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Abstract

Building realistically complex models of infectious disease transmission that are relevant for informing public health is conceptually
challenging and requires knowledge of coding architecture that can implement key modeling conventions. For example, many of
the models built to understand COVID-19 dynamics have included stochasticity, transmission dynamics that change throughout the
epidemic due to changes in host behavior or public health interventions, and spatial structures that account for important spatio-
temporal heterogeneities. Here we introduce an R package, SPARSEMODr, that allows users to simulate disease models that are
stochastic and spatially explicit, including a model for COVID-19 that was useful in the early phases of the epidemic. SPARSEMOD
stands for SPAtial Resolution-SEnsitive Models of Outbreak Dynamics, and our goal is to demonstrate particular conventions for
rapidly simulating the dynamics of more complex, spatial models of infectious disease. In this report, we outline the features and
workflows of our software package that allow for user-customized simulations. We believe the example models provided in our pack-
age will be useful in educational settings, as the coding conventions are adaptable, and will help new modelers to better understand
important assumptions that were built into sophisticated COVID-19 models.
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Introduction
The emergence of the SARS-CoV-2 pandemic has reinforced the

strong role that mathematical models of disease spread play in

understanding pathogen transmission and in designing effective

public health interventions [1–5]. Models of infectious disease trans-

mission vary widely in their structural form and complexity [6, 7].

Classical models take the form of ordinary differential equations

describing “compartments” of the host and/or pathogen population

(e.g., susceptible versus infectious hosts) [8], but even these models

can become quite complex, containing numerous equations that

might, for instance, account for heterogeneities in the host popula-

tion or for the progression of pathogen-induced disease through

various host classes (e.g., hospitalized individuals). Early in the

COVID-19 pandemic, many compartment-style models were devel-

oped to address hypotheses of how rapidly SARS-CoV-2 was spread-

ing and what impacts non-pharmaceutical interventions might

have [9, 10], if and when the virus might become endemic [11], and

even whether regional climate patterns were likely to influence

transmission patterns [12]. Agent-based models, which track the

(probabilistic) fate of individuals, were also developed to make

short-term forecasts and long-term projections of COVID-19 for

public health preparedness [2, 13–15]. Many models nested

compartment-style or agent-based models within a spatial frame-
work to incorporate the impacts of spatial contagion and human
mobility on COVID-19 dynamics [16–20]. These examples highlight
the types of dynamics and assumptions modelers might include
when constructing mathematical and computational models of in-
fectious disease transmission, and these choices have important
implications for the resulting dynamics.

During the COVID-19 pandemic, some key dynamics have
been built into many models that influence the insights that
emerge from modeling studies, including short-term forecasts of
disease or longer-term projections of system behavior. Arguably
some of the most important of these model dynamics and
assumptions have been: stochastic transmission processes, such
as super-spreading events or probabilistic system behavior; time-
varying transmission dynamics due to public health interven-
tions and changes to human behavior (e.g., stay-at-home orders
or mask-wearing); and, spatial heterogeneity in transmission,
driven in part by human mobility. We will briefly highlight exam-
ples of how these dynamics have been important for modeling
the spread of SARS-CoV-2, especially in the early phases of the
pandemic.

Adding stochastic dynamics to models, such as demographic
stochasticity and environmental stochasticity, allows us to
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capture key processes that are especially impactful early in
epidemic behavior and in small populations [21]. Demographic
stochasticity refers to the probabilistic events that befall host
individuals, whereas environmental stochasticity refers to ran-
dom changes to the values of model parameters (e.g., transmis-
sion rate) that are due to sources not explicitly included in the
model (i.e., environmental sources). Environmental stochasticity
is sometimes used to account for heterogeneity in transmission
rate among host individuals, such as the impact of super-
spreaders [22], whereas demographic stochasticity accounts for
dynamics such as the probabilistic burn-out of a pathogen. For
COVID-19, models that included demographic stochasticity
where particularly important for explaining disease patterns in
regions with small populations [23]. Moreover, models that in-
cluded both demographic and environmental stochasticity
helped to disentangle the effects of both sources of stochasticity
on observed COVID-19 case counts during different phases of the
outbreak [24]. Importantly, accounting for stochastic model be-
havior also facilitates a more rigorous quantification of uncer-
tainty in model forecasts [15]. There are many methods to
implement stochastic dynamics within models [25], for instance
using Gillespie-style algorithms to iterate the differential equa-
tions that describe compartment models [26, 27], or through
agent-based modeling, which inherently deals with probabilistic
events that befall individual hosts.

