
The Characterization of Structure and
Prediction for Aquaporin in Tumour
Progression by Machine Learning
Zheng Chen1,2, Shihu Jiao3, Da Zhao1,2, Quan Zou2,3, Lei Xu4, Lijun Zhang1* and Xi Su5*

1School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, China, 2Institute of Fundamental and
Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China, 3Yangtze Delta Region Institute
(Quzhou), University of Electronic Science and Technology of China, Quzhou, China, 4School of Electronic and Communication
Engineering, Shenzhen Polytechnic, Shenzhen, China, 5Foshan Maternal and Child Health Hospital, Foshan, China

Recurrence and new cases of cancer constitute a challenging human health problem.
Aquaporins (AQPs) can be expressed in many types of tumours, including the brain,
breast, pancreas, colon, skin, ovaries, and lungs, and the histological grade of cancer is
positively correlated with AQP expression. Therefore, the identification of aquaporins is an
area to explore. Computational tools play an important role in aquaporin identification. In
this research, we propose reliable, accurate and automated sequence predictor iAQPs-RF
to identify AQPs. In this study, the feature extraction method was 188D (global protein
sequence descriptor, GPSD). Six common classifiers, including random forest (RF),
NaiveBayes (NB), support vector machine (SVM), XGBoost, logistic regression (LR)
and decision tree (DT), were used for AQP classification. The classification results
show that the random forest (RF) algorithm is the most suitable machine learning
algorithm, and the accuracy was 97.689%. Analysis of Variance (ANOVA) was used to
analyse these characteristics. Feature rank based on the ANOVAmethod and IFS strategy
was applied to search for the optimal features. The classification results suggest that the
26th feature (neutral/hydrophobic) and 21st feature (hydrophobic) are the two most
powerful and informative features that distinguish AQPs from non-AQPs. Previous
studies reported that plasma membrane proteins have hydrophobic characteristics.
Aquaporin subcellular localization prediction showed that all aquaporins were plasma
membrane proteins with highly conserved transmembrane structures. In addition, the 3D
structure of aquaporins was consistent with the localization results. Therefore, these
studies confirmed that aquaporins possess hydrophobic properties. Although aquaporins
are highly conserved transmembrane structures, the phylogenetic tree shows the diversity
of aquaporins during evolution. The PCA showed that positive and negative samples were
well separated by 54D features, indicating that the 54D feature can effectively classify
aquaporins. The online prediction server is accessible at http://lab.malab.cn/~acy/iAQP.
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INTRODUCTION

Water, as one of the most widely existing molecules, is the basic
requirement for the development of organisms. Aquaporins
(AQPs) are a large and evolutionarily conserved family of
proteins that facilitate water absorption and flow across
cytoplasmic compartments and cell membranes in
microorganisms, animals, and plants. From a previous study,
aquaporins, as water channel proteins, not only take part in water
molecule transport but also respond to other small molecule
transport, such as glycerol, urea, ammonia, and CO2, which help
those molecules cross cell membranes (Preston et al., 1992; Ma
et al., 1997; Agre et al., 2002; Nielsen et al., 2002; Rojek et al.,
2008). In the aquaporin family, some aquaporins are primarily
water selective, such as AQP1, AQP2, AQP4, AQP5 and AQP8,
while other parts of the aquaporins, such as AQP3, AQP7, AQP9,
and AQP10, transport water, glycerol and other small solutes
(Verkman, 2005). Aquaporins are small highly conserved
membrane proteins that can selectively promote water
molecule transportation through the cell membrane.
Aquaporins (AQPs), with a molecular weight of 28 kDa, were
first found in the membrane of human red blood cells (Agre et al.,
2002). AQPs usually exist as tetramers; when water passes
through these narrow channels, the conformation of AQPs
can decide whether water passes through the cell membrane.

