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Cutaneous wound repair is a highly coordinated cascade of cellular responses to injury which restores the epidermal integrity and
its barrier functions. Even under optimal healing conditions, normal wound repair of adult human skin is imperfect and delayed
healing and scarring are frequent occurrences. Dysregulated wound healing is a major concern for global healthcare, and, given
the rise in diabetic and aging populations, this medicoeconomic disease burden will continue to rise. Therapies to reliably
improve nonhealing wounds and reduce scarring are currently unavailable. Mesenchymal stromal cells (MSCs) have emerged as
a powerful technique to improve skin wound healing. Their differentiation potential, ease of harvest, low immunogenicity, and
integral role in native wound healing physiology make MSCs an attractive therapeutic remedy. MSCs promote cell migration,
angiogenesis, epithelialization, and granulation tissue formation, which result in accelerated wound closure. MSCs encourage a
regenerative, rather than fibrotic, wound healing microenvironment. Recent translational research efforts using modern
bioengineering approaches have made progress in creating novel techniques for stromal cell delivery into healing wounds. This
paper discusses experimental applications of various stromal cells to promote wound healing and discusses the novel methods
used to increase MSC delivery and efficacy.

1. Introduction

An open wound is a loss of continuity of the epidermis,
caused by mechanical, chemical, biological, or thermal inju-
ries. Open wounds can be superficial involving the epidermis
and varying degrees of dermis, or full thickness extending to
the subcutaneous layer. Cutaneous wound healing is a highly
organized physiological process that restores the integrity of
the skin following injury. It involves the interplay between
various populations of cells and is typically categorized into
three overlapping phases: inflammation, proliferation, and
maturation [1–3].

The highly coordinated wound repair process is suscepti-
ble to interruption or failure by multiple factors which can
result in nonhealing wounds. Chronic wounds are defined
as those which persist for at least three months and are gen-
erally classified as vascular, diabetic, or pressure ulcers. They

usually occur due to characteristics of the wound or patient
physiology or as a complication of a disease process, all of
which prolong or exacerbate the inflammatory process and
prevent dermal or epidermal cells responding to regenerative
stimuli [4]. Cutaneous injury that penetrates beyond the
epidermis in adult human skin is repaired by a highly evolved
fibroproliferative response that quickly restores the skin
barrier but results in the formation of a scar. Scarred skin
lacks dermal appendages, such as sebaceous glands, hair
follicles, and sensory nerve receptors [1], and has a reduced
tensile strength [5], which alter its visual appearance and
impact its normal functions.

Wound healing represents a significant challenge in
plastic surgery. Chronic wounds cause substantial patient
morbidity, with detrimental effects on patient quality of life,
increasing pain, stress, depression, and social isolation [6].
More than six million people suffer with chronic skin
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wounds every year in the United States alone [7], and with
the aging population and increased incidence of diabetes
and obesity, this disease burden is increasing [8]. Current
standards of wound care focus on identifying and removing
precipitating or aggravating factors with the hope of reducing
inflammation and allowing the healing cascade to proceed
[1, 9]. These treatments are often expensive, time-consum-
ing, and inefficient, and more than 50% of chronic wounds
are refractory to conventional treatments [10]. Despite the
deleterious consequences of fibrosis and scar tissue forma-
tion, there are no effective treatments for scarring [10]. The
annual worldwide market for advanced wound care products
to reduce scarring and promote healing of long-term wounds
is in excess of $20 billion [8].

Given the significant medical and economic burdens,
there is a paramount need to develop therapies to overcome
the current barriers in wound care. A new therapy for wound
healing and regeneration gaining momentum in the past few
years is the use of mesenchymal stromal cells (MSCs). MSCs
exist in normal skin and play a critical role in wound healing;
therefore, application of exogenous MSCs was proposed to
promote regenerative healing of wounded skin [11]. This
chapter addresses the definition of MSCs, their role in endog-
enous wound healing, the therapeutic use of MSCs, and the
mechanisms by which MSC-based therapies may impact skin
healing outcomes.