Almost all of the models of COVID-19 referenced thus far
have needed to deal with the fact that SARS-CoV-2 transmission
dynamics and the dynamics of COVID-19 hospitalization
changed dramatically throughout the pandemic, due for in-
stance to non-pharmaceutical public health interventions
meant to slow transmission, or due to changes in hospital prac-
tice to treat and triage COVID-19 patients. Many COVID-19 mod-
els estimated time-varying transmission rates from case counts
or hospitalization data, or models inferred changing transmis-
sion rates using estimates of the pathogen’s instantaneous re-
productive number [15, 17, 28]. Therefore models need to be
flexible enough to allow the user to specify time-varying param-
eter values. For compartment-style differential equation models,
allowing time-varying parameters computationally requires that
the models are iterated forward, re-defining parameter values at
appropriate time points.

Modeling spatially explicit disease dynamics is important for
testing hypotheses about the roles of human mobility on spatial
contagion, the effectiveness of interventions that impact move-
ment, and understanding the sources of transmission within and
among regions. Spatial models also allow for more refined fore-
casts within specific locations. Indeed, spatial models are often
necessary to explain large-scale patterns of disease transmission
that cannot be captured by simpler, non-spatial models [29].
There are several approaches toward spatially explicit modeling
[30], including agent-based network models that situate individ-
ual hosts in specific spatial positions [2, 13, 14], or partial differ-
ential equations that assume hosts can move continuously
across spatial dimensions. One of the most popular approaches,
however, is meta-population disease modeling. In meta-
population models of disease, distinct host populations are
explicitly situated geographically such that movement of host
individuals between the populations affects local and regional
transmission dynamics [31–33]. The important basic theory of
spatial epidemiology has emerged from the analysis of meta-
population models [34, 35], which has in turn popularized the use

of these spatial models for understanding and forecasting real
public health threats [36]. Many early analyses of COVID-19 used
meta-population models to account for spatial heterogeneities in
transmission and disease outcomes [16–18, 37–39]. The most
complex meta-population models of COVID-19 parameterize
human movement based on an emerging suite of mobility data,
often derived from mobile devices [20, 40, 41].

Here, we introduce an R package, SPARSEMODr, that includes
two illustrative examples of spatially explicit and stochastic
meta-population disease models, including one of COVID-19.
Some agent-based simulation models of COVID-19 have been in-
troduced that develop software for users to experiment with the
models [13, 14], and several published models provide openly
available code for users to download [2, 15]. Our package focuses
on meta-population models in which users can simulate spatial
and temporal heterogeneities in transmission rates, effects of
host movement, and other user-defined dynamics that influence
local and regional patterns of disease. The COVID-19 model that
we provide was used by our group and others [42] to characterize
spatial and temporal variation in transmission patterns and dis-
ease outcomes (e.g., hospitalizations and ICU admissions) in
Arizona, USA. While the model is no longer complex enough to
capture many of the current critical aspects of COVID-19 trans-
mission and disease (e.g., the model does not include age struc-
ture, vaccination, nor the circulation of multiple variants), the
models in SPARSEMODr should nonetheless be useful for educa-
tional purposes. Our package demonstrates some specific con-
ventions of coding stochastic meta-population models that
could easily be carried over to different host–pathogen systems
in teaching, research, or applied contexts. SPARSEMODr

should be useful across disciplines, helping epidemiologists and
computer scientists alike to better understand coding conven-
tions for complex transmission models, or, if one wants to by-
pass reading the back-end code, the package will still facilitate
visualizations of basic concepts from spatial epidemiological
theory.

Example models
Currently, we offer two models in the SPARSEMODr package: one
is a more classic Susceptible-Exposed-Infectious-Removed (SEIR)
model, and the other is an SEIR-style model that more specifi-
cally describes the transmission of SARS-CoV-2 and COVID-19
progression from exposure through hospitalization through mor-
tality. Both models are compartmental disease models that are
simulated within a meta-population context, which we describe
below. We supply detailed vignettes that describe different use-
cases of the SPARSEMODr package, which can be found on CRAN:
https://cran.r-project.org/web/packages/SPARSEMODr/index.html
and the package GitHub repository.