AQPs not only act as channels to take part in water and small
molecule transport but are also widely related to a variety of
pathophysiological statuses in cells. Evidence of AQPs in cell
proliferation has aroused great interest in the research of AQPs in
tumour progression (Levin and Verkman, 2006; Zhang et al.,
2010; Jung et al., 2011; Nakahigashi et al., 2011; Di Giusto et al.,
2012; Direito et al., 2016; De Ieso and Yool, 2018). At present,
AQPs can be expressed in many types of tumours, including in
the brain (Maugeri et al., 2016; Lan et al., 2017), breast (Jung et al.,
2011), pancreas (Arsenijevic et al., 2019), colon (Nagaraju et al.,
2016), skin (Hara-Chikuma and Verkman, 2008a), ovaries (Kasa
et al., 2019) and lung (Chae et al., 2008). There was a positive
correlation between the histological tumour grade and AQP
expression, such as the expression of AQP4 in diffuse
astrocytoma (Saadoun et al., 2002a; Kröger et al., 2004).

For colorectal cancer, the expression of AQP8 decreased
(Fischer et al., 2001), while that of AQP1, AQP3 and AQP5
increased (Moon et al., 2003), indicating that AQPs can be
expressed in tumours in humans. In general, AQP expression
is upregulated in tumours. Therefore, many studies speculate that
aquaporins allow water to penetrate, resulting in rapid tumour
mass formation. In astrocytomas, the expression level of AQP4 is
related to the amount of oedema but not to survival status
(Saadoun et al., 2002a; Warth et al., 2007). Recent studies have
indicated that AQPs, as prognostic markers, have a potential role
in tumour-associated oedema because they participate in
angiogenesis, tumour cell migration and proliferation
(Saadoun et al., 2005a; Saadoun et al., 2005b; Hara-Chikuma
and Verkman, 2006; Auguste et al., 2007; Hara-Chikuma and
Verkman, 2008b). AQP1, AQP4 and AQP9 are expressed in brain
tumours, and AQP4 expression increases with the severity of
brain oedema (Saadoun et al., 2002a; Ding et al., 2010; Wang and

Owler, 2011; Ding et al., 2013; Maugeri et al., 2016; Lan et al.,
2017). In brain, lung, prostate and colon tumours, AQP1 with
high expression participates in cell migration and tumour
angiogenesis (Saadoun et al., 2002b; Saadoun et al., 2005b;
Mobasheri et al., 2005; Kang et al., 2008). AQP3 has increased
expression in ESCA, COAD, LUAD and LIHC (Marlar et al.,
2017). AQP3 knockout mice can inhibit the development of skin
tumours, and tumorigenesis can utilize ATP produced by AQP3-
mediated glycerol transport (Hara-Chikuma and Verkman,
2008a). AQP5 is also related to the migration, metastasis, and
poor prognosis of cancer cells in BRCA (breast cancer) (Jung
et al., 2011; Lee et al., 2014; Jensen et al., 2016). AQP5-regulating
miRNAs inhibit BRCA cell migration through exosome-
mediated delivery (Park et al., 2020). Under exosome-
mediated delivery, AQP5-regulated miRNAs inhibit BRCA cell
migration (Park et al., 2020).

Aquaporins play a role in the development and prognosis of
various cancers, so the machine learning recognition method of
aquaporins is also one of the hot spots in cancer research.
Machine learning methods are applied to establish a novel and
efficient classification model of aquaporins and are helpful to
accelerate the recognition of aquaporins. The amino acid
sequence composition of the protein is considered to be a
sequence feature of the protein (Tyagi et al., 2013).

