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Abstract

Background: Despite an overall decrease in incidence of and mortality from cancer, about 40% of Americans will be
diagnosed with the disease in their lifetime, and around 20% will die of it. Current approaches to test carcinogenic
chemicals adopt the 2-year rodent bioassay, which is costly and time-consuming. As a result, fewer than 2% of the chemicals
on the market have actually been tested. However, evidence accumulated to date suggests that gene expression profiles
from model organisms exposed to chemical compounds reflect underlying mechanisms of action, and that these
toxicogenomic models could be used in the prediction of chemical carcinogenicity.

Results: In this study, we used a rat-based microarray dataset from the NTP DrugMatrix Database to test the ability of
toxicogenomics to model carcinogenicity. We analyzed 1,221 gene-expression profiles obtained from rats treated with 127
well-characterized compounds, including genotoxic and non-genotoxic carcinogens. We built a classifier that predicts a
chemical’s carcinogenic potential with an AUC of 0.78, and validated it on an independent dataset from the Japanese
Toxicogenomics Project consisting of 2,065 profiles from 72 compounds. Finally, we identified differentially expressed genes
associated with chemical carcinogenesis, and developed novel data-driven approaches for the molecular characterization of
the response to chemical stressors.

Conclusion: Here, we validate a toxicogenomic approach to predict carcinogenicity and provide strong evidence that, with
a larger set of compounds, we should be able to improve the sensitivity and specificity of the predictions. We found that the
prediction of carcinogenicity is tissue-dependent and that the results also confirm and expand upon previous studies
implicating DNA damage, the peroxisome proliferator-activated receptor, the aryl hydrocarbon receptor, and regenerative
pathology in the response to carcinogen exposure.
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Introduction

[T]he development of truly useful, predictive tests of human
carcinogens still lies in the future.
– R.A. Weinberg [1]

Despite an overall decrease in mortality from cancer, about

41% of Americans will be diagnosed with the disease and about

21% will die from it [2]. The incidence of certain cancers is

increasing for unknown reasons, and there is substantial evidence

suggesting that inherited genetic factors make only a minor

contribution [3], while the percentage of cancer cases that can be

attributed to infectious diseases remains stable at about 16–18%

[4]. It has thus been widely hypothesized that accumulating

environmental chemicals play a significant role in sporadic cancer

[5–7]. There is also growing recognition that the role played by

environmental pollutants in human cancer is under-studied, and
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that more formal approaches to the analysis of the biological

consequences of prolonged exposure to pollutants are needed

[8,9].

High-throughput genomic approaches have been successfully

applied toward the elucidation of the molecular mechanisms of

cancer initiation and progression, to the identification of novel

therapeutic targets, and to the development of diagnostic and

prognostic biomarkers, resulting in thousands of publications.

However, their application to the study of the environmental

causes of cancer has not received as much attention.

Standard approaches to carcinogen testing have adopted the 2-

year rodent bioassay (2YRB) as the de facto ‘‘gold-standard’’. The

2YRB requires, for each compound, the use of more than 800

rodents and for each rodent a histopathological analysis of more

than 40 tissues, with a cost per compound in the $2–4 million

range depending on route of administration, number of doses to be

examined, and chemical being evaluated. As a result, only

approximately ,1,500 of the ,84,000 chemicals in commercial

use have been tested [10–13]. Furthermore, substantial recent

literature questions the reliance on animal assays to model the

biology of human carcinogenicity for regulatory purposes [14,15].

On the other hand, the evidence accumulated to date suggests that

gene expression profiles of model organisms or cells exposed to

chemical compounds reflect underlying biological mechanisms of

action and can be utilized in higher throughput assays to predict

the long-term carcinogenicity (or toxicity) of environmental

chemicals [13]. Multiple mechanisms of action for rodent

hepatocarcinogenicity have been implicated by the analysis of

toxicogenomics data, including DNA damage, regenerative

proliferation, xenobiotic receptor activation, peroxisome prolifer-

ation and steroid-hormone mediated carcinogenesis [13,16,17].

Furthermore, several studies have tested the predictability of

(genotoxic and non-genotoxic) carcinogenicity of chemical com-

pounds from the expression profiles of animal models’ tissues or

cell cultures exposed to the chemicals, and provide preliminary

evidence that gene expression-based carcinogenicity prediction is

indeed feasible [13]. While offering valuable insights, and

significantly informing the analytic approach reported here, most

of these studies were limited to a relatively small number of

compounds or to a limited set of transcripts, and have not

thoroughly explored the effects of time and dose of exposure, or

issues of portability of the models across independently generated,

genome-wide expression datasets.

In this study, we present the results of our analysis of two large

cohorts of rat-based expression profiles from animals exposed to

hundreds of well-annotated chemicals with varying carcinogenicity

and genotoxicity (DrugMatrix, [18]; Toxico genomics project-

Genomics Assisted Toxicity Evaluations (TG-GATEs), [19], see

Materials). The profiles represent short-term (hours or days)

exposure assays, and, when paired with the available long-term (2

years) carcinogenicity labels of the compounds profiled, provide

ideal data with which to test the hypothesis that long-term

exposure phenotypes can be accurately modeled by short-term

gene expression-based assays. To our knowledge, the collection we

assembled represents the largest toxicogenomics resource analyzed

to date, and allows us to rigorously evaluate issues of batch-to-

batch variability, tissue-, time-, and dose-dependency, sample size

adequacy, and determination of the optimal number of genes/

transcripts necessary to achieve maximum predictive accuracy.

Here, we detail our predictive model building effort based on a

discovery set, the DrugMatrix, comprising 1,221 expression profiles

in liver corresponding to 127 chemical compounds tested at

multiple doses and exposure times. We then present the results of

our evaluation on a completely independent validation set, the

TG-GATEs, consisting of 2,065 profiles corresponding to 72

compounds, and we show that our classifier does generalize

without loss of accuracy. We investigate the impact of tissue type-,

dose-, time-dependency, and sample size on carcinogenicity

prediction and also introduce a gene set projection method aimed

at increasing the biological interpretability of the predictive model

while improving the robustness of the classification across

independent datasets. Finally, we present the results of our

analysis aimed at the characterization of the carcinogenome,

defined as the set of genes and pathways that reflect mechanisms of

action associated with carcinogenesis, and of our effort at defining

data-driven gene modules reflecting complementary mechanisms

of action relevant to chemical carcinogenesis. A graphical

overview of all analyses is provided in Figure S1 in File S1.

Results

Multi-tissue exploratory data analysis
Principal component analysis (PCA) was performed to identify

the major sources of variation in the DrugMatrix dataset. A plot of

the first two principal components shows that the data are

stratified by tissue type (Figure 1a), with heart and thigh muscle

tissue results clustering tightly on the lower left side, kidney on the

upper left side, and liver tissue and cultured hepatocytes on the

right side. 46.3% and 26.1% of the overall variance in the data is

explained by the first and second principal components, respec-

tively. Hierarchical clustering of the samples yields similar

stratification by tissue of origin (data not shown). These results

suggest that tissue is a major confounding factor, and for that

reason all subsequent analyses were performed within a given

tissue type. The Carcinogenic Potency Database (CPDB) was used

as arbiter of tissue specific carcinogenicity for each compound

(Methods and Materials). PCA performed within liver only

(Figure 1b and 1c) shows that the segregation induced by the

genotoxicity and carcinogenicity phenotypes is not as marked as

the segregation by tissue type, underscoring the need for tissue-

specific analyses. Of note, the overall changes in transcript

abundance induced by genotoxic compounds are smaller than

the changes induced by carcinogenic compounds (1st PC variance

of 76.5 versus 182.4, respectively; see boxplots at bottom of

Figure 1b and 1c). This outcome may reflect the fact that

genotoxic compounds mediate carcinogenicity through a single

mechanism, i.e., DNA damage, while non-genotoxic carcinogens

induce malignancy through a variety of pathways including, but

not limited to chronic nuclear or growth factor receptor activation,

aberrant activation of kinase and calcium channel signaling

cascades, increased proliferation, altered apoptosis signaling,

and/or altered metabolism, all of which would be expected to

yield a broader spectrum of transcriptional changes than those

resulting solely from DNA damage, a point to which we will

return.

