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Research on cognitive aging has established that word-finding ability declines
progressively in late adulthood, whereas semantic mechanism in the language system
is relatively stable. The aim of the present study was to investigate the associations of
word-finding ability and language-related components with brain aging status, which
was quantified by using the brain age paradigm. A total of 616 healthy participants aged
18–88 years from the Cambridge Centre for Ageing and Neuroscience databank were
recruited. The picture-naming task was used to test the participants’ language-related
word retrieval ability through word-finding and word-generation processes. The naming
response time (RT) and accuracy were measured under a baseline condition and two
priming conditions, namely phonological and semantic priming. To estimate brain age,
we established a brain age prediction model based on white matter (WM) features and
estimated the modality-specific predicted age difference (PAD). Mass partial correlation
analyses were performed to test the associations of WM-PAD with the cognitive
performance measures under the baseline and two priming conditions. We observed that
the domain-specific language WM-PAD and domain-general WM-PAD were significantly
correlated with general word-finding ability. The phonological mechanism, not the
semantic mechanism, in word-finding ability was significantly correlated with the domain-
specific WM-PAD. In contrast, all behavioral measures of the conditions in the picture
priming task were significantly associated with chronological age. The results suggest
that chronological aging and WM aging have differential effects on language-related word
retrieval functions, and support that cognitive alterations in word-finding functions involve
not only the domain-specific processing within the frontotemporal language network but
also the domain-general processing of executive functions in the fronto-parieto-occipital
(or multi-demand) network. The findings further indicate that the phonological aspect
of word retrieval ability declines as cerebral WM ages, whereas the semantic aspect is
relatively resilient or unrelated to WM aging.

Keywords: brain age prediction, white matter, diffusion MRI, word-finding ability, domain-specific language
mechanisms
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HIGHLIGHTS

- Differential associations of white matter (WM) brain age with
word-finding ability were observed.

- Domain-specific language system in the phonological
component, but not the semantic component, was correlated
with WM brain age.

- Word finding functions involve not only the domain-
specific processing but also the domain-general processing of
executive functions.

- WM brain age is a potential indicator of cognitive decline in
language-related word-finding ability.

INTRODUCTION

Older adults experience problems in daily word-finding tasks
such as recalling precise names of people or objects (Labarge,
1986; Sunderland et al., 1986; Schmitter-Edgecombe et al., 2000).
Such performance impairment manifests as slow efficiency,
increased pauses during speech production, or being unable to
remember phonology when intending to express a known word
(Obler and Albert, 1981; Nicholas et al., 1985; Kemper et al.,
1990; Cheung and Kemper, 1992; Orange and Purves, 1996). The
increased word-finding difficulties constitute a major complaint
among older adults.

Two potential cognitive mechanisms underlying these
impairments in word retrieval and generation ability have
been identified. The first posits that normal aging leads to
a decreased ability in language-related ability such as the
stored conceptual representations and lexical knowledge; the
second posits that normal aging causes a general decline
in the executive functions involved in retrieval mechanisms.
Working memory and executive functions required for the word
retrieval processes involve inhibitory control, lexical selection,
and competition monitoring. Earlier studies on cognitive
aging found that unlike other cognitive functions that are
sensitive to aging, such as working memory and executive
functions (Daniels et al., 2006; Dennis and Cabeza, 2008;
Collette et al., 2009; Higby et al., 2019), language abilities
(e.g., lexical knowledge and semantic representation) remain
stable and even improve with age (Kave et al., 2009; Salthouse,
2009; Meyer and Federmeier, 2010; Verhaegen and Poncelet,
2013).

However, some researchers explained the causes of word
retrieval failure from other aspects of language processes
such as phonological processes (Taylor and Burke, 2002;
Ouyang et al., 2020), an age-related decrease of connectivity
in the language system (Burke et al., 1991) and stronger
lexical competition (Lagrone and Spieler, 2006). Two
potential theories have been developed to provide possible
interpretations for the age-related decline in language
processes. One which is called the inhibition deficit theory
(IDT) suggests that the elderly show decreased control of
the information processing and become more distracted

in both semantic and phonological related mechanisms
(Hasher et al., 1991). The other, called the transmission deficit
hypothesis (TDH), states that the phonological mechanism
weakens with age and results in word retrieval failure, but
the semantic mechanism is preserved (Mackay and Burke,
1990).

When linking behavioral performance with neural activities,
neuroimaging studies have supported the frontotemporal system
as the neural substrate of language function (Van Der Lely and
Pinker, 2014; Chang et al., 2015; and Lopez-Barroso and De
Diego-Balaguer, 2017; Campbell and Tyler, 2018). Other studies
have extended the domain-specific language network (LN) to a
domain-general system or multi-demand network including the
frontoparietal connections (Duncan, 1995; Unsworth et al., 2014;
Cole et al., 2015; Duncan et al., 2017) and observed an association
between the age-related decline of the domain-general system or
multi-demand network and that of executive functions such as
inhibition, attention, and working memory (Duncan et al., 2017;
Chen P.-Y. et al., 2020).