There are two methods for protein classification methods, as
follows: one is based on protein sequence information (Liu et al.,
2020a; Zhang et al., 2021), and the other is based on protein
structure features (Liu et al., 2019; Cai et al., 2020). The sequence-
based protein classification method extracts features by using the
amino acid composition, amino acid number and other sequence
information of the protein sequence (Liu et al., 2014). These
methods are efficient and useful in predicting a large number of
protein sequence datasets (Lou et al., 2014). At present, there are
various studies on the classification of protein sequences, such as
using logistic regression and support vector machine (SVM)
methods to predict DNA binding proteins (Shen and Zou,
2020; Liu et al., 2021a) by considering amino acid proportions,
amino acid compositions, amino acid spatial asymmetric
distributions and biological coding characteristics of
evolutionary information (Szilágyi and Skolnick, 2006; Kumar
et al., 2007). The protein classification method based on protein
structure identifies proteins by using structure and sequence
information (Liu et al., 2014). Previous studies have focused
on positive electrostatic potential, protein surface, overall
charge and positive patches (Shanahan et al., 2004; Bhardwaj
et al., 2005), which have achieved excellent results. Under certain
conditions, the prediction accuracy of three protein motifs (helix
turning helix, helix hairpin helix, and helix loop helix) is 91.1%,
which indicates that this method is efficient for protein
determination (Cai et al., 2009).

In our work, to promote the rapid application of AQPs in
cancer treatment, a powerful sequence-based analysis method to
distinguish the AQPs and cross validation was applied for results
demonstration (Figure 1). It is important to develop an effective
model to predict AQPs. We propose a sequence-based AQP
prediction model that performs stably on various classifiers.
The AQP classification model uses the 188D feature extraction
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method, applies ANOVA to reduce the dimensionality, and uses
different algorithms to optimize the AQP classification model.
188D is a characteristic of the frequency of continuous amino
acid residues in proteins. ANOVA is used to prune features
without affecting the accuracy of the predictor.

MATERIALS AND METHODS

Dataset
A high-quality dataset is essential for reliable and accurate
predictor building (Su et al., 2021). Aquaporin was taken as the
positive sample, and the protein sequence was collected from the
protein database of the UniProt website (https://www.uniprot.org/)
(Chen et al., 2016). Negative samples such as nonaquaporins were
extracted from the Pfam database (http://pfam.xfam.org/). To
ensure the reliability of the aquaporin dataset, we applied the
following criteria to optimize the data: first, the sequences
annotated as “prediction” were eliminated; second, we deleted
the sequences of other protein fragments; through screening
steps, 239 aquaporin sequences and 10,713 nonaquaporin
sequences were obtained; third, the CD-HIT program (Fu et al.,
2012) was used to eliminate redundant sequences and to avoid
overestimating the prediction model (Zou et al., 2020). The cut-off
of sequence identity is set to 90%. Finally, 151 aquaporins and 8,994
nonaquaporins were obtained to form the final dataset.

Features Extraction
One of the main factors for the performance accuracy of the
prediction model is the quality of sample feature extraction. The
prediction of the protein model mainly depends on the coding
strategy of the protein sequence. According to the coding strategy
of the protein sequence, the amino acid sequence can be
transformed into a numerical vector (Liu et al., 2019;
Muhammod et al., 2019; Zhu et al., 2019; Chen et al., 2020; Fu
et al., 2020; Tang et al., 2020;Wang et al., 2020; Shao et al., 2021). In
this paper, the global protein sequence descriptor (GPSD) method
was used to represent the amino acid sequence. Global protein
sequence descriptor (GPSD), known as 188 days method. This
method mainly converts the sequence into a numerical vector
according to the amino acid properties in the protein sequence and

generates 188 features. These 188D features contain the
information and properties of amino acid sequences [48,49].
According to the description of the GPSD method, the 188D
features can be divided into two parts. The first part is the
composition of amino acids. The first 20D features were
obtained by calculating the frequency of amino acids in the
protein sequence. The second part is to calculate the
physicochemical properties of amino acids, which constitute 168
characteristics. Previous studies have provided detailed
information on the eight physicochemical properties of amino
acids (Lin et al., 2013; Liu et al., 2018; Li et al., 2019a). The protein
sequence was encoded by CTD (C: composition, t: transition, D:
distribution) mode to generate 21D features. Three groups were
generated for 20 amino acids for each property. C is the occurrence
frequencies (1 × 3D = 3D). T is the transition frequency (1 × 3D =
3D). D is the first, 25, 50, 75% and last position of a certain group in
the peptide sequence (5 × 3 = 15D). Therefore, 8 * (3 + 3 + 15) =
168 features were produced for the CTD model.