Molecular Characterization of the Transcriptional
Response to Chemical Perturbation

Next, we sought to rigorously define the transcriptional response

to chemical carcinogens in terms of the genes and signaling

pathways significantly associated with chemical perturbations, and

differentially expressed between carcinogens and non-carcinogens,

as well as between sub-types of carcinogens. To this end, we

carried out within- and across-compound differential and pathway

enrichment analyses of the DrugMatrix liver samples.

Defining the perturbational transcriptome. We first

aimed at characterizing the perturbational transcriptome – defined

as the set union of the genes that significantly respond to chemical
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perturbation by any compound – and to evaluate whether the

perturbation patterns are significantly associated with the carci-

nogenicity of the compounds. To this end, we identified for each

compound the transcripts significantly up- or down-regulated with

respect to the matched controls, across multiple durations of

exposures. In total, 2,745 (,24%) transcripts showed significant

(false discovery rate (FDR) #0.01, fold-change$1.5) up-/down-

regulation for at least 5 compounds relative to their matched

controls (Table S28 in File S2). Of these, 569 had a significant

association with the carcinogenicity phenotype at an FDR q-

value#0.05 (see Methods). To obtain a global view of the

expression patterns across compounds, a data matrix was

generated with each compound represented by the column vector

of the ‘treatment vs. control’ t-scores. Hierarchical clustering of the

resulting matrix (Figure 2a) yielded a clear segregation of

compounds into two clusters, with one highly enriched for

carcinogenic compounds (Fisher test p = 6.561026), and with a

significantly higher number of up/down-regulated genes (Kolmo-

gorov-Smirnov test p = 0.01, see Methods and Figure S2 in File

S1). The analysis further showed that: i) genes up-/down-regulated

by multiple compounds are either always up-regulated or always
down-regulated, but rarely both (Figure 2b); ii) significant up-/

down-regulation occurs more often in response to carcinogens

than to non-carcinogens, with ,20% of these genes exhibiting a

pattern of statistically significant association between up-/down-

regulation and carcinogenicity status (Figure 2b, ‘Enrichment’

columns); and iii) the overwhelming majority (567 out of 569) of

the transcripts significantly associated with carcinogenicity were

enriched in the carcinogenic group, and of these almost two thirds

were up-regulated (Figure 2c).

In summary, our analysis shows that carcinogenic compounds

(irrespective of their mode of toxicological action) induce a more

pervasive (more genes) and marked (significant) transcriptional

response than non-carcinogens, a response that is consistent across

multiple compounds, and that manifests itself more often as an up-

regulation of expression than a down-regulation. Furthermore, this

heightened response is mainly driven by non-genotoxic mecha-

nisms, since no significant enrichment for genotoxicity is observed

in either cluster.

Signatures of carcinogen exposure. Next, we carried out

differential analysis aimed at comparing a gene’s expression

between carcinogens and non-carcinogens (171 vs. 362 liver

samples respectively, with replicates of the same condition

averaged), irrespective of their level in the controls. The main

purpose of this analysis was not the selection of features for

predictions, but rather the investigation of the exposure-induced

transcriptional changes toward the elucidation of mechanisms of

response. Rigorous statistical testing based on a moderated t-test

(see Methods), yielded a list of 2,263 differentially expressed genes

(DEG) at a false discovery rate (FDR) q-value#0.01, with 1,232

genes up-regulated and 1,031 genes down-regulated in response to

carcinogens. Of note, although the DEGs are highly statistically

significant, their fold-change is relatively small, with only 56 genes

having a fold change (FC) $1.35 in either direction (Table S1 in

File S1), suggesting that the significance reflects the large sample

size, and that it is driven by a relatively small subset of compounds.

This is confirmed by a visual inspection of the heatmap displaying

the top 250 differentially expressed genes (see web portal [20]),

which shows a large heterogeneity within each group. Despite the

considerable heterogeneity of the response, a focus on the top

markers listed in Table S1 in File S1 confirms that several genes

linked to changes in liver swelling, or hepatomegaly (e.g.,

ZDHHC2, AQP7, IL33), centrilobular hepatic eosinophilia,

peroxisome proliferation (e.g.,HDC, ACSL3), hepatocellular

hypertrophy (e.g., ACOT1, STAC3, CPT1B) and hepatic lipid

accumulation (HSPB1, LRP1, NOL3) were differentially regu-

lated. The identification of pathology-associated biomarkers is

consistent with the observation that pathological manifestations in

short-term studies are associated with cancer outcomes in rodents,

and that pathology such as Cirrhosis in humans is a risk factor for

hepatocellular carcinoma [21,22]. In addition genes associated

with genotoxicity (e.g., JAM3, BTG2, MDM2, PLN, NHEJ1,
CCNG1, MGMT) appear to be significantly up-regulated in

response to carcinogen exposure.

Within the list of carcinogenic compounds, comparison of

genotoxic carcinogens vs. non-genotoxic carcinogens yields a list of

191 (126 up, 65 down) DEGs with a FDR#0.01, but only 86 of

these genes have a FC$1.35 (40 up, 46 down) (Table S2 in File

Figure 1. Principal component analysis (PCA) of the DrugMatrix. a) The first two principal components of all samples in the DrugMatrix
dataset. b) Liver samples with color coding for controls, samples treated with genotoxic or non-genotoxic samples. c) Liver samples with color coding
for carcinogenicity.
doi:10.1371/journal.pone.0102579.g001
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S1). This comparison further highlights the significant up-

regulation of well-established markers of DNA damage response

(CDKN1A/p21, MDM2), liver fibrosis (e.g., AhR), liver hyper-

plasia (e.g., CYP1A1) and liver inflammation (e.g., BCL6) in

response to genotoxic carcinogens, and the up-regulation of

markers of liver steatosis, (e.g., CYP4A11, DECR1, EHHADH)

and hepatocellular peroxisome proliferation (e.g., ACOX1) in

response to non-genotoxic carcinogens.

Several of the genes differentially regulated are associated with

tumor initiation (e.g., AhR, CYP1A1, CYP1A2, MDM2, EGR1,

NFKBIZ), further suggesting that genomic outcomes of short-term

exposure truly reflect the longer-term process of malignant

transformation. A detailed list of all DEGs, including hyper-

enrichment analyses of the top genes using DAVID [23] is

available at the web portal [20].

Pathway enrichment analysis. Pathway enrichment anal-

ysis by GSEA (Gene set enrichment analysis) of the ‘carcinogen vs.
non-carcinogen’ signature (Table S3 in File S2) showed a strong

enrichment of DNA damage and repair pathways (e.g., p53, base

excision repair, mismatch repair), as well as of regulators of cell

proliferation (e.g., E2F, NF-kB, G1-S transition), protein turnover

(e.g., proteosome, ubiquitin-mediated proteolysis), and enrichment

of metabolic pathways (e.g., oxidative phosphorylation and fatty

acid oxidation). Further analysis of the ‘genotoxic vs. non-

genotoxic carcinogen’ signatures (Table S4a/S4b in File S2)

highlighted the major role played by DNA damage and repair

pathways in the former, and cell metabolism and oxidative stress

in the latter. This is consistent with previously reported studies,

which emphasize DNA damage response as a distinctive

transcriptional signature of direct DNA modification, and

increased cell proliferation, oxidative stress and metabolism as

characteristic of indirect, non-genotoxic modes of action [13]. Also

of notice was the high heterogeneity in the response to non-

genotoxic carcinogens when compared to the genotoxic carcino-

gens, as reflected in the lower number of gene sets significantly

enriched in the signature of the former than of the latter. As noted

above, this likely reflects the existence of multiple mechanisms of

non-genotoxic carcinogenesis, which cannot be adequately cap-

tured by a simple dichotomous comparison using anything but a

large database.