Multiple neuroimaging studies have demonstrated that
cognitive decline is related to the deterioration of brain
structure and function (Archer et al., 2018; Fletcher et al.,
2018). Previous studies examined the biological relationships of
language and memory abilities with white matter (WM) tracts
across adulthoods using diffusion magnetic resonance imaging
(MRI) techniques (Ziegler et al., 2010; Stamatakis et al., 2011;
Sexton et al., 2014; Feng et al., 2016; Houston et al., 2019).
For example, the fronto-temporal link of the inferior fronto-
occipital fasciculus (IFOF) might be involved in the figure-
recall ability (Voineskos et al., 2012). The IFOF might also play
a role in language function according to the investigation of
intraoperative electrostimulation to this pathway (Duffau et al.,
2005). It has been reported that the posterior projections of the
corpus callosum might contribute to the domains in memory
and executive function (Voineskos et al., 2012). These findings
of varying relationships of different WM tracts with language
and memory functions support that the integrity of structural
connectivity may contribute to the performance of language and
memory functions.

To our knowledge, the performance of word retrieval ability
might alter along the dimension of chronological age, but it
is unclear whether such ability is related to the biological age
of brain structures. The growing body of neuroimaging studies
has developed brain age prediction models that involve machine
learning techniques to evaluate and quantify an individual’s
status of brain aging (Cole and Franke, 2017; Franke and
Gaser, 2019). The assumption underlying this approach is
that the biological aging process of the brain in a cognitively
normal population is chronological, so brain age prediction
models are created by estimating the regression pattern between
neuroimaging features and chronological age in a normative
population. The establishedmodels are then applied to the cohort
of interest to predict individuals’ brain age. The inference of brain
age prediction models can be used to quantify the status of brain
aging by calculating the discrepancy between the chronological
and biological age of the brain (Smith et al., 2019). The difference
between predicted age and chronological age is defined as the
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predicted age difference (PAD) of the brain, which represents
the degree of deviation from the chronological patterns of brain
aging in a normative population. The PAD can be regarded
as a non-chronological age variable and has been employed to
predict the integrity of brain structures, the increased risks of
dementia, and the degree of domain-specific cognitive decline
(Gaser et al., 2013; Boyle et al., 2020; Cole, 2020). Also, the
PAD of WM (WM-PAD) could be used to detect aberrant brain
aging in neurodegenerative diseases and psychiatric disorders
(Chen et al., 2019, 2020c), and reflect the biological associations
with several cognitive functions (Chen et al., 2020a). Employing
the brain age paradigm, we aimed to test the hypothesis of
word retrieval ability was associated with the biological age of
WM.

In the current study, we investigated whether the retrieval
ability is a domain-specific language process or requires domain-
general mechanisms incorporation, further we examined the
association of semantic and phonological components in the
language system involved in word-finding ability with the
brain aging of WM. We employed the picture-naming task to
evaluate word retrieval ability and the semantic and phonological
mechanisms involved in a population-based lifespan adult
cohort, and the brain age paradigm was used to assess the
degree of WM aging. Figure 1 illustrates the experimental design
of the present study. Compared to the relationship between
cognitive decline and chronological age reported in previous
studies (Stevens et al., 2008; Ward et al., 2013; Baciu et al., 2016),
we hypothesized that theWM-PAD can differentiate whether the
retrieval ability is a domain-specific language process or requires
domain-general mechanisms incorporation and further manifest
different associations patterns with semantic and phonological
mechanisms of language system involved in word-finding ability.
Our findings could advance the understanding of the biological
aging effect of WM in the word-finding ability.

MATERIALS AND METHODS

Participants
The participants were recruited from the Cambridge Center
for Ageing and Neuroscience (Cam-CAN) project1. A detailed
description of the recruitment process has been reported in
the studies by Shafto et al. (2014) and Taylor et al. (2017).
The East of England–Cambridge Central Research Ethics
Committee approved the study protocol. After providing written
informed consent, all participants underwent a diverse set of
neuropsychological tests, cognitive tasks, and MRI scanning.
Participants with a Mini-Mental State Examination score of
24 or lower, those with a poor fluency in English, those
with poor vision or hearing, those with self-reported substance
abuse, and those who were currently experiencing serious
health problems were excluded. Participants who did not
meet the safety and health-related criteria for MRI were also
excluded.

A total of 616 participants aged 18–88 years were recruited.
The participants were assigned to one of three groups, namely the

1http://www.cam-can.com

training, test, and target groups. These three groups were used
to create brain age prediction models, test model performance,
and estimate brain age measures for statistical analyses of
the experiments, respectively. Specifically, participants who had
complete cognitive measurements were preferentially assigned to
the target group. The remaining participants were split into the
training and test groups through a conditional random approach
to guarantee statistically identical age and sex distributions
between the groups. Table 1 lists the demographic information
of the participants in the three groups.

Behavioral Task
The picture-naming task was used to test language-related
explicit and implicit effects involving word finding and word
generation. The task measured the naming response time (RT)
and accuracy (ACC) under the baseline condition and two
priming conditions (i.e., phonological and semantic priming).
The participants were asked to name every picture as quickly
and accurately as possible. The baseline condition required an
individual to consciously recall language-related cognitive ability
(explicit effect). It included 200 pictures of common objects
presented in a pseudorandom order. The baseline experiment
procedure consisted of a fixation point displayed for 500 ms,
followed by the target picture displayed for 750 ms, and
finally, a blank screen displayed for 1,000 ms. The priming
condition probed an individual’s unconscious language-related
ability (implicit effect), activated by specific cues. The priming
condition consisted of one baseline picture preceded by a
prime picture, which was unrelated, phonologically related, or
semantically related to the baseline pictures. Each trial consisted
of 500 ms fixation, followed by 750 ms of the prime picture and
1,000 ms blank screen, and proceeded by 750 ms of the target
picture and 2,500 ms of a blank screen.