2. Mesenchymal Stromal Cells (MSCs)

MSCs are progenitor cells of mesodermal origin. MSCs were
first isolated from bone marrow in the 1970s [12] by their
inherent ability to adhere to tissue culture surfaces like
plastic. The cells were notable for their spindle-like shape,
the capacity to derive colonies from single cells (“colony
forming units-fibroblastic,” CFUs-F), as well as their ability
to differentiate into adipocytes, chondrocytes, osteocytes,
and fibrous tissue, in vitro and in vivo. Supporting experi-
mental evidence for these nonhematopoietic multipotent
stromal cells was widely reproduced in bone marrow [13],
and subsequently, similar cells were described in a range of
adult tissues, including adipose tissue [14, 15] and dermal
skin tissue [16], as well as from embryonic and fetal sources,
such as the amniotic membrane [17], umbilical cord [18–22],
and umbilical cord blood/Wharton’s jelly [23, 24] (Figure 1).

MSCs have been challenging to precisely define, as the
field is complicated by inconsistencies with MSC nomencla-
ture and agreed identifying criteria. MSCs were first termed
“osteogenic stem cells” or “bone marrow stromal stem cells”
and later labeled “mesenchymal stem cells” [25] and “stromal
progenitor cells” [26]. Concerns in the scientific community
that these cells are not truly stem cells, given the lack of
evidence demonstrating self-renewing capacity in vivo
[26–28], the International Society for Cellular Therapy
(ISCT) in 2005 [27] stated “that fibroblast-like plastic-
adherent cells, regardless of the tissue from which they are
isolated, be termed multipotent mesenchymal stromal cells,
while the term mesenchymal stem cell is only used for cells
that meet specified stem cell criteria. The widely recognized
acronym, MSC, may be used for both cell populations as is

the current practice.” Despite this statement, the term “mes-
enchymal stem cell” remains widely used and a systematic
analysis of bone marrow-derived MSCs (BMSCs) by the
European consortium Genostem reported that MSCs are
capable of self-renewal, providing evidence that they are stem
cells [29]. The stem cell behavior of MSCs remains debated.

The single most characteristic feature of MSCs is their
capacity to develop into adipocytes, chondroblasts, and oste-
oblasts in vitro. Demonstrating this trilineage differentiation
potential in vitro is often performed to confirmMSC identity
[30]. However, some reports indicate that MSCs are able to
develop into nonmesenchymal lineages, like epidermal and
neuronal cells [31–34]. This postulated transgermal potential
remains highly controversial; it may be exceedingly rare
in vivo [35, 36], and cell fusion may account for observed
plasticity [37].

There is no specific cell surface marker unique to MSCs,
and MSCs are often isolated by “adherence selection.” There
is considerable heterogeneity in the expression of cell surface
markers between MSC populations, and surfaceome is influ-
enced by rodent strain, MSC isolation and expansion
methods [38], and culture conditions [39]. The ISCT
attempted to resolve challenges in confirming MSC identity
by proposing three minimal criteria for defining human
MSCs: (1) the cells must be plastic-adherent when main-
tained in standard culture conditions using tissue culture
flasks; (2) ≥95% of the population must express CD105,
CD73, and CD90 and ≤2% must not express CD45, CD34,
CD14, CD11b, CD79α, or CD19, and HLA class II surface
molecules; and (3) the cells must be able to differentiate into
osteoblasts, adipocytes, and chondroblasts under standard
in vitro differentiating conditions [40].

There is a growing body of evidence to suggest that many
of the cells exhibiting in vitro characteristics of MSCs are
identical to or derived from pericytes in vivo [41–44]. Peri-
cytes are cells located within the vascular basement mem-
brane of microvessels and capillaries throughout the body,
which may indicate there is a common precursor cell type
in a wide variety of tissues.

3. Endogenous MSCs in Wound Healing

Endogenous cutaneous MSCs include dermal papilla cells
(DPC), at the base of the hair follicle, and the dermal sheath
cells (DSC), which surround hair follicle units. DPCs are pri-
marily involved in modulating hair follicle cycling [45, 46],
while the DSCs are thought to play a critical role in replacing
the dermis in response to injury by differentiating into
wound healing fibroblasts [47] (Figure 2). Additional dermal
MSCs may be located in the interfollicular dermis [48, 49],
and the perivascular pericytes may act as MSCs in vivo
[50, 51]. Additionally, cutaneous wounding may activate
MSCs residing in the adipose tissue. Mature and precursor
adipocytes populate the wounded area during the prolifer-
ative phase of wound healing, in parallel with fibroblasts.
The impaired wound healing of lipoatrophic mice suggests
that adipose tissue MSCs have a role in the recruitment of
fibroblast and dermal reconstruction. [52] Finally, the
BMSCs are also thought to contribute to cutaneous wound
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healing and are reported to be recruited to wounded tissue
in early inflammation and maintained in the reconstructed
dermal tissue [53–56].