Classifier
To find the most suitable machine learning algorithm, six
commonly used classifiers are applied, including random
forest (RF) (Ru et al., 2019), NaiveBayes, support vector
machine (SVM) (Wei et al., 2018a; Dao et al., 2020a; Dao
et al., 2020b; Wei et al., 2020), XGBoost (Yu et al., 2021a;
Yang et al., 2021), logistic regression (LR) and decision tree
(DT) (Li et al., 2019b). These efficient machine learning
algorithms are usually used for feature analysis.

Feature Selection
For machine learning model building, features extracted from
sequences always contain noise. A feature selection strategy to
solve the information redundancy and overfitting problem can
improve the feature representation ability (He et al., 2021).
Analysis of variance (ANOVA) (Blanca et al., 2017; Wei et al.,
2018b; Tang et al., 2018; Su et al., 2019a; Jung et al., 2019; Su et al.,
2020; Liu et al., 2021b; Jin et al., 2021) has been used to analyse
these characteristics and has been widely used in RNA, DNA and
protein prediction. In this study, ANOVA is used to select the
optimal features for model training. The feature subset with low
redundancy is selected by ANOVA. We sort the original features

FIGURE 1 | The whole framework of the method iAQPs-RF to identify the aquaporins.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8456223

Chen et al. Machine Learning Classification of AQP Genes

https://www.uniprot.org/
http://pfam.xfam.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


based on the ANOVA feature sorting algorithm and apply the IFS
strategy to search the optimal feature subset.

Performance Standard
To evaluate the prediction accuracy of the model, the data of the
following four formulas are usually used to solve the problem of
classification prediction.

Acc � TP + TN

(TP + TN + FP + FN)
Sn � TP

(TP + FN)
Sp � TN

(TN + FP)
MCC � TP × TN − FP × FN

�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√

Accuracy (Acc), specificity (Sp), sensitivity (Sn) and Matthew
correlation coefficient (MCC) were the commonly used
evaluation parameters (Jiang et al., 2013; Wei et al., 2014; Wei
et al., 2017a; Wei et al., 2017b; Wei et al., 2017c; Manavalan et al.,
2019a; Manavalan et al., 2019b; Su et al., 2019b; Hong et al., 2019;
Zeng et al., 2019; Zhang et al., 2020a; Liu et al., 2020b; Zeng et al.,
2020; Yu et al., 2021b; Jin et al., 2021; Shao and Liu, 2021; Zhu
et al., 2021). In the formulas, TP was the true positive number, TN
was the true negative number, FP was the false-positive number
and FN was the false negative number.

A receiver operating characteristic (ROC) curve was applied to
study the prediction performance of the model. The area under the
ROC curve (AUC) was used to assess the prediction performance of
themodel. AUC values of 0.5 and one represent random and perfect
models, respectively (Zeng et al., 2017; Zeng et al., 2018; Dao et al.,
2019; Feng et al., 2019; Lai et al., 2019; Lin et al., 2019; Zhu et al.,
2019; Zhang et al., 2020b; Charoenkwan et al., 2020; Ding et al.,
2020a; Ding et al., 2020b; Hasan et al., 2020; Huang et al., 2020; Jin
et al., 2020; Li et al., 2020; Wang et al., 2020; Wu and Yu, 2021).