Phonologically related priming pairs included overlapping
phonology (first two phonemes in English; e.g., glass–glove or
first phonemes in English; e.g., ring–ruler). Semantically related
priming pairs included semantic relationships (e.g., tiger–cat
or cabinet–box). Unrelated pairs were neither semantically
nor phonologically related. Table 1 provides the demographic
information and cognitive performance on the picture-naming
task of the healthy participants in the study. The paired t-
tests of ACC and RT between primed and unrelated conditions
were conducted with the estimation of the Cohen’s d for the
effect size to evaluate the priming effects (Table 2). To evaluate
the cognitive performance in the target group (N = 142), the
correlation matrix approach adjusting chronological age and
education was employed to examine the associations between the
cognitive scores (i.e., ACC and RT) under each condition of tasks
(Table 3). Cognitive performance on the picture-naming task was
assessed for its correlation with the chronological age variable
(Table 4).

Image Acquisition
All participants were scanned using a 3-Tesla MRI scanner
(TIM–Trio, Siemens, Erlangen, Germany) at the Medical
Research Council Cognition Brain and Sciences Unit,
Cambridge, United Kingdom. High-resolution structural
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FIGURE 1 | Flowchart of experiment design. The brain scans (structural and diffusion MRI data) and behavioral data (scores of the picture-naming task in baseline
and priming conditions) were acquired from the participants in the Cam-CAN Repository. (A) The diffusion MRI data went through the tract-based analysis. (B) The
processed data were used to create and test the brain age prediction model in the training and test sets, respectively. (C) Eventually, the established brain age model
was applied to the target set to predict the value of the predicted age difference (PAD). The statistical analysis was further conducted to estimate the association of
behavioral scores with chronological age and predicted age difference in the target set.

TABLE 1 | Demographics and cognitive performance of the picture-naming task from healthy adults in the Cam-CAN cohort.

Training group Test group Target group One-way ANOVA

Subject number 364 110 142
Age mean (±SD) 54.18 (18.28) 54.55 (18.61) 54.23 (18.84) F = 0.017, p = 0.983
Gender (M/F) 51.10/48.90 49.09/50.91 46.48/53.22
Education years (M/F) 14.60/14.22 15.24/13.98 14.42/15.04 F = 0.389, p = 0.678
Baseline accuracy (%)

range 50–94 51–92 53–93
Mean (±SD) 78 (9) 78 (8) 79 (8) F = 0.578, p = 0.561

Baseline RT (millisecond)
range 546–1138 643–1175 610–1056
Mean (±SD) 817.87 (81.24) 819.65 (86.45) 809.35 (92.01) F = 1.211, p = 0.299

Phonological primary accuracy (%)
range 53–100 60–100 63–100
Mean (±SD) 90 (9) 90 (9) 91 (8) F = 0.340, p = 0.712

Phonological priming RT (millisecond)
range 510–1164 541.5–1143 584–1160.5

Mean (±SD) 803.25 (87.73) 788.41 (91.94) 789.12 (96.17) F = 0.291, p = 0.748
Semantic priming accuracy (%)

range 48–100 63–100 55–100
Mean (±SD) 87 (9) 85 (18) 89 (8) F = 1.113, p = 0.329

Semantic priming RT (millisecond)
range 523–1,288 625–1,063 576.5–1,139
Mean (±SD) 785.08 (90.11) 763.18 (169.87) 790.04 (92.43) F = 0.012, p = 0.988

Note: RT, response time.

TABLE 2 | Results of paired t-test of ACC and RT between primed and unrelated conditions with Cohen’s d for effect size.

ACC Primed condition Unrelated condition T-value P-value Cohen’s d

Phonological 0.907 (0.078) 0.876 (0.094) t(141) = 4.66 p = 0.000 0.355
Semantic 0.886 (0.083) 0.876 (0.094) t(141) = 1.38 p = 0.170 0.109
RT
Phonological 789.1 (96.2) 808.8 (97.8) t(141) = −2.90 p = 0.004 −0.203
Semantic 790.0 (92.4) 808.8 (97.8) t(141) = −3.26 p = 0.001 −0.197

Note: ACC, accuracy; RT, response time.

MR images were acquired using a three-dimensional rapid
acquisition gradient-echo sequence with preparation pulses
for T1-weighted contrast. The following imaging parameters
were used: TR/TE = 2,250/2.99 ms, inversion time = 900 ms,

flip angle = 9◦, field of view(FOV) = 256 × 240 × 192 mm3,
resolution = 1 mm isotropic, and acquisition time of
approximately 4.5 min. Diffusion-weighted images were
acquired using a spin-echo sequence with two refocusing
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TABLE 3 | The correlation matrix between ACC/RT under each conditions of the tasks.