4. Therapeutic Use of MSCs in Wound Healing

MSCs have been exogenously applied to wounds to exploit
their physiological therapeutic actions in normal wound heal-
ing, and regardless of the caveats in their identity or source,
MSCs have been reported to have positive effects on both
wound healing and scarring. MSCs have a wide differentia-
tion potential, making them attractive treatment options in
regenerative medicine and, over the past decade, have rapidly
emerged as treatment of acute and chronic wounds.

Most of the evidence of MSCs in wound healing comes
fromBMSCsused in animalmodels, with only a small number
of published clinical studies. In an initial case series (n = 3),
bone marrow aspirate and, in three additional treatments,
cultured BMSCs were applied to chronic wounds and were
able to decrease wound size and increase dermal vascularity
and thickness in histology [57]. In a second case series, autol-
ogous BMSCs topically applied to acute surgical wounds and
chronic lower-extremity wounds using fibrin spray acceler-
ated healing of acute surgical wounds (n = 5) and significantly
decreased wound size of chronic venous and diabetic ulcer
wounds (n = 6) at 20 weeks. Histologically, the MSCs had
migrated into the upper layers of the wound bed and differen-
tiated into cells with a fibroblast phenotype. The surface
density of MSCs correlated with the reduction in ulcer size
[58]. In one of the largest case series, 20 chronic, nonhealing
wounds (n = 13) were treated with autologous BMSCs
impregnated onto a collagen sponge, and ninety percent of
the wounds healed completely [59].

Dermal tissue

Isolation of cells

Isolation of MSCs by plastic by plastic adherence/
surface markers

Adipose tissue
Embryonic

& fetal sourcesBone marrow

Figure 1: Mesenchymal stromal cells have been isolated from adult tissue including adipose tissue, dermal tissue, and bone marrow, as well as
from embryonic and fetal sources. MSCs have been isolated from tissue by their ability to adhere to plastic or by their surface antigen
expression (e.g., CD105+, CD73+, and CD90+).
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Figure 2: The MSCs involved in normal wound healing.
ASC= adipose-derived MSC; BMSC= bone marrow-derived MSC;
DPC=dermal papilla cell; DSC= dermal sheath cell; IF
MSC= interfollicular MSC.
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A randomized study in 2009 found that cultured autolo-
gous BMSCs simultaneously administered topically onto 24
chronic, nonhealing ulcers of the lower extremities and via
intramuscular injection into the affected limb significantly
decreased wound size (72% versus 25%) and decreased
ulcer-associated wound pain at 12 weeks, compared to stan-
dard wound care [60]. A second randomized study injected
autologous BMSCs intramuscularly into the affected limb
and reported improved pain-free walking at 24 weeks and
significantly increased ulcer healing rate compared to control
treatment [61].

BMSCs are obtained from bone marrow aspiration,
which is a safe but painful and invasive procedure, associated
with complications such as infection and hemorrhage [18].
Additionally, bone marrow is a limited resource; there is an
age-dependent reduction in cell number [62]. The long-
term growth and differentiation potential of BMSCs in vitro
may be limited [63]. Therefore, identification and character-
ization of alternative sources of human MSCs for wound
healing is important. Several different MSCs have been
applied to wounds in preclinical investigations of wound
healing, including adipose-derived stromal cells (ASCs),
dermal MSCs [64], and MSCs from amniotic fluid and
umbilical cord. ASCs and dermal MSCs are abundantly avail-
able in fat and skin and can be harvested with minimally
invasive procedures, and their use lacks ethical controversies
making them good alternatives to BMSCs. ASCs and dermal
MSCs have similar biological characteristics, immunogenic-
ity, and differentiation potential to BMSCs [15, 16, 65–68],
although the clonogenicity and proliferation capacity in
long-term cultures of dermal sheath MSCs may exceed that
of BMSCs [67]. Additionally, the paracrine expression pro-
files of all threeMSC types vary slightly, and this can differen-
tially affect wound healing. ASCs, for example, may be the
preferred MSC population for augmenting angiogenesis [69].