In summary, our supervised analysis of the DrugMatrix data

recapitulates and refines the known repertoire of transcripts and

associated biological pathways previously implicated in the

response to carcinogen exposure, thus confirming the quality of

the expression data analyzed and their adequacy for our predictive

model building effort, to which we now turn.

Predictive Models of Genotoxicity and Carcinogenicity in
the DrugMatrix

The PCA analysis shows that overall expression patterns are

mainly driven by tissue type. Furthermore, methods to control for

tissue type, such as ‘‘subtraction’’ of the tissue-associated PCA

components, or inclusion of tissue type as predictor to build tissue-
agnostic classifiers, were not fruitful (see Supplement, Table S5

and Figure S3 in File S1). Consequently, we henceforth report our

results based on the analysis of the liver samples since this tissue

was profiled with the largest number of well-annotated chemicals

and its phenotypic annotation was the most thorough.

The Random Forest (RF) algorithm [24] was selected as the

classifier of choice because of its computational efficiency,

Figure 2. Defining the carcinogenome. a) Hierarchical clustering of 191 profiles/138 compounds (columns) and genes (rows), with each
compound represented by the vector of ‘treatment vs. control’ differential expression t-scores. The heatmap is color-coded according to the
significance level (q-values) of the corresponding t-scores. Notice the right cluster (top purple color bar) and its enrichment in carcinogenic (red)
compounds (Fisher test p = 8.561026). b) Top 10 genes ranked according to the number of compounds inducing their significant up-/down-
regulation (FDR#0.01 and fold-change$1.5. See complete list in Table S28 in File S2). Each gene was also tested for its association with
carcinogenicity across compounds (‘Enrichment’ columns) by performing a Fisher test between the gene status (0: not differentially expressed; 1:
differentially expressed) and the compounds’ status (+ = carcinogenic; 2 = non-carcinogenic). c) Contingency table detailing the distribution of the
genes whose compound-induced up-/down-regulation pattern is significantly associated with carcinogenicity status of the compounds.
doi:10.1371/journal.pone.0102579.g002
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flexibility, and ability to model continuous and discrete data

simultaneously, as well as to capture complex phenotypes. For

each sample, the classifier produces a score between 0 and 1,

corresponding to the probability of the compound being

carcinogenic (or genotoxic). As the primary evaluation criterion

of a classifier’s prediction performance, we report the area under

the receiver operator characteristic (ROC) curve (AUC). Addi-

tionally, we also report sensitivity, specificity, positive and negative

predictive value, and false discovery rate corresponding to the

probability threshold that achieves the highest accuracy in the

training set (see Methods for further details).

Genotoxicity prediction. Predictive models of genotoxicity

based on a 500-gene Random Forest classifier were built from the

DrugMatrix liver samples. The random resampling-based estima-

tion of classification performance yielded an AUC of 75.1%.

Tissue-specific carcinogenicity classifiers. We defined

tissue-specific labels of carcinogenicity to train a set of predictive

models. The resulting carcinogenicity classifier achieved a

prediction performance as measured by AUC of 76.7% in liver

tissue (Figure 3, summary statistics in Table S6 in File S1,

prediction details for each sample in Table S25 in File S2), which

represents an improvement of 11.9% with respect to the tissue-

agnostic results (Supplement). Using a zero-one loss function to

select the optimal classification threshold, corresponding to a zero

cost for correct classification for both true positive (TP) and true

negative (TN), and a cost of 1 for incorrect classification for both

false positive (FP) and false negative (FN), results in a classifier with

sensitivity of 56.8% and specificity of 82.91%. However, there is a

tradeoff between sensitivity and specificity and, if required, the

former can be increased at the cost of the latter. For example,

changing the ratio between the penalties of FP and FN to 1:5

increases the sensitivity to 80.4% while the specificity drops to

54.4% (Figure 4b). The AUC measures all the possibilities of such

tradeoffs.

Inclusion of compounds’ structural features as

predictors. The availability of structural features characterizing

the 3-dimensional chemical structure of the profiled compounds

allowed us to evaluate their predictive power (see Materials). To

this end, we performed Random Forest classification of all

compounds in the DrugMatrix using the structural features,

instead of gene expression, as predictors. Evaluation by random

resampling yielded an AUC of 70.9% when predicting genotoxi-

city, and 59.9% when predicting hepato-carcinogenicity (see Table

S9 and Figure S4 in File S1), results significantly worse than those

obtained based on gene expression. To assess their complemen-

tarity, we also evaluated the performance of a Random Forest

classifier integrating both gene expression and structural features.

The resulting model yielded an AUC of 77.7% for hepato-

carcinogenicity and 80.1% for genotoxicity (Table S10 and Figure

S5 in File S1), suggesting that the information encoded in the

structural features is indeed marginally complementary to gene

expression.

Comparison to other classifiers. The Random Forest

classifier was a-priori chosen because of its computational

efficiency and its ability to model variable interactions, to handle

models incorporating both continuous and discrete variables, and

to model complex phenotypes. For completeness, its performance

was compared with that of two additional state-of-the-art

classification methods: Shrunken Centroids (PAMR) [25] and

Support Vector machine (SVM) [26], using the same random

resampling evaluation scheme. The results in Table S7 (SVM) and

Table S8 (Shrunken Centroids) in File S1 show that the Random

Forest significantly outperforms both the SVM and the Shrunken

Centroids classifiers, providing support for our modeling choice.

Effect of compound sample size on prediction. While the

number of well-annotated liver samples in the DrugMatrix was

very large (n = 1,221), the number of distinct compounds tested

was comparatively small (127 compounds, 41 of which were

labeled as carcinogenic according to the 2YRB). To assess whether

Figure 3. Classification results overview. Random resampling classification results on the DrugMatrix (top) as well as the TG-GATEs (bottom)
datasets using 200 iterations. In addition, the results of a model trained on all DrugMatrix samples and tested on TG-GATEs (middle) are shown.
Results based on the regular gene expression data and on the data projected onto pathway space (canonical pathways of MSigDB – C2:CP, see
Methods) are reported. For each testing scheme, area under the receiver operating characteristic (ROC) curve (AUC), as well as accuracy, sensitivity
and specificity of a classifier trained with a zero-one loss function (FP:FN = 1:1), and 95% confidence intervals are reported.
doi:10.1371/journal.pone.0102579.g003
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we had reached the maximally achievable predictive accuracy, we

analyzed learning curves for both carcinogenicity and genotoxicity

based on down-sampling, whereby AUCs were estimated for

classifiers built on training sets of progressively larger size (see

Methods). As shown in Figure 5, the learning curves (in red) and

the corresponding trend lines (blue) manifest a clear upward

orientation, and their shape shows no ‘‘plateauing,’’ suggesting

that an increased and attainable number of compounds will indeed

significantly improve predictive accuracy.

In summary, our Random Forest-based classifier trained on the

gene expression data from the DrugMatrix was capable of

predicting carcinogenicity with a random resampling AUC of

77.6%, and significantly outperformed other state-of-the-art

classifiers (SVM, shrunken centroids, and others), thus making us

confident that our modeling approach would generalize well to

new untested chemicals.

Figure 4. ROC curve and variable importance for carcinogenicity prediction. ROC curve of random forest classification in liver of: a)
genotoxicity and b) carcinogenicity. For carcinogenicity, tissue specific class labels from the carcinogenicity potency data base (CPDB) were used. The
red curves show the mean of the 200 reruns, whereas the dashed curves indicate the first and third quartile respectively. The teal dot indicates a
classifier assigning equal costs to false positives (FP) and false negatives (FN) (zero-one loss), whereas the blue dot indicates a classifier assigning a
cost of 5 for FN and 1 for FP. c) Variable Importance of the random forest model. Blue denotes genes that are down-regulated in the carcinogenic
group, whereas red denotes up-regulation.
doi:10.1371/journal.pone.0102579.g004

Genomic Models of Exposure Accurately Predict Chemical Carcinogenicity
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Validation of the predictive models on an independent
dataset: TG-GATEs

The performance of our classification model was next evaluated

on an independent validation set, the TG-GATEs (see Materials).

