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Abstract: Many chemical reactions of transition metal compounds involve a change in spin state via
spin inversion, which is induced by relativistic spin-orbit coupling. In this work, we theoretically
study the efficiency of a typical spin-inversion reaction, 3Fe(CO)4 + H2→

1FeH2(CO)4. Structural and
vibrational information on the spin-inversion point, obtained through the spin-coupled Hamiltonian
approach, is used to construct three degree-of-freedom potential energy surfaces and to obtain
singlet-triplet spin-orbit couplings. Using the developed spin-diabatic potential energy surfaces in
reduced dimensions, we perform quantum nonadiabatic transition state wave packet calculations to
obtain the cumulative reaction probability. The calculated cumulative reaction probability is found to
be significantly larger than that estimated from the one-dimensional surface-hopping probability.
This indicates the importance of both multidimensional and nuclear quantum effects in spin inversion
for polyatomic chemical reaction systems.

Keywords: spin crossover; spin inversion; reaction dynamics; nonadiabatic transition; spin-orbit
coupling; wave packet; crossing point; cumulative reaction probability

1. Introduction

Many chemical reactions can proceed through different spin multiplicity states during the course of
a reaction, including electronically nonadiabatic transitions induced by spin-orbit coupling [1–13]. Since
spin-orbit coupling is generally large in molecular systems that contain heavy elements, many catalytic
reactions involving transition metal atoms occur on multiple potential energy surfaces with different
spin multiplicities. Such a chemical reaction scheme has been historically called “two-state reactivity” or
“multistate reactivity” [8–13]. It should also be mentioned that nonadiabatic spin-inversion transitions
have alternatively been called intersystem crossing, spin crossover, or spin-forbidden transitions.
The term “spin-forbidden” has long been used in chemistry because spin inversion cannot occur
within a nonrelativistic Hamiltonian framework [1–3,5]. However, it should be emphasized that
spin inversion is induced entirely by the large relativistic spin-orbit coupling of heavy elements. To
fully understand the detailed mechanisms of catalytic reactions involving spin-inversion transitions,
not only reaction pathways on a single potential energy surface with a specific spin state but also
spin-inversion points between two or more potential energy surfaces with different spin states should
be explored. In addition, the efficiency of the nonadiabatic spin-inversion transitions should be
discussed quantitatively.

We have recently developed a practical computational approach for studying spin-inversion
reaction mechanisms [14–17], where the lowest-lying eigenstate of the spin-coupled Hamiltonian
matrix [18] is used in the identification of reaction pathways involving spin-inversion points. In this

Molecules 2020, 25, 882; doi:10.3390/molecules25040882 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-0563-9236
http://dx.doi.org/10.3390/molecules25040882
http://www.mdpi.com/journal/molecules
https://www.mdpi.com/1420-3049/25/4/882?type=check_update&version=2


Molecules 2020, 25, 882 2 of 10

method, two potential energy surfaces with different spin states are coupled through a pre-assumed
spin-orbit coupling parameter. With this method, the spin-inversion structure can be easily optimized
as the transition state on the spin-coupled potential energy surface, which is a close approximation
of the minimum energy crossing point (MECP) structure. In addition, we can calculate the intrinsic
reaction coordinate (IRC) for the spin-inversion pathway, as in the case of a usual spin-conserved
reaction. In the present study, we apply this method to a typical spin-inversion reaction, 3Fe(CO)4 +

H2→
1FeH2(CO)4, to perform nonadiabatic quantum dynamics calculations. This reaction has been

investigated from a theoretical perspective [19–25]; however, most of the previous studies focused on
static aspects, such as characterization of the potential energy surfaces around the crossing regions and
spin-inversion efficiencies derived from a one-dimensional Landau–Zener-like approach. Recently,
singlet-triplet spin-inversion rates for the very simple systems SiH2 and GeH2 have been calculated
using the ab initio multiple spawning molecular dynamics method, which can approximately account
for both electronically nonadiabatic transitions and nuclear quantum effects using the semiclassical
frozen Gaussian wave packet method [26–28]. The calculated nonadiabatic spin-inversion rates were
found to be more than twofold larger than those calculated by the one-dimensional Landau–Zener-like
approach, suggesting the importance of multidimensional nonlocal transitions that cannot be described
by a one-dimensional approach.