ACC Baseline Phonological Semantic Unrelated

Baseline 1.000 0.737 0.678 0.626
Phonological 0.737 1.000 0.568 0.512
Semantic 0.678 0.568 1.000 0.453
Unrelated 0.626 0.512 0.453 1.000
RT
Baseline 1.000 0.579 0.605 0.636
Phonological 0.579 1.000 0.642 0.553
Semantic 0.605 0.642 1.000 0.674
Unrelated 0.636 0.553 0.674 1.000

Priming effect Phonological—unrelated Semantic—Unrelated
ACC
Phonological—Unrelated 1.000 0.670
Semantic—Unrelated 0.670 1.000
RT
Phonological—Unrelated 1.000 0.605
Semantic—Unrelated 0.605 1.000

Note: age and education as covariates. All p-values <0.001. ACC, accuracy; RT, response time.

TABLE 4 | Partial correlations (r) between cognitive performances (ACC and RT) of the picture naming task with chronological age and brain age.

Measures ACC RT

Chronological Age
Baseline r = −0.546 p < 0.001∗∗ r = 0.438 p < 0.001∗∗

Phonological r = −0.397 p < 0.001∗∗ r = 0.554 p < 0.001∗∗

Semantic r = −0.452 p < 0.001∗∗ r = 0.522 p < 0.001∗∗

Unrelated r = −0.408 p < 0.001∗∗ r = 0.426 p < 0.001∗∗

PAD—Whole Brain
Baseline r = −0.236 p < 0.005∗∗ r = 0.019 p < 0.827
Phonological r = −0.200 p < 0.018∗ r = 0.009 p < 0.915
Semantic r = −0.071 p < 0.401 r = 0.056 p < 0.514
Unrelated r = −0.101 p < 0.234 r = 0.076 p < 0.375
PAD—Language Network
Baseline r = −0.285 p < 0.001∗∗ r = 0.020 p < 0.818
Phonological r = −0.178 p < 0.035∗ r = 0.099 p < 0.242
Semantic r = −0.116 p < 0.171 r = 0.103 p < 0.227
Unrelated r = −0.127 p < 0.135 r = 0.018 p < 0.830
PAD—Non-Language Regions
Baseline r = −0.203 p < 0.016∗ r = 0.014 p < 0.874
Phonological r = −0.146 p < 0.085 r = 0.008 p < 0.921
Semantic r = −0.055 p < 0.516 r = 0.024 p < 0.775
Unrelated r = −0.048 p < 0.573 r = −0.016 p < 0.847

Note: The partial correlation approach was adopted to examine the associations of PAD measures with the cognitive indices (ACC and RT) while chronological age and education
factors were controlled. Only education factor was controlled when estimating correlations of chronological age with cognitive indices. ACC, accuracy; RT, response time; PAD,
predicted age difference; ∗ = marginal correlation, p < 0.05; ∗∗ = significant correlation, p < 0.0125 (adjusting for multiple comparison).

pulses to minimize distortion induced by eddy currents. The
acquisition scheme entailed 30 diffusion gradient directions for
each of the two diffusion sensitivity values (b-value) of 1,000 and
2,000 s/mm2 and three images with a b-value of 0 s/mm2. The
imaging parameters were as follows: TR/TE = 9100/104 ms,
FOV = 192 × 192 mm2, voxel size = 2 mm isotropic,
66 axial slices, number of averages = 1, and acquisition
time = approximately 10 min.

Quality Assurance of Diffusion-Weighted
Images
All diffusion data sets underwent quality assurance procedures,
including examinations of the signal-to-noise ratio (SNR), the
degree of alignment between T1-weighted images and the GFA
map, and the detection of abrupt head motion. SNR was

evaluated through the calculation of the mean signal of an object
divided by the SD of the background noise. In practice, the
signal was determined using a central square of an image for
each slice, and the noise from four corner regions was averaged.
Diffusion data sets were included in the study if they had an SNR
higher than the mean SNR minus 2.5 SDs of all participants. The
degree of within-participant alignment between T1-weighted
images and the GFA map was evaluated through the calculation
of the spatial correlation between the WM tissue probability
map derived from T1-weighted images and the GFA map. Data
sets with correlation coefficients higher than the mean spatial
correlation minus 2.5 SDs were included in the study. Instances
of abrupt head motion or other visible artifacts were manually
identified and removed. The correction algorithm for motion
and eddy currents was used to detect and replace slices affected
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by signal loss due to bulk motion during acquisition (Andersson
and Sotiropoulos, 2016). Of the initial 636 images, 616 (96.9%)
underwent the quality assurance procedures and qualified for
subsequent analyses.

Diffusion Index Estimation Using
Regularized Mean Apparent Propagator
Algorithm
We used regularized mean apparent propagator (ReMAP) MRI
algorithm to reconstruct the diffusion propagator from the
diffusion MRI signal (Ozarslan et al., 2013; Hsu and Tseng,
2018). ReMAP MRI fits the diffusion MRI signal with a
linear combination of Hermite functions so that the diffusion
propagator can be represented by a few coefficients, serving as
an efficient dimension reduction method. The coefficients of the
diffusion propagator, orientation distribution function (ODF),
and diffusion tensor were determined, from which various
diffusion indices could be calculated. In this study, we calculated
generalized fractional anisotropy (GFA) and mean diffusivity
(MD) to represent the microstructural integrity of WM tracts.
The GFA value was the standard deviation (SD) of the ODF in all
radial directions divided by the norm of the ODF (Tuch, 2004).
The value of MD was the mean of the first, second, and third
eigenvalues of the diffusion tensor. GFA changes in response to
the strength of anisotropic diffusion in the microstructure. MD
is the diffusion index that is the most sensitive to age, and it has
been considered useful for the prediction of brain age (Cox et al.,
2016; Chen et al., 2020b).