Construction of 3D Structure for AQPs
To verify the localization of aquaporins, the website (http://www.
csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/) of the protein localization
website and transmembrane prediction website (https://www.
novopro.cn/tools/tmhmm.html) were applied to predict the
subcellular localization and transmembrane structure of
aquaporins. At the same time, Phyre2 software (http://www.sbg.
bio.ic.ac.uk/phyre2/html/page.cgi?id=index) was applied for the 3D
structure prediction of aquaporins. The prediction results were
visualized by PyMOL (version 2.5.1) software (https://pymol.org/2/).

Construction of Aquaporins Phylogenetic
Tree
The phylogenetic tree of aquaporins was constructed to analyse
the evolutionary diversity of the protein. Aquaporin sequence
alignment results were analysed by MAFFT online software
(https://mafft.cbrc.jp/alignment/server/) and used to construct
a phylogenetic tree using IQ-TREE software (multicore version 1.
6.12). The best fitting model for the phylogenetic tree was LG + F

+ R6 (Kalyaanamoorthy et al., 2017). The ultrafast bootstrap
method was used for phylogenetic assessment, and 1,000
replicates per method were chosen in this work (Guindon
et al., 2010; Minh et al., 2013; Hoang et al., 2018). The tree
file was visualized by the iTOL website (https://itol.embl.de/).

EXPERIMENT

Performance of Features Based on the
188-Dimensional Method (GPSD)
To select the best classifier for the AQP sequences, six widely used
machine learning classifiers were employed to classify the features

TABLE 1 | Preliminary results of different feature descriptors using different
classifiers.

188D_P: N = 1:1 Sn Sp Acc MCC AUROC

XGBoost 98 96.04 97.033 0.9416 0.9949
NaiveBayes 96.666 96.041 96.366 0.9279 0.9763
LR 97.999 94.748 96.377 0.9289 0.9857
DecisionTree 95.999 95.374 95.689 0.9155 0.9569
RF 98.666 96.707 97.689 0.9544 0.9987
SVM 95.332 96.04 95.7 0.9153 0.9917

188D_P: N = 1:2 Sn Sp Acc MCC AUROC

NaiveBayes 98 97.667 97.793 0.9531 0.9765
SVM 92.75 98.334 96.471 0.9224 0.9965
LR 96.083 98.001 97.359 0.9425 0.9958
RF 97.332 98.344 98.012 0.9564 0.9978
XGBoost 96.708 96.677 96.682 0.9284 0.9954
DecisionTree 92.041 93.687 93.141 0.8518 0.9286

188D_P: N = 1:3 Sn Sp Acc MCC AUROC

NaiveBayes 97.333 96.015 96.357 0.9102 0.9765
SVM 90.75 99.334 97.181 0.9244 0.9979
LR 95.417 98.445 97.682 0.9394 0.9952
RF 96.666 98.455 98.013 0.948 0.9979
XGBoost 95.374 98.011 97.343 0.9306 0.995
DecisionTree 93.999 96.697 96.024 0.8974 0.9535

188D_P: N = 1:4 Sn Sp Acc MCC AUROC

NaiveBayes 97.333 97.18 97.22 0.9206 0.9771
SVM 92.083 99.005 97.617 0.9256 0.9946
LR 93.457 97.844 96.953 0.9074 0.9942
RF 94.709 99.166 98.274 0.9461 0.9967
XGBoost 95.333 98.668 98.007 0.9391 0.9958
DecisionTree 92.708 98.841 97.614 0.9248 0.9578

188D_P: N = 1:5 Sn Sp Acc MCC AUROC

NaiveBayes 96.666 97.084 97.019 0.9022 0.9773
SVM 92.083 99.205 98.015 0.9292 0.9954
LR 93.999 98.143 97.46 0.9136 0.996
RF 94.667 99.338 98.562 0.9486 0.9975
XGBoost 95.333 98.94 98.341 0.9414 0.9963
DecisionTree 91.374 98.01 96.905 0.8924 0.9469

