabilities and nonlinear interactions.
A direct comparison between our model and the thin plate
problem is not possible because of the different dimensional-
ity and initial conditions. Yet, it is interesting to notice how,
similarly to the thin plates problem, in our simulations we
never obtain the planar solution but rather observe truly
three-dimensional patterns with a variable degree of isotropy
depending on the initial conditions. As a general rule, our
equation tends to select structures which have a narrow
wavelength in one direction and are slightly modulated in
the two others.

Incidentally, we observe that nest fragments from differ-
ent termites species, or even within the same nest, also
show a distinct variability in term of isotropy, thus we specu-
late that initial conditions should be relevant in the growth of
real nests as well, but further investigations will be necessary
in this regard.

Generated patterns are also very sensitive to boundary
conditions and in particular we observe that forbidding the
nest expansion (e.g. imposing f = 0) at one boundary induces
the formation of a uniform layer that isolates the nest from
the forbidden boundary. Interestingly, all Nasutitermes nests
are also covered with an external thin layer that seals the
nest from the outside world and is constantly repaired when-
ever damaged by wetting/drying episodes or other external
mechanical stresses, as was observed both in the field and
in the laboratory. A forbidden boundary does not necessarily
correspond to the existence of a solid boundary but could
correspond, for instance, to a threshold level of pheromone
emanating from the colony, as in the modelling study by
Ocko et al. [44] or a steep gradient in air humidity corre-
sponding to the transition between the inner humid
ambient of the nest and the dry exterior, as recently suggested
by the experimental study of Soar et al. [45]. In any case, we
find it relevant that our simple construction model responds
in a consistent way in terms of expressed morphology. Future
empirical studies would be needed to identify the releaser
stimuli that trigger the initiation and termination of nest
expansion.

Both the simulated and scanned surfaces show large por-
tions of zero mean curvature (H) and non-positive Gaussian
curvature (Γ ), which corroborates the hypothesis that curva-
ture is the main driving mechanism in construction. In fact, if
growth happens in the region of high mean curvature, we
expect that a stationary or quasi-stationary configuration
should correspond to one where local mean curvature is
low or null. Consistently, whenever the structure is saddle-
shaped, highly connected and isotropic, we find that
Gaussian curvature is negative,Γ < 0.Alternatively,weobserve
in both simulations and real nests the existence of sheet-like
structures of the type (H∼ 0, G & 0), which corresponds to
the emergence of a clear anisotropy.Wealso remark that curva-
ture distribution of isotropic nests resembles that of a random
synthetic surface with a typical length scale, which confirms
the absence of a global predetermined architecture. This is con-
sistent with a construction process driven primarily by local
information, as we implemented in our model.

While nest structure is primarily random on the local
scale, we already observed that nest fragments can have
different degrees of internal anisotropy and distinctive fea-
tures such as the external envelope. Owing to the relatively
small size of our samples, we do not have a detailed charac-
terization of nest topology and connectivity on the global
scale and the question remains open: are the observed top-
ology and connectivity emerging properties of the same
local construction mechanism—as in the present model—or
must they be enforced through additional global rules? In
addition, we plan to more thoroughly investigate the stimuli
that trigger the beginning or the end of a construction stage.
Previous literature is all but conclusive in this regard but we
expect that activation and inhibition should be related to the
colony size, which can be possibly translated to the abun-
dance of some auxiliary field, such as relative humidity,
CO2 or a pheromone. To this aim, we will couple our
model with some auxiliary field that is constrained to diffuse
or convect in the nest galleries and explore whether we can
observe significant time modulation in the nest expansion.

In the general context of accretion processes, we believe
that our equation may be adapted to other phenomena
where a growth rate sensitive to curvature and a local
smoothing process coexist, which is encouraged by the sim-
plicity of the equation and the richness of the expressed
patterns. While our model was primarily formulated to
describe the morphogenesis of arboreal termite nests,
saddle-shaped structures with a characteristic scale are also
observed in other biological systems, ranging from the nests
of other insects not directly related to termites (e.g. Lasius fuli-
ginosus) to the micro-structure of butterfly wings [46]. It is
possible that our model could also provide insight into the
formation of these other structures. The scientific literature
on social insects has often focused on agent-based models
as a tool to describe the behaviour of individual insects and
the emerging organization of the colony. We are confident
that simple ‘stigmergic’ models like the one developed here
have a great potential to explain not only how structures
are built, but also how transitions between different nest
plans can be triggered by small changes in the building
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parameters or environmental conditions. In relation to real
nests, such changes could correspond to transitions between
nest plans that emerge across phylogenies and could also
reflect adaptive changes in response to different habitats.
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