ASCs show promising outcomes in wound healing stud-
ies in vitro [70, 71] and in vivo in animal models [72–76]
and are currently being evaluated in clinical trials for their
potential to treat burn wounds and ulcers. An initial study
has shown that human ASCs, obtained from the debridement
of burned artificial dermis, were associated with a high degree
of success in healing the wounds of patients who suffered
chronic radiation injuries [77]. Likewise, dermal MSCs show
beneficial effects on wound healing, both in culture and in
animal models [67, 78]. In clinical trials, autologous scalp-
end terminal hair follicles grafted into nonhealing leg
wounds (n = 10) reduced wound size at 18 weeks, with histo-
logical evidence of re-epithelialization and vascularization
[79]. A randomized controlled trial (RCT) reported that skin
grafts containing follicles significantly reduced wound size
compared to skin grafts without hair follicles in chronic leg
ulcers (n = 19) [80].

These promising clinical studies indicate that MSC-based
therapies are safe and potentially efficacious, with no indica-
tion that any particular MSC tissue origin has an advantage
for wound healing over any other [81]. Currently, the clinical
trials are few in number and limited by sample size and long-
term follow-up. MSCs are thought to exert their therapeutic
effects through a multitude of actions, on various cell types,

and at all of the phases of the wound healing cascade
[81–83]. Current understanding of the mechanisms of
MSCs on wound healing and scar minimizing are addressed
in the following section.

4.1. MSCs in Wound Healing: Inflammation. The first phase
of wound healing is the inflammatory phase, which begins
at the time of wounding. Activation of the coagulation cas-
cade initiates the release of cytokines and chemokines which
stimulate the chemotaxis of neutrophils, followed by macro-
phages and later lymphocytes, into the wound for debride-
ment. These inflammatory cells, in turn, secrete growth
factors and provisional matrix proteins which promote the
recruitment of neighboring epidermal and dermal cells to
the wound bed [84]. Inflammation controls microbial inva-
sion and clears the wound site of cellular debris; however,
prolonged inflammation can result in the formation of scar
tissue [85–87]. On the other hand, an absent or inadequate
inflammatory response can give rise to chronic, nonhealing
wounds [88, 89].

Exogenous BMSCs home to areas of tissue injury. In vivo
tracing of the fluorescently labeled BMSCs injected into
lethally irradiated mice indicates that BMSCs migrate prefer-
entially to areas of cutaneous injury [90]. In vitro, human
BMSCs show chemotaxis towards inflammatory wound heal-
ing cytokines and growth factors, including platelet-derived
growth factor (PDGF), insulin-like growth factor-1 (IGF-1),
interleukin 1β (IL-1β), IL-8, interferon-γ (IFN-γ), stromal
cell-derived factor-1 (SDF-1), and tumor necrosis factor α
(TNFα) [91–93]. These migrating BMSCs upregulate chemo-
kine receptors, such as macrophage-derived chemokine
(MDC) receptors CCR2, CCR3, and CCR4; tyrosine kinase
receptors PDGF receptor and IGF-R; and RANTES (chemo-
kine ligand 5 (CCL5)), which likely coordinate MSC migra-
tory activity [93–95].

Once present at sites of injury, MSCs exert immunosup-
pressive effects. Wounds treated with MSCs have lower num-
bers of inflammatory cells and proinflammatory cytokines,
such as IL-1 and TNFα [96]. Upon exposure to proinflamma-
tory cytokines, including IFN-γ, TNFα, IL-1α, and IL-1β, the
immunosuppressive phenotype of MSCs becomes activated,
and they begin to express chemokines and inducible nitric
oxide synthase (iNOS), which suppress T cell responsiveness
to inflammation. In response to MSC activity, T cells
secrete less IFN-γ and more IL-4, and the number of reg-
ulatory T cells increases [97–99]. MSCs also regulate the
proliferation, differentiation, and function of B cells [100]
and natural killer cells [101], causing natural killer cells
to secrete less IFN-γ [102, 103].