188D_P: N (151:8,994) Sn Sp Acc MCC AUROC

XGBoost 86.084 99.934 99.703 0.9062 0.9989
NaiveBayes 96.666 97.977 97.955 0.6522 0.9793
LR 84.082 99.635 99.374 0.8158 0.9975
DecisionTree 72.208 99.365 98.918 0.6827 0.8579
RF 82.75 99.912 99.626 0.879 0.995
SVM 31.167 100 98.866 0.5503 0.9916
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of AQP sequences extracted by the 188-dimensional method
(GPSD). For feature extraction by the 188-dimensional
method (GPSD), we applied different ratios for the number of
positive and negative samples (1:1, 1:2, 1:3, 1:4, 1:5, and 151:
8,994), and the results were classified by six machine learning
classifiers (XGBoost, Naivebayes, LR, decision tree, RF and SVM).
The results of all classifiers in the tenfold cross-validation were
compared, and the comparison results are shown in Table 1.

The results of Table 1 show that the different proportions of
positive and negative samples indicated that P: N = 1:1 was the
best ratio for the following analysis. Although the values of 1:2,
1:3, 1:4, 1:5 and 151:8,989 have higher values in SP and ACC,
the values of Sn, MCC and AUROC are lower compared with P:
N = 1:1. The increase in negative samples causes data imbalance
and overfitting of the model. Therefore, the positive and
negative sample ratio column of P: N = 1:1 is selected for
model building.

For the AQP sequences (P: N = 1:1), random forest (RF) was
the best algorithm, with the highest accuracy for the features
extracted by the 188-dimensional method (GPSD) (AUC =
0.9987, Acc = 97.689%, MCC = 0.9544, Sn = 98.666%, Sp =
96.707%). XGBoost is the second algorithm with a slightly lower
accuracy (AUC = 0.9949, Acc = 97.033%, MCC = 0.9416, Sn =
98%, Sp = 96.04%) compared with the random forest (RF)
algorithm. The NaiveBayes, LR, DecisionTree and SVM
algorithms have similar accuracies lower than the random
forest (RF) algorithm for AQP sequence classification based on
the 188-dimensional method (GPSD). The results in Figure 2
indicated that RF was the best classifier with an accuracy of

0.9985, while the other classifiers of XGBoost, Naivebayes, LR,
decision tree and SVM had accuracies of 0.9949, 0.9763, 0.9857,
0.9569 and 0.9917, respectively. In this study, six widely used
classifiers are used for classification. The ROC of the RF classifier
is 0.9985, which is relatively high. In general, regarding the
evaluated accuracy of the AUC, Acc and MCC values, RF had
the best performance in the AQP sequence classification results
and was selected as the best classifier for model building.

Effect of Feature Selection Technologies
However, there are redundant or noisy features among the
features extracted by the 188D method, which will affect the
stability of the model. To overcome these effects, we use the
ANOVA feature selection method to optimize these features. The
optimized classification results of the feature selection method
based on ANOVA are shown in Table 2. In addition, the optimal
feature 54D is selected by combining ANOVA with an
incremental feature selection (IFS) strategy, as shown in
Figure 3A. The comparison results show that the accuracy of
the optimal feature selected (ACC = 97.689) is slightly higher
than that of the original feature (ACC = 97.356) (Table 2).
Therefore, the ANOVA feature selection method was selected
for feature optimization.

The PCA method was used to visually analyse the optimal
feature (54D) after feature selection by the feature selection
method (Figure 3B). Figure 3B indicates that positive and
negative samples can almost be separated in the two-
dimensional visualization diagram, which indicates that the
54D feature can effectively classify AQP proteins.

Feature Distribution Analysis
In this study, we performed feature analysis after feature
selection. By analysing these 188D features, we determine
the attribute information contained in these features. The
results of feature analysis are shown in Figure 3C.
According to the best feature analysis of the F-score value
obtained by ANOVA, the features with an F-score value greater
than 100 have a greater contribution to the classification. It can
be seen from the figure that among the 188D features, the first is
the 26th dimension feature, which is neutral/hydrophobic,
followed by the 21st dimension feature, which is
hydrophobic. The 26th dimension feature (neutral/
hydrophobic) and 21st dimension feature (hydrophobic)
signs showed that AQPs contained hydrophobic amino
acids, which may be associated with the structural and
functional properties of AQPs.