To this end, a final 500-gene random forest classifier of liver

carcinogenicity was trained on all of the available compounds in

the DrugMatrix (n = 127) using the tissue-specific carcinogenicity

labels. The top 50 markers as ranked by variable importance are

shown in Figure 4c. The resulting classifier was then applied to the

TG-GATEs. To achieve a truly independent validation set, 25

compounds that were tested in both datasets were excluded,

leaving 47 chemicals for validation, corresponding to 1,333

expression profiles (each compound was tested at multiple doses,

times, and in triplicates). The Random Forest classifier was then

applied to the subset of primary liver samples from the repeat

experiments in the TG-GATEs, yielding an AUC of 76.6%

(Figure 3, summary statistics in Table S11 in File S1, ROC curves

in Figures S6 and S7 in File S1, prediction details for each sample

in Table S26 in File S2). Of interest, the prediction of the 25

compounds present in both datasets, yielded a higher AUC of

80.8%, even though those compounds were tested at different

doses in the two datasets (data not shown).

Prediction of dose-dependent carcinogenicity. The pre-

diction performance of the models trained on DrugMatrix and

tested on TG-GATEs provides supporting evidence of the validity

of our approach since significant classification accuracy was

achieved across datasets despite the difference in experimental

conditions (dose and time) of the two datasets, and the known

dataset-to-dataset bias inherent in the Affymetrix microarray

platform [27,28]. To further evaluate the best achievable

classification performance, we next applied our random resam-

pling scheme within the TG-GATEs. Besides the differing dose

and exposure times profiled in the two datasets, an additional

difference between the DrugMatrix and TG-GATEs lies in the

more precise compound annotation of the latter, where carcino-

genicity labels reflect a compound’s actual carcinogenicity at the

administered dose. The DrugMatrix doses, on the other hand, are

all at or above the standard administered doses reported in the

Carcinogenic Potency Data Base (CPDB). This raises the

possibility that some of the compounds labeled as non-carcinogen

by the CPDB at the standard dose might be carcinogenic at the

higher doses tested in the DrugMatrix, and consequently be given

a false negative labeling for training and testing purposes.

Confirming this possibility, evaluation by random resampling

within the TG-GATEs, where all the doses were within the CPDB

range, showed an overall increase in classification performance

with an AUC of 82.7% (summary statistics in Table S12 in File S1,

ROC curves in Figure S8 in File S1, prediction details for each

sample in Table S27 in File S2). To further evaluate the

dependency of these results on the dose-specific labeling, we also

measured classification performance based on a dose-independent

annotation of TG-GATEs, by using the minimum dose labeling

for all the profiles at any dose (thus reproducing the compound-

labeling criteria used in the DrugMatrix). This led to a significant

reduction in the prediction performance, with an AUC of 69.3%

(summary statistics in Table S13 in File S1, ROC curves in Figure

S8 in File S1), results similar to those achieved in the DrugMatrix.

Effect of time and dose on prediction. With the predictive

model established and validated on an independent dataset, we

next tested the impact of exposure time and dose on the effect of a

chemical compound. The repeat samples (see Materials) from TG-

GATEs correspond to systematic tests of chemical compounds at

four different exposure times between 4 and 29 days and at three

doses, with three replicates for each condition. Predictive accuracy

for each time-dose combination was assessed based on the random

resampling scheme, and the corresponding AUCs and 95%

confidence intervals are shown in Table 1. The results range from

an AUC of 58.6% with the lowest dose and shortest time to an

AUC of 86.8% for the highest dose at the longest time of exposure.

Prediction performance is more dependent on the dose level and

less on the duration of exposure. This is evident when considering

Figure 5. Classification learning curves as a function of the number of chemicals for: a) genotoxicity and b) carcinogenicity in liver.
The actual AUC values are in red and include the 95% confidence interval for each value. The predicted values of a fitted linear regression model are
shown in blue.
doi:10.1371/journal.pone.0102579.g005
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only the highest dose, where the AUC varies only by 4.7%

between 4 and 29 days.

In summary, validation of our carcinogenicity classifier on an

independent dataset confirmed the predictive accuracy obtained in

the discovery set, thus proving the robustness and generalization

capability of our modeling approach. Furthermore, the increased

accuracy we achieved by training and testing within the same

validation dataset, while taking advantage of dose-dependent

labels, further emphasizes the critical role played by across-dataset

bias, and the importance of using accurate (dose-dependent)

phenotypic labels.

Carcinogenicity prediction of un-annotated compounds
The availability of the short-term histopathology reviews for the

samples profiled in TG-GATEs allowed us to preliminarily assess

our ability to predict the carcinogenicity of chemicals not included

in the CPDB, and thus begin to address our ultimate goal of

predicting the carcinogenicity of as-yet untested chemicals. To this

end, we derived two binary scores from the histopathology findings

included in the TG-GATEs, a fully data driven score, H-scored,

and a manually derived score, H-scorem (see Materials), and used

these scores as gold-standard proxies of the carcinogenic potential

of a given compound-time-dose instance against which to test our

classifier’s accuracy.

Since this evaluation required the time-consuming manual

review of histopathology findings, the analysis was limited to a

subset of the available samples. In particular, repeat samples from

rats exposed at maximum dose and maximum time (29 days) were

selected. Next, a 500-gene Random Forest classifier was trained on

the samples with the same exposure time and dose level for which

hepatocarcinogenicity status was available (n = 108). This classifier

was applied to the prediction of all unknown compounds (n = 252),

and only samples with prediction probability above 0.66

(carcinogenic) or below 0.33 (non-carcinogenic) were selected,

yielding a final set of 124 samples for which manual (and blind)

review of the histopathology findings was available. The compar-

ison of the classifier’s predictions with the pathology-derived scores

is summarized in Table 2. The classifier’s sensitivity with respect

to both scores is very high, with only the three replicates of

mexiletine showing discordance between the classifier’s prediction

(non-carcinogen) and the histopathology scores (carcinogen). The

specificity is comparatively lower with respect to both scores, and

in particular with respect to the manually derived H-scorem;

however, the false positive instances mostly correspond to

compounds whose multiple replicates disagree with respect to

their H-scorem, that is, the false positive instance was predicted as

positive by our classifier, but was H-scorem negative, while the

additional replicates of the same compound were both predicted

and H-scorem positive (bucetin, doxorubicin, sulindac, trimethadi-

one). We expect that with a longer time of exposure the pathology

report would also show evidence for carcinogenicity.

Toward biologically interpretable predictive models:
Gene Set Projection

Our next effort was aimed at increasing the interpretability and

cross-platform robustness of the classifier. To this end, we adopted

a gene set projection approach, whereby the data are mapped from

single genes to gene sets representing well-annotated biological

pathways and processes (Figure S10 in File S1). Gene sets are then

used in place of single genes as the input variables to the classifier,

with a gene set value reflecting the activation/inactivation of that

gene set in response to a given compound (see Methods). The 733

canonical pathways included in the MSigDB (Molecular signature

database) c2.cp compendium [29] were used as our candidate

gene sets, thus yielding a 733-by-1173 gene set-based matrix from

the original 10371-by-1173 gene-based matrix. The classification

performance of gene set-based random forest classifiers was

evaluated by random resampling (Figure 3) both within the

DrugMatrix (Table S14 in File S1) and the TG-GATEs (Table

S12 in File S1), yielding a liver carcinogenicity AUC of 73.3% and

80.6%, respectively. These results are slightly worse than those

attained based on the original gene-based data. However, training

on the gene set-projected DrugMatrix and testing on the TG-

GATEs resulted in an increased predictive performance as shown

in (Table S11 in File S1) (AUC of 78.5%). This is likely due to the

normalization implicit in the gene set projection, which involves

the scaling of each compound’s profile against the matching

controls, and thus contributes to removing potential sources of

across-dataset bias.