In this work, we discuss the importance of multidimensional nuclear quantum effects in the
3Fe(CO)4 + H2 →

1FeH2(CO)4 spin-inversion reaction by applying transition state wave packet
calculations [29,30] combined with the above-mentioned spin-coupled Hamiltonian approach [14–17].
We here develop the reduced-dimensionality potential energy surfaces as a function of three nuclear
degrees-of-freedom and then calculate the cumulative reaction probability, which is the most important
physical quantity for calculating thermal rate constants [29,30]. The calculated cumulative reaction
probability is compared with that derived from a one-dimensional approach.

2. Computational Procedure

The singlet and triplet potential energy surfaces for the H2 + Fe(CO)4 reaction were calculated by
density functional theory (DFT) using the Gaussian 09 program [31]. Previous studies have already
shown that the spin-inversion barrier height, which also corresponds to the MECP energy, is very
sensitive to the calculated singlet-triplet splitting in the reactant Fe(CO)4 molecule [25]. Additionally,
large-scale CCSD(T)/VTZ (for H, C, and O) calculations have shown that the singlet-triplet splitting
is in the range 0.17–0.22 eV (depending on the quality of the Fe basis set). Thus, we searched for an
appropriate DFT functional level that provides a reasonable singlet-triplet splitting value for Fe(CO)4.
All benchmarking calculations were performed using the def2-TZVPP basis set, and we calculated the
splitting values using the B97D,ωB97XD, OPBE, OLYP, M06, M06L, M06-2X, and TPSSh functionals.
Among these functionals, we found that the M06/def2-TZVPP calculation yielded a value of 0.22 eV,
which is in reasonable agreement with the CCSD(T) value. Therefore, the subsequent DFT calculations
were performed at the M06/def2-TZVPP level. The singlet-triplet splitting values obtained from all the
DFT functionals are presented in the Supplementary Material.

The spin-coupled Hamiltonian approach [14–17] has been used to find the spin-inversion transition
state structure, with the pre-assumed coupling parameter set to 100 cm−1. Figure 1 shows the optimized
spin-inversion structure and the potential energy profiles of the spin-mixed, triplet, and singlet states
along the IRC. The spin-inversion barrier height measured from the H2 + 3Fe(CO)4 reactant energy
level was calculated to be 0.287 eV at the M06/def2-TZVPP level. Hereinafter, all energies are calculated
relative to the spin-inversion energy level. The present reaction system has 11 atoms, and thus,
27 internal degrees of freedom. Needless to say, it is impossible to perform full-dimensional quantum
dynamics calculations, so we have chosen three normal-mode coordinates obtained from vibrational
frequency analysis at the spin-inversion point on the spin-coupled surface: Q1, Q19, and Q27. Note that
all three of these normal modes are associated with hydrogen atom motions. More specifically, Q1 is
the spin-inversion reaction coordinate giving an imaginary frequency and approximately corresponds
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to the H2 translational motion. Q19 and Q27 approximately correspond to the H2 rotational and
vibrational motions, respectively.
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Figure 1. (a) M06/def2-TZVPP potential energy profiles for the 3Fe(CO)4 + H2 → 1FeH2(CO)4 reaction 
along the intrinsic reaction coordinate: triplet (red), singlet (black), and mixed-spin state (green). The 
spin-inversion (transition state) structure is also shown. (b) The three normal-mode vectors used to 
construct reduced-dimensionality potential energy surfaces. 
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where the diagonal elements are the spin-free potential energies with VS(s) and VT(s) being the singlet 
and triplet surfaces, respectively. s collectively denotes the three normal-mode coordinates. Spin-
orbit couplings z1 and z2 are respectively complex- and real-valued functions of the nuclear 
coordinates. As will be shown later, the absolute values of z2 and the real part of z1 are found to be 
very small compared with the imaginary part of z1 over the nuclear coordinates examined here. In 
addition, the imaginary part of z1 is only weakly dependent of the nuclear coordinates. These findings 
naturally lead to the following (2 × 2) potential energy matrix: 
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where z1 is taken to be a constant value. Thus, the potential energy matrix in the Hamiltonian of 
Equation (1) can be written as Equation (3). 