MSCs also suppress the proinflammatory activity of
myeloid cells including monocytes [104, 105], macrophages
[106–110], and granulocytes [111]. Dendritic cells are
modified to secrete less TNFα and more IL-10, and their
migration, maturation, and antigen presentation activity is
lessened [102, 103]. The MSC-conditioned medium is a che-
moattractant for macrophages, through the production of
macrophage inflammatory protein-1alpha and beta [112],
and MSCs skew the phenotype of macrophages toward
an anti-inflammatory phenotype M2, characterized by
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increased phagocytic ability and the upregulation of anti-
inflammatory cytokines such as IL-12 and TNFα [109,
113, 114]. This macrophage reprogramming is thought to
occur through the release of prostaglandin E2 that acts
on the macrophages through the prostaglandin EP2 and
EP4 receptors [106–108]. M2 macrophages promote wound
healing by augmentation of fibroblast proliferation and sup-
press inflammation by inhibiting T cell proliferation [107].
BMSCs and the conditioned medium of BMSCs have also
been found to inhibit bacterial growth, in part by secretion
of the antimicrobial human cathelicidin hCAP-18/LL-37
protein [115].

4.2. MSCs in Wound Healing: Proliferation. The proliferative
phase predominates wound healing after two to three days,
characterized by the formation of granulation tissue, com-
posed of proliferating keratinocytes and fibroblasts, migrat-
ing epidermal cells, and newly synthesized extracellular
matrix (ECM), resulting in re-epithelialization and angiogen-
esis [84, 116–118]. Wounds treated with BMSC and ASC
have accelerated re-epithelialization, angiogenesis, and gran-
ulation tissue formation [94, 119–125]. Differentiation and
paracrine signaling have both been implicated as mecha-
nisms by which BMSCs exert their beneficial effects in the
proliferation phase.

Some studies suggest MSCs may differentiate into a vari-
ety of skin cells in the healing wounds following transplanta-
tion. In vivo studies tracing fluorescently labeled BMSCs
injected intravenously or topically applied to the wounded
skin of mice report the presence of fluorescent cells upon
healing that are positive for markers of dermal fibroblasts,
endothelial cells, pericytes [126], and epidermal keratino-
cytes [94, 121, 127]. BrdU-labeled adult MSCs cocultured
with heat-shocked sebaceous gland cells, differentiated into
sebaceous glands in skin adjacent to the wound [123]. The
percentage of BMSC engraftment in the wound, however, is
low and decreases with time. Additionally, most studies have
concluded evidence of MSC differentiation based on coloca-
lization of green fluorescent protein (GFP) with specific cell
phenotype markers; however, colocalization could also occur
by MSC fusion to local wound resident cells [128]. Other
authors have reported that there is no evidence that MSCs
differentiate into phenotypes typical of resident cutaneous
cells in the healing skin wound [120].

There is growing evidence that paracrine signaling is the
predominant mechanism by which MSCs enhance wound
repair. Acellular conditioned medium from BMSCs and
ASCs applied to cutaneous wounds of mice accelerated
re-epithelialization and wound repair [73, 125, 129]. Prote-
omic analyses reveal that BMSCs, ASCs, DPCs, DSCs, and
umbilical MSCs secrete many known mediators of tissue
repair, including growth factors, cytokines, and chemo-
kines [69, 129, 130]. Secreted proangiogenic factors are
likely to increase the density of microvessels and cutaneous
wound microcirculation and include vascular endothelial
growth factor (VEGF), angiopoietin-1, angiogenin, and lep-
tin [71, 76, 96, 125, 131]. Levels of angiogenin and VEGF
levels are comparable between MSC populations, but DPCs
and DSCs release higher amounts of leptin [69]. The growth

factors released include IGF-1, PDGF, epidermal growth
factor (EGF), keratinocyte growth factor, basic fibroblast
growth factor (bFGF), SDF-1, erythropoietin, transforming
growth factor-β (TGF-β), and hepatocyte growth factor
(HGF) [69, 71, 121, 129, 130]. These growth factors promote
migration and proliferation of endothelial cells, epidermal
keratinocytes, and dermal fibroblasts in vitro and signifi-
cantly influence wound re-epithelialization in vivo [71, 73,
125, 129, 132, 133]. ASCs and amniotic fluid-conditioned
media facilitate the production of ECM components such
as collagen I by dermal fibroblasts, and this is thought to be
mediated via the TGF-β/SMAD2 pathway [71, 125, 130,
134–136]. MSCs thus have a potent secretome capable of
influencing the activation, migration, and proliferation of
different cells involved in the wound healing process to pro-
mote angiogenesis, epithelialization, and fibroproliferation.