The SEIR model is described by the following set of ordinary
differential equations:

dS
dt
¼ lN� bSI� lS�mS

dE
dt
¼ bSI� dþ lð ÞE

dI
dt
¼ dE� cþ lð ÞI�mI

dR
dt
¼ cI� lR

(1)
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Here, the state variables represent the numbers of hosts in
each class (e.g., S is the number of susceptible hosts). Following
some classic conventions, the model assumes that all host clas-
ses can reproduce at rate l, which is equal to the natural death
rate. This has the effect of maintaining total host population size
static through time. Moreover, all offspring enter the susceptible
class, such that N ¼ Sþ Eþ Iþ R. The pathogen incubates within
exposed individuals for an average latency time of 1=d, and infec-
tious individuals recover at rate c. This model structure leads to
exponentially distributed sojourn times. As we will describe be-
low, we assume that susceptible and infectious hosts can com-
mute away from their focal population at emigration rate, m, but
hosts return after 1 day. This commuter-style movement allows
susceptible individuals to become exposed by infectious individu-
als in other populations and infectious individuals to spread the
pathogen to other populations. An example simulation of the
model, in which we impose sinusoidal forcing of the transmission
rate, is shown in Fig. 1.

The COVID-19 model is described by the following equations
(Fig. 2; see also [42]):

dS
dt
¼ �btktS�mS

dE
dt
¼ btktS� d1E

dIa

dt
¼ d1q1E� caIa �mIa

dIp

dt
¼ d1 1� q1ð ÞE� d2Ip �mIp

dIs

dt
¼ d2Ip � d3Is �mIs

dIb

dt
¼ d3 1� q2 � q3ð ÞIs � cbIb

dIh

dt
¼ d3q2Is � d4Ih

dIc1

dt
¼ d3q3Is þ d4q4Ih � d5Ic1

dIc2

dt
¼ d5 1� q5ð ÞIc1 � ccIc2

dD
dt
¼ d5q5Ic1

dR
dt
¼ caIa þ cbIb þ ccIc2 þ d4 1� q4ð ÞIh

(2)

Figure 1: Simulation of the SPARSEMODr SEIR model. (a) Simulated host meta-population. (b) Imposing a sinusoidal pattern of time-varying
transmission rate, bt. (c) Pattern of number infectious over time from a single sub-population. The lighter lines are individual realizations of the
stochastic model. (d) Aggregating local patterns to regional scales to explore differences in emergent patterns.
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The term kt represents a component of the force of infection,
given by:

kt ¼
x1Ia þ Ip þ Is þ Ib þ x2 Ih þ Ic1 þ Ic2ð Þ

N� D
: (3)

Definitions of state variables and model parameters are
shown in Tables 1 and 2. Note that N represents the total number
of hosts in the population. We assume that individuals in the S,
Ia, Ip, and Is compartments can move between populations at em-
igration rate, m. We focus on these host classes as they can influ-
ence local and regional transmission dynamics, whereas, e.g., the
commuter-style movement of exposed individuals would have
no effect.

In the package manual, we provide default parameter values,
but all of the COVID-19 model parameters can be user-specified.
The package also conducts parameter validation steps via warn-
ings and errors to ensure specified parameters are within feasible
limits. Figure 3 shows a simulated example using the COVID-19
model.

Key features of SPARSEMODrdisease models
We implement a common coding architecture for the two models
provided in SPARSEMODr to highlight particular modeling conven-
tions that are useful to consider in theoretical and applied model-
ing studies. Here we describe these key features of the spatially
explicit and stochastic disease models. The models in
SPARSEMODr are coded in Cþþ and use the Rcpp package to con-
veniently wrap the functions into the R computing environment
[43], integrating the speed of Cþþ and the user-friendliness of R.
The output of each model is a data frame that includes the value
of each state variable and the number of new “events” (e.g., new
exposures, new hospitalizations) per time step per population per
stochastic realization of the model.

Stochastic dynamics
Demographic stochasticity
The models include demographic stochasticity, which imple-
ments the effects of probabilistic events that befall individuals in
a population and that can affect epidemic trajectories. We use an
event-driven approach in which the differential equations are it-
erated forward in daily time steps using a Gillespie-style algo-
rithm known as the tau-leaping algorithm [26]. The tau-leaping
algorithm is more flexible and more computationally efficient

compared to several other simulation and numerical integration

techniques [27]. And, because this form of demographic stochas-

ticity requires us to use integers for the host classes (i.e., numbers

of hosts in each class), it allows users to track the number of new

events occurring per time step.