To determine the minimum number of gene sets necessary to

reach maximum prediction performance, classifiers with an

increasing number of gene sets were built and evaluated. First,

gene sets were ranked by their variable importance (see methods) as

measured by a Random Forest classifier built on all gene sets.

Next, RF classifiers using an increasing number of gene sets

selected from the variable importance-ranked list were built and

evaluated based on the same 70%–30% train-test split previously

described. The results (Figure 6a) show that 50 gene sets are

sufficient to reach an AUC of 76%, and approximately 150 (Table

S19 in File S2) are necessary to reach the maximum predictive

performance of 76.8%.

From predictive models to mechanisms of action. The

list of gene sets as ranked by their variable importance provide a

set of complementary and potentially interacting biological

pathways shown to be statistically associated with chemical

carcinogenesis. This is markedly different from the GSEA ranking,

which evaluates each gene set individually and does not take into

account its possible interaction with other gene sets.

Table 1. AUC for different time points and doses in TG-GATEs.

Dose

low middle high

Exposure time 4 days 58.662.0 73.861.6 82.161.6

8 days 70.761.8 81.761.0 84.261.4

15 days 73.661.8 82.261.2 82.861.6

29 days 73.962.0 79.261.2 86.861.2

Comparison the prediction results based on differing a times and doses in the repeat subset of TG-GATEs. Each classification was performed 200 times. The table reports
the mean AUC as well as the 95% confidence intervals.
doi:10.1371/journal.pone.0102579.t001
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We exploited these properties of the variable importance

ranking toward a data-driven identification of the likely mecha-

nisms of action relevant to chemical carcinogenesis. To this end,

we projected the DrugMatrix data corresponding to the max-dose

and max-duration exposures (to maximize signal) onto the top 50

gene sets as ranked by variable importance. We then performed

hierarchical clustering to identify modules of coordinated gene sets

likely to reflect distinct mechanisms of action. The resulting

heatmap is shown in Figure 6b. Multiple gene sets are clustered in

distinct modules each reflecting a different biological process that

likely contributes to a compound’s mechanism of action (MoA).

These include a suppressed normal liver function module

(complement cascade, platelet aggregation plug formation as well

as classic, common and extrinsic pathway), a metabolism of lipids

and lipoproteins module, as well as the PPARa signaling pathway,

damage response (p53 pathway) and proliferation (DNA Replica-

tion pre initiation) modules.

Even though there are only 41 distinct carcinogenic compounds

tested in the dataset, the gene set projection-based clustering

results highlight the considerable heterogeneity in the response to

carcinogen exposure, likely reflecting distinct mechanisms of

cancer induction, and point to a promising approach to their

data-driven categorization. A notable example is represented by

the seven genotoxic compounds clustered under the orange color

bar on top of the heatmap (Figure 6b). Genotoxic compounds

induce direct DNA modifications and cells respond by up-

regulation of components of the damage response machinery,

such as the p53 pathway and the G2 pathway. A second example

is the down-regulation of regular non-metabolic liver function

(complement cascade, platelet aggregation and classic pathway) in

almost all carcinogenic compounds. We suspect this loss of

function is due to elevated stress on the cells and possibly even a

first sign of field effects necessary to support transformation. This

clearly suggests that the various classes of carcinogens can not only

be defined by the mechanisms that eventually lead to carcinogen-

esis, but also by the loss of specific normal functions within a tissue

type, emphasizing the need to consider each tissue type separately.

A third cluster of compounds exclusively captures lipid lowering

compounds (Simvastatin, Clofibrate, Gemofibrozil, etc.), which all

show a significant up-regulation of lipid metabolism pathways

(metabolism of lipids and lipoproteins, glyoxylate and dicarbox-

ylate metabolism). Lipid-lowering drugs have been under suspicion

as potential carcinogens for more than a decade [30], and aberrant

lipid metabolism has been shown to be an essential feature in

Hepatocellular Carcinomas [31] as well as cancers in other tissue

types (e.g., ovarian cancer [32]).

Finally, more than two thirds of the carcinogenic compounds

show an up-regulation of the proteasome pathway. This is

interesting since a large body of scientific literature (e.g. [33,34])

identifies the ubiquitin-proteasome pathway as an important

component for maintaining a balance between cell growth and

apoptosis, thereby controlling tumor propagation and survival.

Taken together, these results suggest that gene set projection is a

helpful approach for controlling for batch-to-batch and cross-

dataset variability, while increasing a classifier’s interpretability by

making explicit the biological pathways that contribute to

prediction.

Discussion

Through our computational analysis of two large rat-based gene

expression datasets, we conclusively validated the hypothesis that

expression profiles of short-term exposure are highly predictive of

the long-term carcinogenicity of (exposure to) chemicals as

measured by the 2-year rodent bioassay. Additionally, we

extensively evaluated the capability of gene expression profiling

to model the transcriptional effects of exposure to chemical

perturbations, and showed that the integration of data-driven

analysis and pathway-centered annotation best captures the

biological processes and pathways that this exposure affects.

Building carcinogenicity biomarkers
Analysis of expression data from multiple tissues (liver, kidney,

heart and thigh muscle) showed that the most effective approach to

carcinogenicity prediction necessitates the definition of tissue-

specific classifiers. Consequently, we focused our classification

effort on data from liver, since this tissue had the largest number of

profiles and compounds evaluated, as well as the most thorough

compound annotation.

Classification performance. Our classifiers based on the

Random Forest, and on as few as 500 genes as predictors (selected

by variance filtering), yielded predictive accuracy as measured by

AUC ranging from 76.7 (DrugMatrix) to 82.7 (TG-GATEs), with

the sensitivity/specificity trade-off depending on the cost function

adopted (Figure 3). The predictive accuracy of the classifier

trained on the discovery set (DrugMatrix) and tested on the

validation set (TG-GATEs) yielded an AUC of 76.6%, which

increased to 78.5% when using gene set projection, proving that

our random resampling approach provided an accurate and

unbiased estimation of prediction performance. Of notice, the

classification performance within the TG-GATEs (by random

resampling) exceeded the performance across datasets (AUC:

82.7% vs. 76.7% - Figure 3). This is likely due to the dose-specific

Table 2. Validation of prediction using pathological items.

H-scored H-scorem

#Samples 124 124

Accuracy 89.565.5 79.867.1

Sensitivity 94.364.1 95.863.5

Specificity 77.867.3 57.768.6

PPV 91.264.9 75.867.4

NPV 84.866.3 90.964.9

FDR 8.864.9 24.267.4

The first column shows the concordance between the high confidence predicted liver samples that were treated for 29 days at the highest dose level and fully data-
driven histopathological score (H-scored), whereas the second column indicates the concordance with the manually derived score (H-scorem).
doi:10.1371/journal.pone.0102579.t002
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carcinogenicity annotation in the TG-GATEs, a hypothesis that is

confirmed by direct comparison of cross-validation results with

and without dose-specific labeling in the dataset (AUC: 82.7% vs.

69.3%). It also suggests that the carcinogenicity classifiers trained

on the DrugMatrix are underperforming due to mislabeling and

could be improved by the use of dose-specific carcinogenicity

labels.