4.3. MSCs in Wound Healing: Remodeling and Maturation.
Upon wound closure, the injured site undergoes remodeling
and maturation phases. This final phase of wound healing
can last up to two years depending on wound severity.
The ECM synthesized during the proliferative phase is laid
down in a disorganized manner. During remodeling, ECM
molecules are realigned and cross-linked by fibroblasts.
Fibroblasts also replace collagen III with collagen I. The
wounds gradually contract as fibroblasts, stimulated by
TGF-β1 or β2 and PDGF, assume a contractile myofibro-
blast phenotype and deposit smooth muscle actin [137, 138].
Cells and blood vessels that are no longer required are
removed via matrix metalloproteinase- (MMP-) mediated
remodeling. Eventually, remodeling leads to the formation
of an acellular scar [2, 139].

MSC treatment increases wound tensile strength [119],
reduces scarring [140], reduces wound contraction [124],
and increases collagen expression [141]. Prolonged inflam-
mation can induce fibrosis, and the anti-inflammatory action
of MSCs may be responsible for their antifibrotic effects. The
relative increase in the ratio of anti-inflammatory M2 to pro-
inflammatory M1 macrophages may help to reduce scarring,
as increased M1 macrophage is thought to be a major regula-
tor of impaired wound healing and tissue fibrosis [142].
Reduced scarring may also be a result of accelerated
wound closure, improved angiogenesis, and modified col-
lagen deposition. The paracrine signaling of MSCs may
also promote an antiscarring environment. MSCs secrete
high levels of VEGF and HGF and maintain a higher ratio
of TGF-β3 to TGF-β1. bFGF and HGF enhance the regen-
eration of dermis in acute incisional wounds [143].
Increased VEGF is associated with scarless repair [144],
as is neutralization of TGF-β1 and TGF-β2 or addition
of TGF-β3 [145]. Hypoxic conditioned medium of placenta-
derived MSC protects against scar formation through
increased production of IL-10 and through the inhibition of
the proliferation andmigration of fibroblasts [146]. Addition-
ally, BMSCs appear to be responsible for the secretion of
collagen type III [56], and a higher collagen type III : type I
ratio is associated with the scarless wounds characteristic of
healing in fetal tissue [147].
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5. Optimizing MSC Treatment

Optimizing MSC engraftment in the cutaneous wounds is
critical to achieving maximal clinical benefit. There is consid-
erable heterogeneity in the delivery protocols, wound
models, and MSC populations between published studies
making it difficult to determine the impact of timing of deliv-
ery, number of cells delivered, and site of delivery on MSC
engraftment. MSCs are effective in clinical and preclinical
studies when applied immediately after cutaneous wounding
[94, 120–123], within 24 hours of injury [119], and when
applied to chronic wounds [58, 60, 77, 79, 148]. MSCs have
been successfully administered systemically via intravenous
injection [94, 119] and locally via direct intradermal injection
[121], or through the use of phosphate-buffered saline (PBS)
[120], matrigel [121], fibrin polymer [58], or hydrogel
seeding [126]. Additionally, MSC-conditioned medium is
effective alone [73, 125, 129] and has the advantage of cir-
cumventing challenges with MSC engraftment.