Stochastic transmission process
We also implement daily stochastic variation in the transmission

rate, a form of environmental stochasticity. We assume that as

the number of infectious individuals increases, the variation in

Figure 2: COVID-19 model schematic. State variables and parameters
are defined in Tables 1 and 2.

Table 1: COVID-19 model state variables

State
variable

Description Corresponding
model input

S Number of susceptible individuals input_S_pops
E Number of exposed individuals input_E_pops
Ia Number of asymptomatic

individuals
input_I_asym_pops

Ip Number of pre-symptomatic
individuals

input_I_presym_pops

Is Number of mildly symptomatic
individuals

input_I_sym_pops

Ib Number of mildly symptomatic
individuals on bed rest at home

input_I_home_pops

Ih Number of hospitalized individuals input_I_hosp_pops
Ic1 Number of individuals in the ICU input_I_icu1_pops
Ic2 Number of individuals in the

recovery (step-down) ICU
input_I_icu2_pops

D Number of deceased individuals input_D_pops
R Number of recovered individuals input_R_pops
N Number of individuals in the

population
input_N_pops

Table 2: COVID-19 model parameter descriptions

Parameter Description Corresponding
model input

bt Time-varying transmission rate beta
x1 Proportion reduction in transmis-

sion for asymptomatic individuals
frac_beta_asym

x2 Proportion reduction in transmis-
sion for hospitalized individuals

frac_beta_hosp

d1 Transition rate: exposed to
pre-symptomatic

delta

d2 Transition rate: pre-symptomatic to
symptomatic

recov_p

d3 Transition rate: symptomatic to
home or regular hospital bed or
ICU

recov_s

d4 Transition rate: regular hospital bed
to recovery or ICU

recov_hosp

d5 Transition rate: ICU to step-down
ICU or deceased

recov_icu1

ca Recovery rate: asymptomatic recov_a
cb Recovery rate: home bed recov_home
cc Recovery rate: step-down ICU recov_icu2
q1 Fraction of exposed that transition

to asymptomatic
asym_rate

q2 Fraction of symptomatic that
transition to hospital bed

hosp_rate

q3 Fraction of symptomatic that
transition directly to ICU bed

sym_to_icu_rate

q4 Fraction of hospitalized that
transition to ICU

icu_rate

q5 Fraction of patients in ICU that die
of disease

death_rate

m Emigration rate m
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transmission rate decreases, emphasizing that stochasticity has

larger effects in smaller populations [44]. Our specific form of sto-

chasticity implies that there is heterogeneity in the transmission

rate among individuals in the host population, such that our

methods can account for super-spreader events, for instance,

which have disproportionate effects early in the epidemic. The

functional form of stochasticity is:

brealizedt
¼ bt� 1þ vffiffiffiffiffiffiffiffiP

I
p� �����

����: (4)

For every time step t, we draw a random variate, v, from a nor-

mal distribution with a mean of zero and a standard deviation of

r, such that v � N 0;rð Þ, and r is a user-controlled model input,

stoch_sd. We calculate the total number of infectious individuals

in the population, which we abbreviate
P

I, because the summa-

tion will depend on the model and which state variables repre-

sent infectious individuals (e.g., there are several infectious

states in the COVID-19 model). The vertical bars show that

brealizedt
is the absolute value of the right-hand expression.

Spatial, meta-population dynamics
To iterate the SPARSEMODr models in a spatial context, we embed
the equations into sub-populations that make up a meta-
population, in which migration connects sub-populations.
Migration between populations in the meta-population thus
affects local and regional transmission dynamics. Susceptible
individuals in a focal population can become exposed to the
pathogen by infectious “visitors” from other sub-populations or
by infectious visitors from outside of the meta-population
(“immigrants”). Similarly, susceptible individuals can visit a dif-
ferent sub-population and become exposed by the resident infec-
tious individuals. We model movement using a commuter-style
approach, in which hosts can move to an alternative sub-
population during a time step, but then they return to their home
sub-population before the start of the next time step. After we
move individuals to new populations, transmission between sus-
ceptible residents and infectious visitors is determined, and the
visitors then leave the population. In other words, in a single day
(i.e., time step), transmission first occurs within a population and
then additional transmission can occur after hosts commute.