Tract-Based Analysis for
Diffusion-Weighted Images
We used an in-house analytic method, tract-based automatic
analysis (TBAA; Chen et al., 2015), to sample the diffusion index
values along the tracts across major WM regions. Figure 2A
illustrates the entire process of diffusion index computation
and tract-based analysis. In brief, TBAA was used to register
diffusion-weighted images of all study participants to a standard
template (Hsu et al., 2015), in which tractograms of 76 major
WM tracts were developed using deterministic tractography.
After registration was complete, the position coordinates of
76 tracts were transformed from the template space to the
native space of each participant. Diffusion index values of GFA
and MD were sampled along with the coordinates of each
tract and averaged to obtain the mean GFA and MD indices
for each WM tract. Subsequently, 76 GFA and 76 MD values
were obtained from each participant as features for brain age
estimation.

Brain Age Prediction Based on WM
Features Using Machine Learning
To estimate the brain age index of the participants, we established
brain age prediction models based on the WM features from
the training set. To differentiate biological underpinnings of
language-related cognitive ability, we created three types of brain
age models: models derived from features of the whole brain
(WB), language network (LN), and non-language regions (NLR).
The WB brain age model provided brain age metrics based

on entire WM features (i.e., 76 GFA and 76 MD values). The
LN brain age model was built based on the features defined in
the language network (Van Der Lely and Pinker, 2014; Chang
et al., 2015; Lopez-Barroso and De Diego-Balaguer, 2017); there
were 14 tract bundles on language network by our definition,
so the LN brain age metrics were estimated using 14 GFA
and 14 MD values. Table 5 provides the constitution of the
language network in WM. The NLR brain age model was created
using the features which were not defined in the language
network (i.e., 62 GFA and 62 MD values). Also, all three brain
age models contained sex variables as another predictor. In
practice, the brain age models were designed to have a 12-layer
feedforward cascade neural network, and the related information
of model design can be found in our previous study (Chen et al.,
2020b). A 10-fold cross-validation procedure was performed
to estimate the performance of the brain age model in the
training phase. Next, an independent test set was used to evaluate
the generalizability of the models. The modeling procedures
were implemented using MATLAB R2019a (MathWorks Inc.,
Natick, MA, USA) with an NVIDIA GeForce RTX 2080Ti
(NVIDIA Inc., Santa Clara, CA, USA) graphics processing unit
for accelerated computing. The technical details of brain age
prediction are provided in the Supplementary Material. The
model performance was evaluated according to the Pearson
correlation coefficient (Rho) and mean absolute error (MAE)
between the predicted age and chronological age. Figure 2B
displays the brain age modeling for WM.

Partial Correlation Analysis of Brain Age
Measures With Behavioral Task
Performance
Partial correlation analysis was employed to address the
relationship between age measures (i.e., chronological age and
brain age) and language-related cognitive abilities in the target
group (N = 142). To quantify the extent of an individual’s brain
aging, the PAD was calculated by subtracting chronological age
from predicted age (i.e., predicted age − chronological age) to
represent the biological age of the brain. In this experiment,
we estimated three PAD measures, namely PAD-WM, PAD-
LN, and PAD-NLR. Notably, the PAD was correlated with
chronological age in the training phase, which represents a
statistical bias in regression estimation (Smith et al., 2019). To
minimize this bias, the partial correlation approach adjusting
chronological age and education was employed to examine the
associations of the PADs with the cognitive scores (i.e., ACC
and RT) under each condition of tasks. In contrast, the partial
correlation analysis only adjusted the education factor when
estimating the correlation of cognitive scores with chronological
age (Table 4). The Bonferroni correction was used to address
multiple comparison problems.

RESULTS

Brain Age Prediction Model
The prediction models estimated participants’ brain age with
acceptable performance in the training, test, and target
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FIGURE 2 | Analytic pipeline of diffusion MRI reconstruction and the corresponding brain age modeling for white matter features. (A) The pipeline depicts the
pipeline of TBAA. (B) The pipeline displays the brain age modeling for WM. Abbreviation: dMRI, diffusion magnetic resonance imaging; MD, mean diffusivity; GFA,
generalized fractional anisotropy; QA, quality assurance; Cas, cascade; ReMAP, regularized mean apparent propagator reconstruction.

TABLE 5 | Fiber tract bundles of interest in the language network.