The cumulative reaction probability, which is the sum of the probabilities of the transitions from 
all the reactant states to all the product states, can be calculated using various time-dependent and 
time-independent quantum dynamics techniques [33,34]. In this work, we employ the time-
dependent transition state wave packet approach [29,30], because we need to propagate wave packets 
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along the intrinsic reaction coordinate: triplet (red), singlet (black), and mixed-spin state (green). The
spin-inversion (transition state) structure is also shown. (b) The three normal-mode vectors used to
construct reduced-dimensionality potential energy surfaces.

The Hamiltonian of the three-dimensional normal-mode model employed in this work can be
simply written as

H = −
}2

2µ

 ∂2

∂s2
1

+
∂2

∂s2
2

+
∂2

∂s2
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+ V(s1, s2, s3) (1)

where V(s1, s2, s3) is the potential energy surface matrix described by the spin-diabatic representation.
si is the mass-weighted normal-mode coordinate for the index i (with s1 = Q1, s2 = Q19, and s3 =

Q27), and µ is the reduced mass (= 1 atomic mass unit). The potential energy surface matrix for the
singlet-triplet spin inversion case can be generally written by the following (4 × 4) matrix [7,32]:

V(s) =


VS(s) z1(s) iz2(s) z1

∗(s)
z1
∗(s) VT(s) 0 0

−iz2(s) 0 VT(s) 0
z1(s) 0 0 VT(s)

 (2)

where the diagonal elements are the spin-free potential energies with VS(s) and VT(s) being the singlet
and triplet surfaces, respectively. s collectively denotes the three normal-mode coordinates. Spin-orbit
couplings z1 and z2 are respectively complex- and real-valued functions of the nuclear coordinates.
As will be shown later, the absolute values of z2 and the real part of z1 are found to be very small
compared with the imaginary part of z1 over the nuclear coordinates examined here. In addition, the
imaginary part of z1 is only weakly dependent of the nuclear coordinates. These findings naturally
lead to the following (2 × 2) potential energy matrix:

V(s) =
(

VS(s) i
√

2Im(z1)

−i
√

2Im(z1) VT(s)

)
(3)

where z1 is taken to be a constant value. Thus, the potential energy matrix in the Hamiltonian of
Equation (1) can be written as Equation (3).

The cumulative reaction probability, which is the sum of the probabilities of the transitions from
all the reactant states to all the product states, can be calculated using various time-dependent and
time-independent quantum dynamics techniques [33,34]. In this work, we employ the time-dependent
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transition state wave packet approach [29,30], because we need to propagate wave packets in only the
limited region of the potential energy surfaces around the transition state. The initial wave packets are
constructed as direct products of the two-dimensional Hamiltonian eigenstates at a specific value of s1

and the flux operator eigenstate with a positive eigenvalue. After constructing the initial wave packets,
we propagate them both forward and backward in time. The cumulative reaction probability N(E) can
be easily calculated as

N(E) =
∑

i

Ni(E) =
∑

i

〈
ψi(E)|F|ψi(E)

〉
(4)

where ψi is the energy-dependent wave function for the i-th initial vibrational state, which can be
easily obtained from the Fourier transform of the time-dependent wave packet. The flux operator F is
defined as

F =
1

2µ

[
δ
(
s1 − s0

1

)
ps1 − ps1δ

(
s1 − s0

1

)]
(5)

where ps1 is the momentum operator conjugate to the coordinate s1. In this work, the dividing surface
is located at s1

0 = 0. In References [29] and [30], the wave packets are propagated on a single adiabatic
potential energy surface; however, here the wave packet is defined in the diabatic representation and,
therefore, has two components on the singlet and triplet diabatic potential energy surfaces.