Comparison to published models. We were also interested

in comparing our predictive model to two published gene

signatures: the Ellinger-Ziegelbauer et al. 2008 - 512-gene

carcinogenicity signature [35] and the Fielden et al. 2011 - 23-

Figure 6. Putative Modes of Action of carcinogenic chemical compounds. a) Classification performance (AUC, averaged over 100 iterations
of random resampling) of a random forest classifier as a function of the number of gene sets used as predictors. 150 gene sets are needed to reach
maximum AUC, while 50 are sufficient to get 99% of the expected maximum AUC. b) Heatmaps of the top 50 pathways as ranked by their variable
importance derived from a random forest classifier of hepato-carcinogenicity. Rows correspond to pathways, clustered into biological processes;
columns correspond to chemical compounds. The left and right heatmaps show all non-carcinogenic and carcinogenic compounds, respectively.
Only profiles corresponding to maximum duration and dose treatments, with replicates averaged, are displayed. A detailed version of the right
heatmap with all pathways and compounds labeled is available in Figure S11. c) Details of the biological processes associated with the clustering,
showing the single differentially regulated pathways and their variable importance ranking, as well as the driving genes.
doi:10.1371/journal.pone.0102579.g006
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gene non-genotoxic carcinogen signature [34]. To this end, the

two published signatures and associated predictive models were

trained on the DrugMatrix and tested on TG-GATEs (Table S15

in File S1, see Methods). Our model performed considerably

better in predicting all carcinogenic compounds (AUC: 76.64 vs.

61.75 and 69.56). For the Fielden et al 23-gene signature, we also

performed a cross-validation within the DrugMatrix using only

non-genotoxic compounds, which resulted in an AUC of 62.59.

Carcinogenicity is a complex phenotype. Supervised

analysis of the DrugMatrix (differential analysis and GSEA) shows

that the ‘‘exposure to carcinogens’’ phenotype is not adequately

modeled as a simple dichotomy, especially when we consider the

non-genotoxic carcinogens. This is reflected in the results of the

differential analysis (see online portal web portal [20]), where, due

to the very large sample size, a considerable number of genes are

identified as significantly differentially expressed (554). However,

inspection of their fold-changes (i.e., the ratio of their within-class

mean expressions), as well as of the heatmap of the top markers,

suggest that the differential signal is driven by relatively small

subsets of compounds where the exposure induces a very marked

up- or down-regulation. GSEA also supports this conclusion, as

shown by the lower number of gene sets significantly enriched in

the signature of non-genotoxic carcinogens as compared with the

genotoxic carcinogens. As previously noted, this likely reflects the

existence of multiple mechanisms of non-genotoxic carcinogenesis,

all of which cannot be adequately captured by a simple

dichotomous categorization. The heterogeneity of the phenotype

also helps explain the superior performance of the Random Forest,

a classifier based on an ensemble of decision trees. The decision

tree formalism naturally lends itself to address classification

problems that can be partitioned into sub-problems each governed

by a possibly distinct classification rule. This formalism fits well the

nature of our phenotype, since we can expect different classifica-

tion rules to apply to different compound groups governed by

distinct mechanisms of action.

Adequacy of compound sample size. Although the gene

expression datasets analyzed are comparatively large, the number

of chemicals tested is still relatively limited, representing only ,9%

of the compounds for which carcinogenicity annotation is

available (and less than 0.16% of the compounds on the market).

Additionally, a disproportionate number of compounds analyzed

in the DrugMatrix act through the peroxisome-proliferating

receptor (PPAR) pathway, hence compounds acting through other

mechanisms of action might not be adequately represented. Our

down-sampling simulation analysis aimed at evaluating sample

size adequacy shows that the classification learning curve (see

Figure 4) does not reach a plateau, thus suggesting that inclusion

of additional compounds spanning a wider range of mechanisms of

actions will enable the training of more precise classifiers, as well as

the identification of a more extensive taxonomy of pathways

relevant to carcinogenesis.

Gene set projection and interpretability vs. accuracy
tradeoff. Projection of the expression data matrix into gene

set space, and subsequent classification using the gene sets as

predictors, had the dual advantage of increasing the interpretabil-

ity of the model (by identifying pathways and processes relevant to

cancer induction) and of making it more robust across datasets (by

correcting for batch-to-batch bias). However, it adversely impact-

ed the predictive accuracy modestly within datasets (see Figure 3).

Consequently, the choice of whether or not to adopt gene set

projection will depend on the expected difference between the

training set and the new profiles to be classified. We hypothesize

that an increased sample size (number of compounds) will reduce

the difference in predictive accuracy between gene-based and gene

set-based prediction, and thus make the interpretability of the

latter approach the major determinant of its choice. In this study,

we relied on pre-defined gene sets as defined in the MSigDB

repository. However, we recognize that an alternative, fully data-

driven approach is possible, where unsupervised clustering

methods can be applied toward the identification of sets of tightly

co-regulated genes and the corresponding groups of samples

(compounds) defining their ‘‘co-regulation context’’. Combined

with techniques of pathway annotation, this approach might lead

to the definition of gene sets more relevant to the task of predicting

carcinogenicity while maintaining their biological interpretability.

Optimal number of genes to assay. The availability of

data from a whole-transcriptome array allowed us to evaluate the

dependency of a classifier’s performance on the number and

identity of the genes used as predictors, and to determine what

would be a sufficient number of gene markers to include in a

custom array designed to model chemical carcinogenicity. As

noted, the selection of the top 500 genes as ranked by variance

(rigorously carried out within the training set of each training-/

test-set split) was sufficient to train a Random Forest classifier with

highest predictive accuracy. Increasing the number of genes to

1000 or more, or replacing the variance ranking with a t-score

ranking (with respect to the phenotype to be predicted) did not

measurably affect the predictive accuracy (see Tables S16, S17 in

File S1). Similarly, by selecting the 2nd set of top 500 genes (i.e.,

from the 501st to 1000th genes ranked by variance), the 3rd set,

etc., predictive accuracy decreased only marginally (see Table S18

in File S1). These results confirm the often-made observation that

the effective dimensionality of gene expression data is well below

the nominal number of genes profiled in the array, and that

considerable redundancy among genes exists. Since predictive

accuracy alone does not provide a high enough resolution to fully

drive gene selection, interpretability and biological relevance will

need to be used as additional criteria to guide inclusion.

From predictive models to mechanisms of action
Using the pathway projection, we were able to identify modules

of coordinated gene sets, each reflecting a different biological

process that likely contributes to a compound’s MoA. These

tentative modules are in concordance with findings in published

literature [36] and include a metabolism of lipids and lipoproteins

module in parallel with the PPARa signaling pathway, damage

response (p53 pathway) and proliferation (DNA replication pre-

initiation) modules. A notable example of the power of this

approach is represented by the group of seven genotoxic

compounds (Table S23 in File S2). Genotoxic compounds induce

direct DNA modifications and cells respond by up-regulation of

components of the damage response machinery, such as the p53

pathway and the G2 pathway, outcomes captured in one of the

mfodules.

Novel findings include the identification of a suppressed normal

liver function module (complement cascade, platelet aggregation

plug formation, as well as classic, common and extrinsic

pathways). This is particularly intriguing since it emphasizes the

potential role played by loss of normal tissue function in

carcinogenesis. Equally of notice was the identification of a

module reflecting up-regulation of the proteasome in response to

carcinogens. The proteasome is closely tied to ribosome function,

which is in turn linked to cell proliferation.

Even though we have a large number of profiles at our disposal

(2195 liver samples in the Drugmatrix), there are only 127 well-

annotated tested compounds and only 41 of these are known

hepatocarcinogens in rodents. Furthermore, there are various (.5)

mechanisms of action, as shown in Figure 6, through which
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carcinogens can act. The Random Forest, coupled with variable

importance ranking is successful in disentangling these mecha-

nisms and provides a data-driven definition of their biological

meaning; however, a larger number of compounds will be

necessary to exhaustively define the carcinogenome.

Moving forward: Challenges and opportunities
Toxicogenomic short-term exposure studies based on in-vivo

(rat) models remain expensive and time consuming and therefore

limit the number of chemical compounds that can be tested.

Furthermore, as noted, animal models make for an imperfect

proxy to test human carcinogenicity. To address both these

shortcomings, the next generation of toxicogenomics tests is poised

to rely on in vitro human models amenable to high-throughput

screening [37,38]. This transition will introduce new challenges,

including the accurate translation of in-vitro chemical doses to in-

vivo relevance, as well as the need for adoption of organotypic

culture models capable of capturing the cross-talk between

multiple cell types. Further development of computational

methods that accurately map the chemical response to activa-

tion/inactivation of relevant pathways of carcinogenicity will

become essential to provide the essential link between the exposure

and the adverse phenotype.