Figure 3: Simulation of the SPARSEMODr COVID-19 model. (a) Simulated host meta-population. (b) Imposing a pattern of time-varying transmission
rate, bt. (c) Pattern of new hospitalizations over time from a single sub-population. The lighter lines are individual realizations of the stochastic model,
while the dark line is the median trajectory of these realizations. (d) Aggregating local patterns to regional scales to explore differences in emergent
patterns. Light and dark lines as in panel (c).
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The user controls the per-capita emigration rate, m, of suscep-
tible and infectious hosts. Our models assume that the probabil-
ity of moving to any specific population is dictated by a simple,
distance-based dispersal kernel:

pi;j ¼
1

exp di;j=/
� � : (5)

Here pi;j is the probability of moving from population j to popu-
lation i, and di;j is the Euclidean distance between the two popula-
tions. Larger values of the / parameter (controlled as user input
dist_phi) make it more likely for hosts to travel farther distances.
To determine the population to which migrants will move during
any given time step, we draw from a multinomial probability dis-
tribution using the pi;j values.

The models also allow the effects of immigrants, who do not
usually reside in the meta-population, to commute to the meta-
population each day (e.g., out-of-state tourists). The user can de-
fine the model input immfrac, which is the proportion of the fo-
cal population that may constitute visitors on any given day. For
example, if for a given focal population the population size is
1000 hosts, and imm_frac¼0.05, an average of 50 immigrants
may arrive on a given day. The exact number of these immi-
grants arriving on a given day is determined by drawing from a
Poisson distribution. Then, the number of infectious visitors from
this pool of immigrants is assumed to be proportional to the
number of infectious residents in the focal population. In other
words, we assume that the pathogen is present in “non-resident”
populations at similar prevalence as the focal population.

Time-varying parameters
The SPARSEMODr models allow users to specify certain time-
varying parameters, which take on unique values per day. Both
models allow the transmission rate, b tð Þ, to vary over time, and
we allow the user to control how movement dynamics change
over time with time-varying values of m, /, and the fraction of
the population that constitutes outside immigrants, immfrac. In
the COVID-19 model, we also allow time-varying fraction of hos-
pitalized, q2, transition rate of hospitalized individuals, d4, frac-
tion advancing to the ICU, q4, and fraction of ICU patients that
die of disease, q5. We chose to allow these parameters to vary
over time to emphasize that these rates, in reality, very likely
changed throughout the COVID-19 pandemic, for instance, due
to changes in hospital policies and improvements to patient care.
The time-varying parameters can be specified in one of two ways,
which we demonstrate in “Workflow” section.

Frequency- and density-dependent transmission
In the SPARSEMODr models, the transmission process can be de-
scribed as frequency-dependent, where contact rates are invariable
to population density, or density-dependent, where contact rates
depend on population density [45]. For frequency-dependent trans-
mission, we divide the user-specified value of transmission rate by
the total number of hosts within a given sub-population. For exam-
ple, in the SEIR model, we have the following expression describing
mass-action transmission per sub-population, i: bi;t

Si;t

Ni
Ii;t; where bi;t

is the user-specified transmission rate for sub-population i at time
step t, and Ni is the total host population size for sub-population i.
Therefore, with frequency-dependent transmission, the effect of a
single infectious host on the risk of infection is modulated by the
fraction of the host population that is still susceptible, irrespective
of the host population density (i.e., number of hosts per unit area)
within that sub-population.

Alternatively, for density-dependent transmission, the user
can specify a non-linear Monod equation that describes the rela-
tionship between host population density and the transmission
rate. The Monod equation is:

bDD;i;t ¼ bi;t
Ni=Ai

Kþ Ni=Ai
; (6)

Here, bi;t is the transmission rate supplied by the user, but im-
portantly this functionally becomes the maximum possible
transmission rate for sub-population i at time step t. Thus, bDD;i;t

is the density-dependent transmission rate for sub-population i
at time step t. Ni=Ai is the density of the focal host population
(i.e., number of hosts, Ni per unit area, Ai). To use this form of
transmission, the area per population, Ai, must therefore be
specified by the user as input vector, census_area. Finally, K is a
constant that controls the effect of density on the transmission
rate. More specifically, K is the half-saturation constant at which
point bDD;i;t=bi;t ¼ 0:5. In general, when K ¼ 0, there is no effect of
density on transmission rate, but larger values of K mean that
low host densities more strongly reduce the transmission rate
(i.e., transmission rate more strongly depends on host population
density). The value of K is user-controlled by model input,
dd_trans_monod_k.