Name of fiber tract bundles Connected region 1 Connected region 2

L AF L inferior frontal gyrus opercular part L superior temporal gyrus
R AF R inferior frontal gyrus opercular part R superior temporal gyrus
L IFOF L orbitofrontal gyrus Occipital lobe
R IFOF R orbitofrontal gyrus Occipital lobe
L SLF III L inferior frontal gyrus opercular part L angular gyrus
R SLF III R inferior frontal gyrus opercular part R angular gyrus
L UF L orbitofrontal gyrus L superior temporal pole
R UF R orbitofrontal gyrus R superior temporal pole
CC of VLPFC L inferior frontal gyrus + part of middle frontal gyrus R inferior frontal gyrus + part of middle frontal gyrus
CC of SMA L supplementary motor areas R supplementary motor areas
CC of superior temporal gyrus L superior temporal gyrus R superior temporal gyrus
CC of splenium L occipital lobe R occipital lobe
CC of genu L orbitofrontal gyrus R orbitofrontal gyrus
CC of inferior parietal lobule L inferior parietal lobules R inferior parietal lobules

Abbreviations: AF, arcuate fasciculus; CC, corpus callosum; IFOF, inferior frontal-occipital fasciculus; L, left; R, right; SLF, superior longitudinal fasciculus; SMA, supplementary motor
area; UF, uncinate fasciculus; VLPFC, ventrolateral prefrontal cortex.

groups. For the WB model, the model performance was
Rho = 0.951 and MAE = 4.53 years in the training group
(N = 364), Rho = 0.907 and MAE = 6.61 years in the test
group (N = 110), and Rho = 0.910 and MAE = 6.11 years
in the target group (N = 142). For the LN model, the model
performance was Rho = 0.905 and MAE = 6.13 years in the
training group, Rho = 0.802 and MAE = 8.68 years in the
test group, and Rho = 0.831 and MAE = 7.74 years in the
target group. For the NLR model, the model performance was
Rho = 0.955 and MAE = 4.33 years in the training group,
Rho = 0.904 and MAE = 6.72 years in the test group, and
Rho = 0.903 and MAE = 6.57 years in the target group.
Besides the WB model, we observed that the NLR model
provided better prediction than the LN model. This might
result from the number of features employed by the NLR brain
age model. The age-related bias in the brain age estimation
was minimized by adjusting chronological age in the statistical
analyses.

Cognitive Performance and Its Priming
Effect
Before conducting correlation analysis, additional paired t-
tests were used to examine if the primed condition was faster
than the unrelated condition in the target group (N = 142;
Table 2). Cohen’s d was also reported as the strength of the
priming effect. Under the primed condition, the RTs were
789.1 (96.2) ms and 790.0 (92.4) ms in the phonological and
semantic conditions, respectively. These RTs were significantly
shorter (p = 0.004 and 0.001, respectively) than those in the
unrelated condition, which was 808.8 (97.8) ms. In addition,
the same statistical tests were applied to the measures of
accuracy. We found that the accuracy at the phonological
condition [(mean: 0.907, SD: (0.078)] was significantly better
(p < 0.001) than that at the unrelated condition [0.876
(0.094)]; however, the accuracy at the semantic condition [0.886
(0.083)] was comparable to (p = 0.170) that at the unrelated
condition.
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FIGURE 3 | Partial correlation of cognitive indices (ACC and RT) at the baseline condition with age measures (chronological age and brain age). The brain age
measures were significantly correlated with ACC under the baseline condition (A) but not with RT. (B) The lines of PAD (NLR, LN, and WB) were almost overlapped.
Abbreviation: ACC, accuracy; RT, response time; PAD, predicted age difference; NLR, non-language regions; LN, language network; WB, whole brain.

To evaluate the cognitive performance in the target
group (N = 142), the correlation matrix approach adjusting
chronological age and education was employed to examine
the associations between the cognitive scores (i.e., ACC and
RT) under each condition of tasks (Table 3). All p-values
were lower than 0.001. Both ACC and RT showed significant
positive correlations across the task conditions but baseline ACC
showed stronger linear relationships with all the tasks than
baseline RT. Unrelated RT showed stronger linear relationships
with all the tasks than unrelated ACC. For the correlation
matrix examining the associations between the priming effects,
each pair across ACC and RT represented similar linear
relationships.

Correlation Between Behavioral Task
Performance on the Picture-Naming and
Chronological Age
The performance (measured according to ACC and RT) of
participants in the target group (N = 142) under the baseline and
priming conditions in the picture-naming task was significantly
correlated with their chronological age (Table 4). ACC showed
significant negative correlations (p < 0.001) with chronological
age under the baseline and priming conditions, whereas RT
exhibited significant positive correlations (p < 0.001). Therefore,
the chronological age variable was a strong factor influencing
participants’ performance on the picture-naming task.

Partial Correlations Between the WM PAD
and Behavioral Task Performance on the
Picture-Naming Task
Table 4 presents the partial correlations (r) between the cognitive
indices (ACC and RT) in the picture-naming tasks and PAD
measures of the target group (N = 142), and Figures 3–5 provide
the results. The PAD-WB was significantly correlated with ACC
under the baseline condition (r = −0.236, p = 0.005) but not
with RT (r = 0.019, p = 0.827). Under the phonological-related

priming condition, the PAD-WB was marginally associated with
ACC (r = −0.200, p = 0.018; the Bonferroni-corrected threshold
α = 0.0125) but not with RT (r = 0.009, p = 0.915). Similarly,
the PAD-LN was significantly correlated with ACC under the
baseline condition (r = −0.285, p = 0.001) but not with RT
(r = 0.020, p = 0.818). Under the phonological-related priming
condition, the PAD-LN was also marginally associated with
ACC (r = −0.178, p = 0.035; the Bonferroni-corrected threshold
α = 0.0125) but not with RT (r = 0.099, p = 0.242). However,
the PAD-NLR was only marginally associated with ACC at
the baseline condition (r = −0.203, p = 0.016). Under either
the semantic-related priming or unrelated condition, all PAD
measures (i.e., WB, LN, and NLR) did not exhibit significant
associations with ACC or RT (Table 4).