Materials and Methods

Data Resources
The Carcinogenic Potency Database (CPDB)[39,40] was used

as the primary source to determine a compound’s long-term

carcinogenicity and genotoxicity. The CPDB records the results of

6,540 chronic, long-term animal cancer tests on 1,547 chemicals.

For this study we used the outcomes of the 2-year male rat-based

bioassay to annotate the carcinogenicity of our chemical

compounds, while the outcome of a corresponding salmonella

auxotroph-based Ames test was used as proxy for genotoxicity.

Carcinogenicity information was summarized in a tissue-agnostic
carcinogenicity label, set to be positive if the compound was found

to cause cancer in any tissue type, negative otherwise. Addition-

ally, tissue-specific carcinogenicity labels were also defined for

liver.

The discovery set is based on the DrugMatrix [18,41], a major

toxicogenomic resource made public by the National Toxicology

Program (NTP) and is available through the Gene Expression

Omnibus (GEO) with the accession number GSE57822. The

DrugMatrix contains 5,587 gene expression profiles from male rat

primary tissues (liver, kidney, heart and thigh muscle) and cultured

rat hepatocytes, corresponding to treatments with 376 chemicals,

and including 994 control samples from rats kept in matched

conditions. Each compound was administered at multiple doses

and durations (6 hours - 7 days), and each combination of tissue,

compound, time and dose was profiled in triplicates. Of the 376

chemicals tested, 255 are annotated with either carcinogenicity or

genotoxicity information in the CPDB, corresponding to 3,448

profiles (a detailed description is provided in Table S20 in File S1).

Not all tissues were profiled for each compound tested. In

particular, a total of 127 compounds with both hepatocarcinoge-

nicity and genotoxicity annotation were profiled in liver, yielding a

set of 1,221 profiles available for model building.

The validation set is based on the Toxicogenomics Project-
Genomics Assisted Toxicity Evaluation system (TG-GATEs) [42], a

product of a collaboration between the Japanese government and

Japanese pharmaceutical companies [43,44], and is available

through ArrayExpress (E-MTAB-800). The TG-GATEs includes

21,385 samples of male rat primary liver and kidney tissues, and

cultured hepatocytes all profiled on the Affymetrix Rat 230.2

platform. TG-GATEs tested 131 chemical compounds, for 72 of

which information on liver carcinogenicity is available (Table S21

in File S1). The profiles from primary tissues correspond to two

experimental groups: in the single group, rats were exposed at a

single time point, and mRNA was extracted after 3 to 24 hours, in

the repeat group, rats were exposed daily for 4 to 29 days, and

mRNA was extracted at each of four end points (4, 8, 15, and 29

days), and at each of three doses (low, medium, high). For this

study we used only the repeat group of TG-GATEs. Of the 72

compounds tested in TG-GATEs, 25 were also tested in the

DrugMatrix, leaving 47 unique compounds for validation (Table

S29 in File S2). Comparison of the overlapping chemicals shows

that the doses used in the TG-GATEs are lower than those used in

the DrugMatrix (Table S22 in File S1). Annotation for liver

carcinogenicity was performed by a board certified toxicologist

through review of existing literature resources from carcinogenic-

ity bioassays. A treatment (chemical-dose combination) was

annotated as hepatocarcinogenic if it was determined that it

would produce a statistically significant increase in liver cancer

(any type) in a 2-year rat cancer bioassay. All dose levels used to

generate the TG-GATES data were presumed to be acceptable for

use in 2-year bioassay (i.e., animals would survive to the extent that

they would be at risk for the development of cancer).

Computational Tools
Analyses were performed based on custom scripts developed

using the statistical programming language R [45] and several

Bioconductor packages [46].

Data Processing
Both Affymetrix datasets were normalized using the R

Bioconductor package frma and frmaTools [47]. Probe specific

effects and variances for the Affymetrix Rat 230.2 platform were

pre-computed using 2000 samples randomly drawn from the

DrugMatrix dataset and then used to normalize both the

DrugMatrix and TG-GATEs datasets.

Defining the perturbational transcriptome
The list of genes that significantly respond to chemical

perturbation was identified by carrying out a series of two-group

t-tests between the control samples and the corresponding

treatment samples for each compound separately, while correcting

for the confounding effect of time. A gene-by-compound matrix

was then constructed, with each column representing the vector of

‘‘control vs. treatment’’ t-scores for the corresponding compound.

A total of 191 profiles, corresponding to 138 compounds (some at

multiple doses) for which either carcinogenicity or genotoxicity

information was available, were considered for this analysis. Only

the genes with FDR-corrected q-value#0.01 and fold-change$1.5

in at least five compounds were included. Hierarchical clustering

of both the compounds and the genes based on the t-scores’ matrix

was performed, and the results visualized in a heatmap with the

color-coding based on the t-test’s q-values (Figure 2a). Association

between cluster membership and carcinogenicity (genotoxicity)

status of the compound was assessed by Fisher test.

Each gene was tested for its association with carcinogenicity by

performing a Fisher test between the gene status (0: not

differentially expressed; 1: differentially expressed) and the

compound status (+: carcinogenic; –: non-carcinogenic) across

compounds, and the nominal p-values were corrected for multiple

hypothesis testing by the FDR procedure (Figure 2.b, columns

grouped under ‘Enrichment’).
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Differential Analysis and Pathway Enrichment Analysis
We derived standard differential gene expression signatures

using the R/Bioconductor package Limma [48], which is based on

linear modeling and a moderated t-test. Since labels for

genotoxicity (GT) as well as carcinogenicity (CG) were available

in the DrugMatrix, we used multiple binary phenotypes: GT vs.

Non-GT, CG vs. Non-CG, GT-CG vs. Non-GT-CG, and Non-

GT-CG vs. Non-GT-Non-CG. For TG-GATEs we only tested

CG vs. Non-CG. Expression profiles from multiple replicates of

the same condition were averaged so as to avoid inflating statistical

significance. We also performed a hyper-enrichment analysis of

the top 200 differentially expressed genes (up-regulated) of each

scheme using DAVID - EASE [23] and plotted heatmaps of top

differentially expressed genes with a false discovery rate (FDR)

corrected q-value#0.05 and a fold change$1.2. Finally, we used

the same binary phenotypes to run gene set enrichment analysis

(GSEA) [49,50] using collections C2 (canonical pathways), C3

(transcription factor targets) and C6 (cancer pathways) from

MSigDB [29] version 3.0.

Classification Methods
The Random Forest algorithm (as available through the R

package randomForest) implements an ensemble classification

approach combined with bagging, whereby multiple decision trees

are inferred from random subsets of the training data, and the

class predictions of the component trees are combined by majority

voting. After evaluation of multiple sizes, a Random Forest based

on 500 trees (the package’s default) was selected as the size that

yielded the best trade-off between accuracy and computational

efficiency. In addition to the performance measurements, we also

report the variable importance for each gene. This measurement

reflects the increase of the error rate across all trees, if the value of

the tested gene is randomly permuted when testing.

For comparative purposes, the shrunken centroid and the

support vector machine classifiers, as implemented in the R

packages pamr [51] and e1071 [52], respectively, were also

evaluated.

Performance evaluation criteria
To assess classification performance, we used a random

resampling or bagging scheme [53] whereby the dataset was

randomly split into properly stratified training- and test-set pairs

multiple times, a predictive model was inferred from each training

set, and tested on the corresponding test set (see Figure S9 in File

S1). A 70%–30% train/test split was adopted, and was repeated

200 times to obtain robust accuracy estimates and their

corresponding 95% confidence intervals. Importantly, since

multiple instances of the same compound are included in the

dataset, the train/test split was carried out so that all instances of

the same compound were only present in the train- or the test-set.