Direct injection or topical administration of MSCs
through gel matrices can be detrimental for cell survival.
Impregnating scaffolding materials with MSCs may provide
a microenvironment more suitable for cell adhesion, prolifer-
ation, and differentiation [149]. Scaffolds can be made of
natural biomaterials, like collagen and hyaluronic acid, the
major constituents of the ECM, as well as fibrin, a protein
essential for coagulation. These biomaterial scaffolds have
high biocompatibility [3] and, in preclinical studies, enhance
wound epithelialization and granulation and downregulate
inflammation [150, 151]. MSCs used in combination with
collagen-based dermal substitutes promote the migration of
cells to wounded skin and vascularization of the scaffold
in vivo in mice [152]. BMSCs and umbilical cord MSCs
cocultured with HaCT, a keratinocyte cell line, distributed
on collagen scaffolds, distributed more homogenously within
the wound, and expressed higher numbers of ECM proteins
and growth factors compared to MSCs applied on scaffolds
without collagen, indicating that collagen-based scaffolds
may direct cell proliferation and ECM remodeling [153].
MSCs delivered in collagen- and fibrin-based biomedical
devices show promise in nonhealing and chronic wounds in
clinical studies [154]. Collagen sponges impregnated with
BMSCs (n = 20 patients) completely healed chronic burns,
lower-extremity ulcers, and decubitus ulcers [59]. BMSC
delivered on a fibrin glue and collagen matrix also completely
or significantly closed diabetic ulcers [155]. Scaffolds can also
be made of polysaccharides like chitosan, which have antimi-
crobial and homeostatic activity, and are able to stimulate the
proliferation of fibroblasts, tissue granulation, re-epitheliali-
zation, and collagen deposition [3]. Synthetic polymers, such
as those made of polyethylene glycol, are also biocompatible
and biodegradable, and their properties, such as strength and
degradation rate, can easily be manipulated [156]. Growth
factors and therapeutic agents can be used with the scaffolds.
MSCs in porcine skin substitute decreased wound size, and
FGF could be delivered to further accelerate wound healing
[157]. Porous collagen scaffolds loaded with the chemotactic
cue stromal cell-derived factor-1α in vivo promoted the
recruitment of MSCs to the injured area [158]. Additionally,

applying MSCs with other skin cells may reflect the multicel-
lular composition of skin and promote an environment more
conducive to healing. Coculturing human epidermal skin
cells and DPCs on a porcine acellular matrix produced a
more structured multilayered stratified epidermis when com-
pared with the culture of either of these cells or dermal fibro-
blasts alone [159].

Recent technological advancements have led to the crea-
tion of micro- or nanostructured scaffolds by mechanisms
such as electrospinning and freeze drying. These scaffolds
can provide mechanical support and protection to the
injured areas, with physical characteristics, such as size, net-
work organization, and mechanical properties, that precisely
mimic native skin. Electrospun nanofibers of collagen and
poly(lactic-co-glycolic acid) (PLGA) seeded with BMSCs
promoted collagen synthesis and re-epithelialization in
full-thickness skin wounds in a rat model [160]. Bilayer
nanofibrous polymer fibers of poly(ε-caprolactone-co-lac-
tide)/poloxamer (PLCL/poloxamer) combined with dextran
and gelatin substrates were found to more accurately
mimic the multilayer structure of the skin [161]. Nanofi-
bers of polyvinyl alcohol (PVA), gelatin, and azide were
able to promote the differentiation of ASCs to keratino-
cytes [162]. BMSCs cultured on electrospun nanofibers of
collagen and poly(l-lactic acid-co-e-caprolactone) (PLLCL)
had an increased proliferation rate, and their fibroblastic
morphology gradually progressed toward that one of
epidermal cells [163]. Chitosan-electrospun mats with
cellulose or chitin nanocrystals are biocompatible and non-
cytotoxic scaffolds and may promote ASC proliferation
[164, 165]. Polymer structures made of poly(3-hydroxybuty-
rate-co-hydroxyvalerate) (PHBV) and seeded with ASCs
have been shown to withstand forces of contraction in vivo
and enhance the granulation, re-epithelialization, and
vascularization of wounded skin, resulting in skin with a
well-organized dermal matrix with sebaceous glands and hair
follicles and less scarring after 28 days [166].

Computational modeling of cell behavior and the bio-
physical processes within the healing tissue can inform the
design of efficient scaffolds sensitive to these complex pro-
cesses, to promote a regenerative wound healing environ-
ment. Processes such as the changes in fluid composition,
mechanical stress, cell density, and nutrient levels, for exam-
ple, can be modeled, to create scaffolds timely release of mol-
ecules, efficient cell spreading, transport and consumption of
nutrients, and controlled scaffold degradation [149]. Despite
advances in the development of biomedical dressings and
current insights into skin healing, more comprehensive
models specifically conceived for skin regeneration are yet
to be devised [149].