The M06/def2-TZVPP-level DFT calculations were done at the geometrical grid points described
by the three normal-mode coordinates, where 11 points were used for each of three coordinates: s1, s2,
and s3. The calculations were done in the range [−0.8, 0.8] (amu)1/2a0 for s1 and s2 and in the range
[−0.4, 0.4] (amu)1/2a0 for s3. The cubic spline interpolation technique was used to obtain the potential
energy values at a desired set of nuclear coordinates. The obtained potential energy surfaces for the
singlet and triplet spin states are presented in Figure 2.
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Figure 2. Two-dimensional contour plots of the triplet and singlet potential energy surfaces
for the 3Fe(CO)4 + H2 →

1FeH2(CO)4 reaction calculated by density functional theory at the
M06/def2-TZVPP level.

The spin-orbit couplings were determined within the Breit–Pauli approximation using the
state-interacting method at the state-averaged CASSCF/def2-TZVPP level of theory. These electronic
structure calculations were performed using the MOLPRO program [35]. Two states (one singlet and



Molecules 2020, 25, 882 5 of 10

one triplet) were equally averaged, where 10 active electrons were distributed among 8 active orbitals
in the CASSCF wavefunction. These active orbitals include 3d and 4s orbitals of Fe and two 1s orbitals
of H. The calculated results are presented in Figures 3 and 4. We can see that only the imaginary
part of z1 (see Equation (2)) is important and that the real part of z1 and the absolute value of z2 are
always very small and can be safely ignored in the quantum dynamics calculations, as mentioned
above. In addition, the imaginary part of z1 is found to depend only weakly on the nuclear coordinate.
Therefore, we carried out all the quantum dynamics calculations using a constant value (188.4 cm−1) at
the coordinate origin (s1 = s2 = s3 = 0).
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coordinates. The coupling values were calculated at the CASSCF(10e,8o)/def2-TZVPP level.

The wave packets were described using grid-based discrete-variable representations
(DVRs) [33,34,36], where the standard particle-in-a-box basis sets were used for all three normal-mode
coordinates. After the initial wave packet was prepared, it was propagated using the extended
split-operator method [37,38] through the simple extension of the standard split-operator method on a
single surface [33,34] to the multiple potential energy surface problem. A quadratic polynomial was
used as a negative imaginary absorbing potential [39] to avoid artificial reflection of the wave packet at
the edge of the potential energy surfaces. The final DVR parameters used were 256, 64, and 64 grid
points for the s1, s2, and s3 coordinates, respectively. The total step for time propagation was 60,000
with ∆t = ± 0.5 atomic time units.
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3. Numerical Results

Figure 5 shows the cumulative reaction probability as a function of energy calculated using
the present reduced-dimensionality quantum dynamics model. The 41 lowest initial states were
summed to obtain numerically converged results in this energy range (see Equation (4)). Showing the
expected behavior, the calculated cumulative reaction probability increases with increasing energy.
We also note an oscillating feature indicating that the reaction dynamics are dominated in part by
quantum mechanical resonances, which correspond to the quasi-bound states localized around the
transition-state region. This is not surprising, because the upper adiabatic potential energy surface
produced from the coupling between the singlet and triplet surfaces has a bound potential well
(see Figure 1).Molecules 2020, 25, 882 7 of 10 
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In Figure 5, we also plot the cumulative reaction probability calculated from the one-dimensional
nonadiabatic transition (surface-hopping) probability as