DISCUSSION

To clarify the role of biological age of WM in word-finding
ability, we investigated the associations of word-finding ability
including semantic and phonological priming in language system
with WM brain age; we tested the partial correlation between
the performance indices (ACC and RT) in the picture-priming
task and the language network, non-language network and whole
brain of WM-PAD while adjusting for chronological age and
education. Our results revealed two major findings: First, all
WM-PADs in the language-network, non-language network,
and over the whole-brain, which represented whole cerebral
WM features instead of being confined to the frontotemporal
language network, exhibited statistical associations with ACC
in word retrieval functions while controlling the effect of
chronological age. Such findings imply that cognitive alterations
in word-finding functions involve not only the domain-specific
language processing within the frontotemporal language network
but also the domain-general processing of executive functions
in the fronto-parieto-occipital (or multi-demand) network
(Diachek et al., 2020). Second, the phonological priming ACC
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FIGURE 4 | Partial correlation of the cognitive indices (ACC and RT) at the phonological-priming condition with age measures (chronological age and brain age).
Under the phonological-related priming condition, chronological age was significantly correlated with ACC (A), and the PAD-WB and PAD-LN were marginally
associated with ACC. (B–C) However, the PAD-NLR was not associated with ACC. (D) On the other hand, only chronological age was significantly correlated with
RT (E), whereas all brain age measures were not correlated with RT (F–H). Abbreviation: ACC, accuracy; RT, response time; PAD, predicted age difference; NLR,
non-language regions; LN, language network; WB, whole brain.
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FIGURE 5 | Partial correlation of the cognitive indices (ACC and RT) at the semantic-priming condition with age measures (chronological age and brain age). Under
the semantic-related priming condition, chronological age was significantly correlated with ACC (A), but no brain age measures were associated with ACC. (B–D)
Likewise, only chronological age was significantly correlated with RT (E), whereas all brain age measures were not correlated with RT (F–H). Abbreviation: ACC,
accuracy; RT, response time; PAD, predicted age difference; NLR, non-language regions; LN, language network; WB, whole brain.
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in the picture-naming task was associated with the language-
network WM-PAD, whereas the semantic priming ACC in
the picture-naming task exhibited no significant correlations.
Chronological age was significantly associated with all conditions
in the picture-priming task. The results suggest that for
word-finding ability, the semantic mechanism in the language
system might be more preserved than the phonological-related
mechanism in the language system for the biological aging of
WM. The findings further indicate that the phonological aspect
of language slightly declines with increases in WM brain age,
whereas the semantic aspect is relatively resistant or unrelated to
WM aging.

Brain Age Vs. Chronological Age in
Word-Finding Ability
Multiple studies on cognitive aging have evaluated the
association between cognitive functions and chronological
age (Mackay and Burke, 1990; Hasher et al., 1991; Burke
and Shafto, 2004; Lagrone and Spieler, 2006). Research
on cognitive aging has established that the ability to
successfully retrieve proper words from stored knowledge
and concepts in long–term memory progressively declines in
late adulthood (Christensen et al., 1997; Davis et al., 2001;
Fleischman et al., 2004). The impaired word-generation
ability in older individuals may attribute to the decline
in retrieval mechanism of executive functions instead of
impaired semantic representation (Fisk and Sharp, 2004;
Waters and Caplan, 2005; Daniels et al., 2006; Dennis
and Cabeza, 2008; Collette et al., 2009; Baciu et al., 2016;
Higby et al., 2019). In our results, the ACC in baseline
condition in the picture-priming task was significantly
negative-correlated with the WM-PAD across the language
network, non-language network, and whole-brain (Table 4).
The findings show that the general word-finding ability
reflected by the baseline condition of the picture-priming
task not only requires support from the domain-specific
language network but the broad domain-general system as
well. The finding supports the previous research that the word
retrieval mechanism involves language-related processes such
as searching for linguistic information that would help assess
the target, it also interacts among attention and executive
functions of the domain-general system such as monitoring
and inhibition to suppress competing representations and
enhance the efficient retrieval from the long–term memory
(Nozari et al., 2016; Nozari and Novick, 2017; Higby et al.,
2019).

WM Brain Age and Language-Related
Mechanisms in Word-Finding Ability
In this study, ACC for phonological priming conditions
showed a negative correlation with both the language-network
WM-PAD and whole-brain WM-PAD but no significant
relationship with non-language network WM-PAD (Table 4),
meaning that the decline of ACC for phonological priming
was associated with a higher WM-PAD and the phonological
priming focuses on domain-specific language system. Older
adults experience difficulties in retrieving and producing

proper words because of weakening processes related to the
phonological aspects of language ability (Taylor and Burke,
2002; Ossher et al., 2013; Rizio et al., 2017). Our results
support those of earlier studies and further demonstrate
that the biological relationship of WM brain age with the
phonological mechanism in the language system occurs under
conditions of phonological priming. The results imply that
phonological priming might be affected by the biological aging
of WM.