Structure Analysis of AQPs
Through feature selection, we know that hydrophobic features
(the 26th dimension feature and 21st dimension feature) are the

FIGURE 2 | ROC curves for the best performing feature with different
classifiers.

TABLE 2 | ANOVA feature selection methods based on random forest.

ANOVA Sn Sp Acc MCC AUROC

188D 98.666 96.04 97.356 0.9479 0.9991
ANOVA_ 54D 98.666 96.707 97.689 0.9544 0.997
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FIGURE 3 | Two-step feature selection result display (A) 10-fold CV and independent test accuracy of the RF classifier with the feature number varied (B) dimension
reduction results based on the PCAmethod for the original data with a total of 188 dimensions (C) feature ranking of the F-score method obtained by ANOVA for the data
with 188 features.

FIGURE 4 | The structure of AQPs (A) The prediction distribution of the transmembrane structure for AQP6_HUMAN (B)model of the structure of an AQP showing
the principal features of the protein, NPA: asparagine-proline-alanine motifs; M1-M6: the transmembrane structure (C–E) 3D constructure of AQP6_HUMAN, AtPIP1-4
and AQPZ-ECLOI.
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most significant features and make a great contribution to
classification. Therefore, we analysed the protein localization of
the AQP protein sequence, and the results showed that all AQP
proteins were located on the cell membrane (Supplement Table 1).
Cells are distinguished by a thin membrane. The core of the
membrane is hydrophobic, which means it repels water. Many
signals and nutrients cannot pass through the membrane itself but
can pass through proteins across the membrane. Membrane
proteins are essential for living cells, and plasma membrane
proteins also have properties such as hydrophobicity, low
solubility and low abundance. Therefore, the enrichment and
classification extraction methods of soluble proteins cannot be
used for plasmamembrane proteins, mainly because the expression
level of plasma membrane proteins in cells is very low, and they are
highly hydrophobic in nature, which makes them easier to
precipitate in aqueous solution and difficult to extract (Luche
et al., 2003; Rawlings, 2016).

The Phyre2 website was used to analyse the transmembrane
structure of HmAQP7. Figure 2 shows that there are six α-helix
transmembrane domains (Figure 4A): M1, M2, m3, M4, M5 and
M6 (Figure 4B). A six-α-helix transmembrane domain forms a
pore on the cell membrane to supply water molecules through the
cell membrane. When the AQP protein folds, loops B (HB) and E
(HE), which retain the lipophilic half helix, project to the protein
molecular centre, making the highly conserved Asn-Pro-Asp
(NPA) motif present the opposite direction, thus regulating
the single file conductance of water and acting as a cation and
proton exclusion filter (Figures 4B–E).

Evolution and Diversity
Aquaporin is a conserved membrane protein that contains highly
conserved NAP domains and α-helical transmembrane domains

in bacteria (Figure 4E), plants (Figure 4D) and humans
(Figure 4C). To better verify the phylogenetic and
evolutionary relationship of AQPs, 151 AQP protein sequences
containing human, mouse, insect, fungus and bacteria were
applied to construct a phylogenetic tree (Figure 5).

The results indicated that the 151 AQP protein sequences were
divided into eight groups (Figure 5). The length of branches
indicates the genetic relationship of AQP sequences. Among
them, group Ⅲ and group Ⅳ belong to plant and bacteria
branches, respectively. Group Ⅱ is the most complex branch,
including the aquaporins of fungi, bacteria and animals. Among
them, the VIa and VIIIa branches are plant subfamilies. AQPs of
the VIIa and VIIb subfamilies belong to animals and insects,
respectively. Group V contains one bacterial AQPZ and 15
animal AQPs, of which 7 belong to Tardigrade.