Additionally, MSCs can be differentiated or precondi-
tioned for therapeutic potential. The differentiation of MSCs
towards specific cell fates can be enhanced through the intro-
duction of transcription factors. MSCs have successfully been
differentiated into neural, pancreatic, and endothelial cells
[167]. A wound environment more permissive for differenti-
ation can also be created to maximize the performance of
stem cell-based approaches. Wounded tissue is hypoxic due
to the disruption of the blood vessels and increased oxygen
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consumption by the local cells [168]. Chronic wounds may
be especially subject to metabolic perturbations including
ischemia or hyperglycemia, which may influence MSC
behavior. Hypoxic preconditioning of cultured MSCs has
been found to beneficially influence MSC activity, with no
effect on MSC viability [169], except if prolonged [170].
The conditioned media from ASCs cultured under hypoxic
conditions, maintained in normoxic environment, increases
MSC migration through matrigel [171] and on tissue culture
plastic [172] by upregulating MMPs. Hypoxic culturing
improves MSC proliferation, clonogenicity, survival, and
engraftment [95] and accelerates wound closure [73]. Condi-
tioned media from ASCs harvested under hypoxia promotes
collagen synthesis compared with that harvested under
normoxia [73]. Low oxygen-level conditions increase
hypoxia-inducible factor- (HIF-) 1a synthesis, which acti-
vates a number of genes involved in angiogenesis and wound
healing, including PDGF, TGF-β1 and TGF-β3, and SDF-1
[173–177]. The growth factors VEGF and bFGF may be
potential mediators of this increased efficacy of hypoxic con-
ditioned media of BMSCs, ASCs, and amniotic fluid-derived
MSCs [73, 178, 179]. VEGF and bFGF are proangiogenic and
induce proliferation and migration of keratinocytes, human
dermal fibroblasts, endothelial cells, and monocytes. Hypoxic
culture results in strong secretion of immunomodulatory
molecules such as programmed death ligand-1 and indolea-
mine 2,3-dioxygenase and modulates inflammatory cell
recruitment, which positively impacts the inflammatory
phase of wound healing, favoring reduced inflammation
and regenerative wound healing [180].

6. Current Limitations and Future Directions

Despite advancements in MSC-based therapy, there are a
number of challenges to overcome before MSCs can be used
for effective wound healing. The heterogeneity in MSC
surface receptor expression and MSC behavior within and
between studies emphasizes the importance of consistent
criteria to define MSCs, standardized protocols for isolation
and expansion, and standard in vivo assays to demonstrate
their identity prior to therapeutic administration. Most of
the mechanisms discussed have been studied in rodents,
but animal physiology cannot always be extrapolated to
humans. The therapeutic potential of MSCs in human
wounds is currently only supported by a small number of
clinical studies, and, while results are promising, they are
limited by small sample sizes, short follow-up periods, and
lack of randomized controlled trials. There are several trials
currently recruiting patients to examine the longer-term
outcomes of BMSC therapy on diabetic and venous ulcers.
Current understanding of MSC mechanisms is still unfold-
ing, and further investigation into how MSC-derived
signals target cells and cellular responses spatiotemporally
in vivo is needed.

7. Conclusion

MSC-based therapy is emerging as a promising technique
able to promote wound healing and minimize scarring. Their

easy and convenient isolation, extensive proliferation poten-
tial and differentiation capacity, and lack of significant
immunogenicity and ethical controversy make MSCs attrac-
tive therapeutic agents. MSCs promote healing in all phases
of wound repair. They migrate to sites of cutaneous injury
and, primarily through paracrine signaling, suppress inflam-
mation and stimulate the proliferation and differentiation of
resident progenitor cells including fibroblasts, endothelial
cells, and epidermal cells. MSCs modify their activities and
functions depending on the biomolecular context and
exposure to biochemical factors characteristic of an injury
environment such as hypoxia. Current challenges with the
use of MSCs concern the lack of universally accepted
criteria for defining the MSC phenotype or their func-
tional properties, and further clinical trials are needed to
demonstrate the therapeutic potential of MSCs in a larger
number of patients.
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