Contrary to the phonological component in the language
system, the semantic component exhibited no significant
linear relationships with WM-PAD. Previous behavioral
studies have revealed that semantic processes, conceptual
knowledge, and information are preserved during normal
aging (Waters and Caplan, 2005; Kave et al., 2009; Salthouse,
2009; Meyer and Federmeier, 2010; Verhaegen and Poncelet,
2013). Multiple studies on cognitive aging have reported that
language abilities such as lexical knowledge and semantic
representation remain stable and even improve with age (Kave
et al., 2009; Salthouse, 2009; Meyer and Federmeier, 2010;
Verhaegen and Poncelet, 2013). The discrepancy between
phonological and semantic components might implicate
that, in the normal aging process, the biological effect of
WM affects the retrieval ability of executive functions and
word production speed more than the loss of conceptual
or lexical knowledge (semantic component). The current
finding supports the transmission deficit hypothesis (TDH)
stating the phonological mechanism weakens with age and
results in word retrieval failure, but the semantic mechanism
is preserved (Mackay and Burke, 1990). TDH assumed
that the semantic function requires multiple connections
between the lexical component of a word and its semantic
representation. and the multiplicity of connections may make it
resistant to word-finding failure. In contrast, the phonological
representation shows one-to-one mapping to the lexical
component of a word, so it becomes vulnerable to aging (Burke
and Shafto, 2004).

Previous studies have reported a chronological age-related
decline in word-finding ability reflected by reduced retrieval
speed (RT) or ACC (Stevens et al., 2008; Rizio et al.,
2017). Consistently, we found that both ACC and RT were
significantly correlated with chronological age. However,
by using the WM brain age instead, our results showed
that the WM-PAD was significantly associated with the
cognitive measures in ACC but not in RT. This implicates
that ACC and RT might reflect distinct dimensions
of word-finding capacity; the ACC index reflected an
individual’s retrieval precision, and the RT index manifested
an individual’s retrieval efficiency. This discrepancy in the
current study implies that the WM-PAD may not fully
explain the word retrieval efficiency measured by RT in the
picture-priming task.

In contrast to the effect of chronological age, neuroimaging-
based brain age measures can reflect the differential trajectory
against chronological age that might attribute to individual
variations in domain-specific cognitions (Cole et al., 2018) and
represent the status along the dimension of biological aging.
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Our study investigated the domain-specific association between
language-related mechanisms in word retrieval processes and
WM aging (i.e., WM-PAD), and the results showed that
the language components that participated in word-finding
ability were correlated with the biological age of WM,
suggesting that the effect of WM aging might selectively
contribute to the changes in word-finding ability. These
findings provided the genuine associations of WM aging with
language-related mechanisms in word retrieval processes and
could advance our understanding of differentiating the effects
between chronological aging and biological aging in WM on
general word-finding ability and further the language-related
mechanisms in word retrieval processes.

LIMITATIONS

This study has some limitations. First, the picture-naming task
adopted to assess word-finding ability in the current study is
one of many cognitive tasks. Various tasks are used to assess
cognitive functions, and a single task cannot fully assess the
performance of complex cognitive functions such as language
and memory. The picture-naming task, including the baseline
and priming conditions, focuses on testing the abilities of
conceptual recognition and word generation. The design of
the picture priming task in our study did not include an
encoding phase and the design of the priming conditions did
not meet the conventional design of repetition priming which
includes the encoding and the testing phase. Nevertheless, the
present findings represent only a limited representation of
cognitive aging involving language-related priming and word
retrieval mechanism. Exploration of the associations of brain
age with other cognitive tasks would provide a more complete
picture of the brain–cognition relationships in cognitive aging.
Second, the brain age models that we developed might not
be optimal. For WM brain age, we used GFA and MD only
on 76 major fiber tracts as our features of machine learning.
We did not explore the whole spectrum of diffusion indices
such as axial diffusivity, radial diffusivity, kurtosis, or neurite
density, each of which represents distinct characteristics of
WM microstructure. Adding some of the indices to brain
age modeling might improve its association with cognitive
aging. In this study, we built the brain age model using WM
features over the entire brain. The null results for WM brain
age might be attributed to the fact that the 76 major fiber
tracts do not include the small fibers or U fibers in the
brain because of limitations of the diffusion MRI technology
used in this study. Therefore, the WM features in the present
study do not capture the full scope of WM changes. Further
studies are required to develop various brain age models to
clarify the relationship between brain aging and cognitive
aging.

CONCLUSION

By investigating the associations between the PAD and task
indices of memory functions, we revealed the genuine effect
of WM aging on word-finding ability and its language-related

mechanisms regardless of the chronological age effect. All
behavioral measures of picture priming tasks were associated
with chronological age, whereas only general word retrieval
ability and the phonological-related word-finding ability were
correlated with WM brain age. The results suggest that
chronological aging and brain aging have differential effects
on word retrieval functions; additionally, a new paradigm is
introduced to investigate brain correlates of cognitive aging using
brain age modeling.
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