N1D(E) =
∑

i

P1D(E− εi) (6)

where P1D is the nonadiabatic transition probability calculated from the one-dimensional singlet and
triplet potential energy curves along the IRC (see Figure 1), and εi is the i-th vibrational energy level at
s1 = 0. The transition probability was calculated using the time-independent R-matrix propagation
method [34] with a constant spin-orbit coupling and is shown in Figure 6 as a function of energy.
The results in Figure 6 show an expected feature of the Landau–Zener approach where the transition
probability is large around the crossing energy level [3], although resonance behavior (and interference
at high energies) can be also seen, as in the three-dimensional case. However, as shown in Figure 5, the
most important point is that the cumulative reaction probability obtained from the one-dimensional
model is significantly smaller than that obtained from our three-dimensional model. This result is
essentially similar to the results of the previous ab initio multiple spawning calculations for GeH2 and
SiH2 [26–28] mentioned in the Introduction.
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Figure 6. Nonadiabatic transition probability as a function of energy calculated with the
time-independent R-matrix propagation method using the one-dimensional spin-diabatic potential
energy curves shown in Figure 1.

In Figure 5, the scaled density of states on the s1 = 0 surfaces is compared with the cumulative
reaction probabilities calculated from the three-dimensional and one-dimensional models. The scaled
density of states can be defined as

N‡s (E) =
∑

i

f H(E− εi) (7)

where f is an appropriate scaling factor and H is the Heaviside step function. If f is taken to be unity,
then Ns

‡(E) exactly corresponds to the number of open states at the dividing surface. We found
that the scaled density-of-states function with f = 0.25 approximately agrees with the cumulative
reaction probability curve obtained from our three-dimensional quantum dynamics approach. This
indicates that the average nonadiabatic transition probability can be assumed to be a constant value
of about 0.25 independent of energy. The simple 1D Landau–Zener approach, on the other hand,
should be used with caution when applying the nonadiabatic transition state theory [3]. As shown
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in Figure 6, the one-dimensional nonadiabatic transition probability is small both at energies below
the spin-inversion barrier and at higher energy due to the well-known double-passage behavior
through the crossing region, where the overall reaction probability is the product of P and 1-P (P is
the nonadiabatic transition probability). The qualitative agreement between the three-dimensional
quantum dynamics result and the scaled density of states suggests that double-passage events are
overcounted in the one-dimensional model. This also indicates that coupling between the nonadiabatic
spin-inversion motion and other nuclear motions plays an essential role leading to multidimensional
nonlocal transitions. The findings of our quantum dynamics calculations are thus in line with the
previous ab initio multiple spawning studies on the spin-inversion dynamics of the GeH2 and SiH2

systems [26–28].

4. Conclusions

In this work, we have theoretically studied the typical spin-inversion reaction 3Fe(CO)4 + H2

→
1FeH2(CO)4. The spin-inversion point, which approximately corresponds to the MECP between

the singlet and triplet potential energy surfaces, was successfully optimized as a transition state by
using the spin-coupled Hamiltonian approach. This approach thus provides the effective normal-mode
vibrational frequencies at the spin-inversion point. Using the vibrational frequency information, we
constructed spin-diabatic potential energy surfaces by taking three nuclear degrees-of-freedom as
active coordinates. Then, we calculated the reduced-dimensionality cumulative reaction probability
using the quantum transition state wave packet approach. We found that the cumulative reaction
probability calculated in this way is significantly larger than that estimated from the one-dimensional
surface-hopping probability. The present study thus suggests the importance of both multidimensional
and nuclear quantum effects in polyatomic chemical reactions involving changes in spin states.

Supplementary Materials: The following is available online. Table S1: Comparison of the singlet-triplet
energy gap (∆E in kcal/mol) in the Fe(CO)4 reactant obtained from various DFT functionals (without zero-point
energy correction).
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