The prediction for each sample consisted of a value between 0 and

1, to be interpreted as the probability of the corresponding

compound of being carcinogenic (genotoxic). The area under the

ROC curve (AUC) was chosen as our primary evaluation criterion

since this measure is independent of the threshold chosen to call a

compound carcinogenic (genotoxic). The choice of the appropriate

threshold depends on the relative costs assigned to false negatives

and false positives, and these in turn depend on the primary

purpose for which the classifier is used, an assessment that is

beyond the scope of this study. For completeness, accuracy,

sensitivity, specificity, positive and negative predictive values, and

false discovery rate are also reported for every classification task

(Table S30 in File S1) with the positive classification threshold

optimized to maximize accuracy (i.e., minimize a zero-one loss

[54]) within the training set.

Comparison with published signatures
We compared our random forest prediction model to two

published gene signatures: A 141 gene carcinogenicity signature

[35] (Ellinger-Ziegelbauer 2008) and a 23 gene non-genotoxic

carcinogen signature [34] (Fielden 2011). Both signatures were

mapped to Rat Ensembl gene identifiers using Biomart [55] and

subsequently tested by training on the DrugMatrix and testing on

the compounds within TG-GATEs that did not overlap with the

DrugMatrix. Since the Fielden et al 2011 signature was specifically

derived from non-carcinogenic compounds, we used cross-

validation in the DrugMatrix using all annotated liver samples

and on the non-genotoxic subset only. For both signatures we used

a Support Vector Machine as classification algorithm (R-package

e1071 [52]) since it was also used in the original publications.

Gene set Projection
Gene set projection was used to map the original data from gene

space to gene set space. In particular, each treated sample was

compared with the set of corresponding control samples, and a

weighted Kolmogorov-Smirnov enrichment score was calculated

for each gene set [49] (Figure S10 in File S1). This enrichment

score reflects the up or down-regulation of a-priori defined

pathways or gene sets following treatment with the profiled

compound. The projection transforms the data from the original

gene-by-sample matrix representation to a gene set-by-sample

matrix, with the entry in row i, column j reporting the enrichment

score for the i-th gene set in the j-th sample. The set of canonical

pathways included in the c2_cp collection of the MSigDB

repository was used for the projection (MSigDB version 3) [29].

The resulting projection is different from the one that would be

obtained by ‘‘single-sample GSEA’’ [56], since each compound-

time instance is normalized against the matched controls, thus

yielding a gene ranking that reflects the true differential expression

between treatment and control. The projected data thus obtained

were then used to train classification models with gene sets in place

of genes as the predictive features.

Learning curves for sample size estimation
Learning curves relating classification AUC to compound’s

sample size were built based on a variation of the standard random

resampling scheme. Starting from a training set consisting of 70

compounds, up to the total number of compounds in increments

of 10, AUC means and standard deviations were estimated based

on 200 random resampling iterations. The estimated AUCs and

their corresponding number of compounds are shown in Figure 5,

together with linear regression lines fitted on the [sample size;

AUC] pairs.

Histopathology annotation of TG-GATEs
TG-GATEs provides the results of histopathology exams of

tissues from the profiled animals, including high-resolution whole

slide digital images of their liver and kidney on the TG-GATEs

portal (http://toxico.nibio.go.jp/). The histopathology findings

are coded into 133 categorical covariates, each taking values in the

range 0–4 (0: pathology not observed; 4: pathology was severe) and

includes items such as liver microgranuloma and liver hypertrophy
centrilobular. To summarize these findings and relate them to

carcinogenicity, we defined two binary scores (negative/positive)

to label each of the compound-dose-time instances. The first score

(H-scored) is data-driven and represents the logic OR of all the
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covariates, denoting an instance as positive if any of the covariates

for that instance has a value greater than zero (i.e., if there is any
type of positive histopathology evidence).

The second score (H-scorem) results from the manual review of a

compound-dose-time instance by a board certified toxicologist

with experience designing and interpreting subchronic and

chronic toxicity/carcinogenicity studies. Factors taken into

account when scoring the samples included the degree of adversity

associated with specific pathologies (e.g. necrosis is typically

considered the most adverse of pathologies), the historical

association between the pathological manifestation and subsequent

liver cancer outcomes in a 2-year bioassay, the severity of the

pathology observed, and the multiplicity of pathology types. Due

to the time-consuming nature of the manual review, only a subset

of compound-dose-time instances were annotated, corresponding

to the repeat samples from rats exposed at the maximum dose for

29 days (maximum time). The manual review and annotation of

the instances was blinded, that is, the carcinogenicity status

predicted by the classifier was withheld at the time of the instances’

annotation. The resulting scores were used as a proxy measure of

carcinogenicity to evaluate the prediction performance of our

classifiers on compounds for which no CPDB annotation was

available.

Supporting Information

File S1 Supplementary document with methods and
results details. Contains Figures S1–S11 and Tables S1–S2,

S5–S18 and S20–S23.

(PDF)

File S2 Supporting Information Tables. Contains Tables

S3–4, Table S19 and Tables S24–29. Table S3: GSEA report
for carcinogens - GSEA results of carcinogenic versus non-

carcinogenic compounds in liver - Gene Set Enrichment Analysis

comparing the gene expression profiles from rats exposed to

carcinogenic and non-carcinogenic compounds. Only gene sets

enriched in the carcinogenic compounds with a false discovery rate

#0.05 are shown. Table S4a: GSEA report for genotoxic
carcinogens - GSEA results of genotoxic versus non-genotoxic

carcinogens in liver - Gene Set Enrichment Analysis comparing

the gene expression profiles of rats exposed to genotoxic and non-

genotoxic carcinogens. Only gene sets enriched in either the

genotoxic or non-genotoxic carcinogens with a false discovery rate

#0.05 are shown. Table S4b: GSEA report for non-
genotoxic carcinogens - GSEA results of genotoxic versus

non-genotoxic carcinogens in liver - Gene Set Enrichment

Analysis comparing the gene expression profiles of rats exposed

to genotoxic and non-genotoxic carcinogens. Only gene sets

enriched in either the genotoxic or non-genotoxic carcinogens

with a false discovery rate #0.05 are shown. Table S19

Variable importance ranking of the top 150 predictive
pathways - Variable importance was calculated by training 200

Random Forest models on the DrugMatrix dataset using a 70–

30% random resampling scheme. The variable importance of all

200 models was averaged. Table S23: Chemicals tested in
the DrugMatrix - Chemicals with known hepatocarcinogenicity

status that were tested in liver. Also included are exposure

durations, compound doses and genotoxicity information based on

Ames tests if available. Table S24: Chemicals tested in TG-
GATEs - Chemicals with known hepatocarcinogenicity status that

were tested in liver. Also included are exposure durations and

compound doses. Table S25: DrugMatrix cross-validation
predictions - Hepatocarcinogenicity predictions in the DrugMa-

trix Random forest cross-validation results for carcinogenicity in

liver using different numbers of features, based on a variance

ranking. The prediction results for the 3 replicates for each

compound were collapsed. Each value represents the mean and

95% confidence interval over 200 iterations of a 70%/30% train/

test dataset split. Table S26: TG-GATEs predictions –

Hepatocarcinogenicity predictions in TG-GATEs based on a

model trained on the DrugMatrix. The prediction results for the 3

replicates for each compound were collapsed. Table S27:
Hepatocarcinogenicity predictions in TG-GATEs. Ran-

dom forest cross-validation results for carcinogenicity in liver using

different numbers of features, based on a variance ranking. The

prediction results for the 3 replicates for each compound were

collapsed. Each value represents the mean and 95% confidence

interval over 200 iterations of a 70%/30% train/test dataset split.

Table S28: Ranked gene list from differential analysis -

Genes ranked according to the number of compounds inducing

their significant up-/down-regulation between carcinogenic and

non-carcinogenic compounds. Table S29 – Complete list of
compounds: List of compounds that are exclusively in the

DrugMatrix and TG-GATEs or present in both sets, with

additional information on which compounds were used for

training and testing.
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