Expression of AQPs in Tumour Tissue
AQPs are considered to be important prognostic markers of
cancers (Chow et al., 2020), so the expression of AQPs in cancer
tissues is also crucial. Figure 6 shows the expression level of AQP
transcripts in 33 tumour tissues. AQP1_HUMAN has a high
expression level in all tumour tissues and plays an important role
in tumour angiogenesis and endothelial cell migration (Saadoun
et al., 2005b). AQP3_HUMAN is expressed in almost all tumour
tissues except ACC, LGG, UVM and AQP3_HUMAN-mediated
glycerol transport, which allows the production of ATP for
tumorigenesis. AQP3_HUMAN knockout mice can be
resistant to carcinogen induction skin tumours (Hara-
Chikuma and Verkman, 2008a). AQP3_HUMAN and
AQP5_HUMAN were also expressed in COAD (Moon et al.,
2003), while AQP5_HUMAN expression in human COAD is
related to cell proliferation and metastasis. In BRCA,
AQP5_HUMAN overexpression is associated with (Jung et al.,
2011; Lee et al., 2014; Jensen et al., 2016) migration and poor
prognosis in BRCA patients. Consistently, AQP5_HUMAN
regulates miRNA migration through exosome-mediated (Park
et al., 2020) and inhibits BRCA cell migration. AQP2_HUMAN,
AQP12A_HUMAN, AQP12B_HUMAN and MIP had low
expression levels in 33 tumour tissues, AQP4_HUMAN was
highly expressed in GBM and LGG, and AQP9_HUMAN was
highly expressed in LIHC.

Web Server Implementation
To facilitate the prediction of aquaporins, a user-friendly
online server named iAQPs-RF is applied, which can be
accessed from http://lab.malab.cn/~acy/iAQP. The protein
sequences (FASTA format) were identified to determine
whether aquaporins or non-aquaporins use the web server
by users. First, the FASTA format protein sequences are
enterd or pasted in the left blank box and the submit
button is clicked; finally, the results are displayed on the
right box. If you want to restart a new task, a clear button
or the resubmit button was clicked to clear the sequences in
the input box. Finally, new query protein sequences were
allowed to enter the input box. The home page provides
links of the contact information of authors and relevant
data to download.

FIGURE 5 | Phylogenetic analysis of positive AQP proteins.

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 10 | Article 8456227

Chen et al. Machine Learning Classification of AQP Genes

http://lab.malab.cn/%7Eacy/iAQP
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


CONCLUSION

The accurate identification of aquaporins by iAQPs can greatly
promote the prediction of aquaporins and research on tumour
diseases. In this study, we used the GPSD method to extract
protein sequence features and the optimal random forest
algorithm to construct new computational aquaporin identifier
iAQPs-RF. Combined with the feature selection technique
ANOVA, 54 optimal features are selected to build the
predictor. According to the F-score value obtained by
ANOVA, the 26th dimension feature and 21st dimension
feature are ranked as the first and second dimension features
among the 188 days features, respectively, and these two features
possess neutral/hydrophobic characteristics. These two
dimensional features make a great contribution to the
classification of aquaporins. At the same time, through the
location and 3D structure prediction of aquaporins protein,
although the protein divided into eight groups and has
diversity in evolution, all the proteins belong to plasma
membrane proteins, and the protein sequence contains six α-
helix transmembrane domains. The membrane proteins are
hydrophobic and contain many hydrophobic amino acids
(Luche et al., 2003; Rawlings, 2016), so these results are
consistent with aquaporin classification.

The best CV evaluation accuracy of iAQPs-RF was 97.689%.
At the same time, a network server is established. iAQPs-RF are
expected to be a robust and reliable tool for aquaporin
identification. Future work will focus on exploring deep
learning to improve the performance of the model.
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