Workflow
Process overview
SPARSEMODr runs spatial, stochastic models across a user-
specified grid of populations. In Figs 1 and 3, we simulated
populations that are scattered across a spatial lattice; one could
imagine these are local communities situated within counties, la-
belled as “Regions.” In these particular simulations, we imposed a
time-varying transmission rate, bt, but we assumed that each local
population experiences the same pattern of time-varying trans-
mission. The models track the spread of the disease in each sub-
population, such that we can computationally aggregate patterns
from local populations to higher spatial scales (e.g., “Regions”) to
look at emergent patterns. Below we describe the necessary setup
and declarations to run these simulations for the models in
SPARSEMODr, focusing on the more complex COVID-19 model.

Declaring initial conditions and constant
parameters
Users must specify the initial conditions of the state variables.
To initiate the COVID-19 model, at least one of the following
vectors must be supplied with a value greater than one for at
least one sub-population: input_E_pops, input_I_asym_pops,
input_I_presym_pops, input_I_sym_pops, input_I_home_pops,
input_I_hosp_pops, input_I_icu1_pops, or input_I_icu2_

pops. If any initial values of state variables are not supplied, they
are assumed to be zero. Moreover, either a vector of input_N_pops
or a vector of input_S_pops must be supplied. As an example, we
will specify:

N_pops <- rep(5000, 10) # 10 populations, each

with 5000 individuals.

E_pops <- c(0,1,0,3,2,0,14,3,0,0) # Number of

initially exposed in each pop.

S_pops <- N_pops—E_pops # All others assumed

Susceptible

The user must also declare some inputs that are shared be-
tween the SPARSEMODr models: input_dist_mat is a matrix that
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specifies the distance between populations; input_realz_seeds is

a vector of integer values to seed the random realizations of the

model; stoch_sd is the standard deviation of the stochastic trans-

mission rate, r, as described above; trans_type specifies the type

of transmission type (frequency- or density-dependent); input_

census_area is the spatial area of each population, but this is

only required when transmission is declared as density-

dependent; dd_trans_monod_k the parameter controlling

density’s effect on transmission, again only required for density-

dependent transmission; and input_tw a time window object,

which we will describe in the next section.
The next step is to populate the model-specific “control” ob-

ject, which is a special R class defined in our package. Each model

has its own control class that includes the model-specific param-

eters and initial conditions of the state variables.
As a simple example with the COVID-19 model, given the ini-

tial conditions above, here we will use default parameter values

for all but two parameters:

my_covid19_control <- SPARSEMODr::covid19_control(

input_S_pops ¼ S_pops, # susceptible population

counts

input_E_pops ¼ E_pops, # exposed population counts

asym_rate¼0.4, # fraction of exposed that become

asymptomatic

recov_icu1¼0.125) # average ICU recovery rate,

i.e., 8days (1/8)

Also, because input_N_pops was not provided, the package in-

ternally assumes input_N_pops ¼ input_S_pops þ input_E_pops.

covid19_control() returns a named list of vectors that must be

supplied when running the model.

Declaring time-varying parameters with the
time_windows object
A time_windows object is required to specify the time-varying

parameters (or whether these parameters are assumed constant).

There are two ways to specify time windows: (i) specifying values

for each time step in the simulation (i.e., “daily” method), or (ii)

the starting and ending dates of user-defined time windows. For

the “daily” method, the parameter vectors must be of size equal

to the number of days in the simulation. For the start date/end

date method, values for each parameter are assigned at the be-

ginning and end of the time window. Then, the back-end code

calculates a linear interpolation to assign daily values of the pa-

rameter; in other words, the parameter values change linearly

from the starting value to the ending value over the number of

days within the time window.
In the following example, we specify the start and end dates of

our time windows for time-varying transmission rate, to match

the pattern shown in Fig. 3b. Note that we format dates using the

lubridate package [46], although other methods are acceptable as

long as they are objects of class Date in R.

# Function to specify all of the required parameters in

a single time-window

# In this example, only r0 is variable between the time

periods

one.window <- function(

start_dates, #start of time window (date class)

end_dates, #end of time window (date class)

beta, #value of time-varying beta

dist_phi¼150, #controls shape of dispersal kernel

m¼0.1, #per-capita movement rate, i.e., move every

10days on avg.

imm_frac¼0) f #zero outside immigration
data.frame(beta, start_dates, end_dates, dist_phi,

m, imm_frac)

g
library(lubridate) # for mdy()

time.window.args <- rbind(# Specify the components of

5 time windows

one.window(mdy(“1-1-20”), mdy(“1-31-20”),

beta¼0.40),
one.window(mdy(“2-1-20”), mdy(“2-15-20”),

beta¼0.10),
one.window(mdy(“2-16-20”), mdy(“3-10-20”),

beta¼0.10),
one.window(mdy(“3-11-20”), mdy(“3-21-20”),

beta¼0.15),
one.window(mdy(“3-22-20”), mdy(“5-1-20”),

beta¼0.15)
)

# Populate the required object of class time_windows

my_tw <- do.call(SPARSEMODr::time_windows, time.

window.args)

The package documentation and the vignettes give additional

examples of how to flexibly structure these time window objects.

Notably, the vignettes demonstrate how to specify time-varying

bt values for each sub-population individually, to explore effects

of spatially heterogeneous transmission rates within the meta-

population. In this latter case, users would specify a list of beta

vectors.

Running stochastic realizations in parallel
For efficiency and to reduce run time, we suggest simulating sto-

chastic realizations of the SPARSEMODr models in parallel.

We have therefore created a function, model_parallel(), that

leverages the future package [47] and compiles the output of

the individual model runs into a user-friendly data frame. As an

example:

# Specify the number of realizations to run:

n_realz <- 75

# Specify unique seeds to run the realizations.

## Note, realizations with the same seeds will produce

## equivalent output

my_realz_seeds <- 1: n_realz

# Run the model in parallel and store the output:

model_output <- SPARSEMODr::model_parallel(

input_dist_mat ¼ dist_mat,

input_census_area ¼ census_area,

input_tw ¼ my_tw,

input_realz_seeds ¼ my_realz_seeds,

control ¼ my_covid19_control,

. . .universal_model_params. . .)

Here “. . . universalmodelparams . . .” represents the universal

model parameters, such as trans_type or stoch_sd, as described

above. Note that dist_mat is a pairwise distance matrix, and cen-

sus_area is a vector of population areas (e.g., in km2). The pack-

age documentation and vignettes show examples of creating
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these two inputs. Since model_parallel() produces a data frame,

the output can easily be subset and summarized for plotting.

Conclusion
The SPARSEMODr package illustrates coding paradigms to specify

and simulate complex disease models that are both stochastic

and spatially explicit. In pedagogical contexts, SPARSEMODr mod-

els can be used to demonstrate the effects of time-varying trans-

mission rates (e.g., as affected by disease interventions),

demographic and environmental stochasticity, frequency- versus

density-dependent transmission, and spatial heterogeneities. For

instance, simulating the SPARSEMODr SEIR model can reinforce

foundational theoretical concepts in mathematical epidemiology,

such as spreading waves of disease or spatial (a)synchrony of epi-

demics. The SPARSEMODr COVID-19 model can be used to help

students understand the key features of models built early in the

pandemic to address public health issues, e.g., highlighting the

effects of public health interventions, spatiotemporal effects of al-

tering human movement, or the changing landscape of hospitali-

zation dynamics before vaccines were available. Because we

develop a standard coding architecture for the two models in

SPARSEMODr, we can envision multiple future package develop-

ments. For instance, our team or outside contributors can add

models that follow the same coding standards, such as vector-

borne disease models, or COVID-19 models that include additional

layers of realism, such as age structure, vaccination, and the dy-

namics of co-circulating variants. For package contributors, a new

model would have to follow the current conventions, which can

be copied from our GitHub repository (https://github.com/NAU-

CCL/SPARSEMODr). Our team would approve all outside contrib-

uted model structures by forking and merge requests. We also

plan to modularize the SPARSEMODr coding conventions using

APIs so that they can be auto-populated for new models, reducing

the need for copy-and-pasting code. We hope that the community

of disease modelers and educators will help us to refine the pack-

age and to make it more accessible to broader audiences.
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