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1H-NMR analysis provides a metabolomic
profile of patients with multiple sclerosis

ABSTRACT

Objective: To investigate the metabolomic profiles of patients with multiple sclerosis (MS) and to
define the metabolic pathways potentially related to MS pathogenesis.

Methods: Plasma samples from 73 patients with MS (therapy-free for at least 90 days) and 88
healthy controls (HC) were analyzed by 1H-NMR spectroscopy. Data analysis was conducted with
principal components analysis followed by a supervised analysis (orthogonal partial least squares
discriminant analysis [OPLS-DA]). The metabolites were identified and quantified using Chenomx
software, and the receiver operating characteristic (ROC) curves were calculated.

Results: The model obtained with the OPLS-DA identified predictive metabolic differences
between the patients with MS and HC (R2X 5 0.615, R2Y 5 0.619, Q2 5 0.476; p ,

0.001). The differential metabolites included glucose, 5-OH-tryptophan, and tryptophan, which
were lower in the MS group, and 3-OH-butyrate, acetoacetate, acetone, alanine, and choline,
which were higher in the MS group. The suitability of the model was evaluated using an external
set of samples. The values returned by the model were used to build the corresponding ROC curve
(area under the curve of 0.98).

Conclusion: NMR metabolomic analysis was able to discriminate different metabolic profiles in
patients with MS compared with HC. With the exception of choline, the main metabolic changes
could be connected to 2 different metabolic pathways: tryptophanmetabolism and energy metab-
olism. Metabolomics appears to represent a promising noninvasive approach for the study of MS.
Neurol Neuroimmunol Neuroinflamm 2016;3:e185; doi: 10.1212/NXI.0000000000000185

GLOSSARY
ANOVA 5 analysis of variance; AUC 5 area under the curve; EAE 5 experimental autoimmune encephalomyelitis; HC 5
healthy controls; IPA 5 Ingenuity Pathway Analysis; KP 5 kynurenine pathway; LSD 5 least significant difference; MS 5
multiple sclerosis; NMO 5 neuromyelitis optica; OPLS-DA 5 orthogonal partial least squares discriminant analysis;
PCA 5 principal components analysis; PLS-DA 5 partial least squares discriminant analysis; ROC 5 receiver operating
characteristic; TRP 5 tryptophan; TSP 5 trimethylsilyl propanoic acid.

Multiple sclerosis (MS) is a chronic disease of the CNS characterized by high levels of hetero-
geneity in pathologic, clinical, and radiologic features, as well as drug responses.1–4 Despite
substantial advances, the pathogenesis of the disease remains elusive, and no definitive therapy
exists. In addition, the effectiveness of the therapeutic response varies between patients and
cannot be predicted in advance.

MS diagnoses are based on the evolving McDonald criteria,5–7 which are centered on a
combination of clinical, MRI, neurophysiologic, and CSF parameters; in some cases, the diag-
nosis is made because no better explanation exists. Moreover, some patients remain in the
“limbo” of radiologically or clinically isolated syndromes2 for a prolonged period of time.
Because early treatment is widely recognized as the best option to prevent long-term disability,
a correct and early diagnosis is extremely important.8
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From this perspective, the lack of a single
predictive or diagnostic test remains a great
obstacle in the management of MS at most
stages. Consequently, the availability of bio-
markers that reliably capture the different as-
pects of the disease could be extremely useful.9

Metabolomics is a “hypothesis-generating”
method with the potential to identify new bi-
omarkers and to capture an instant functional
picture of an organism. Metabolomics consists
of the comprehensive study of the “metabo-
lome” in a biological system via the detailed
analysis of metabolites in tissues and biofluids
without a priori selection of a specific
pathway.10,11

1H-NMR spectroscopy is one of the analyt-
ical tools used in metabolomics; it offers the
opportunity to detect and quantify a variety of
metabolites within a sample. Furthermore, it is
highly reproducible.12

The metabolomics approach has been
applied in various neurologic diseases with
interesting results.13 To date, very few studies
have been conducted with 1H-NMR spectros-
copy using blood14–17 or CSF samples15,18–21

from patients with MS, and the results are
controversial.

We analyzed the blood samples from a large
group of patients with MS and healthy con-
trols (HC) using 1H-NMR and pattern recog-
nition analysis to define a discriminatory
metabolomic profile able to distinguish pa-
tients with MS from HC.

METHODS Population and sample collection. We

included patients affected with definite MS according to the

McDonald criteria5–7 who had been therapy-free for at least 90

days (i.e., disease-modifying drugs and steroids) and who were

free from other significant medical conditions. The HC were

demographically and ethnically matched and were recruited

from volunteers, health personnel, and spouses and friends of

the patients.

Standard protocol approvals, registrations, and patient
consents. The study was conducted in accordance with the prin-
ciples of good clinical practice. The institutional ethics committee

approved the study, and written informed consent was obtained

from each participant.

Sample preparation and acquisition. Ten mL of blood was

collected from each participant, and the plasma samples were

stored at 280°C until analysis.

The plasma samples were thawed and centrifuged at 2,500g
for 10 minutes at 4°C. An 800-mL aliquot was added to 2,400mL

of a chloroform/methanol 1:1 solution plus 350 mL of distilled

water (D2O) solution. The samples were vortexed (1 minute) and

centrifuged (30 minutes at 1,700g) at room temperature. The

hydrophilic and hydrophobic phases were obtained. The water

phase was concentrated overnight using a speed vacuum instru-

ment. The water phase was resuspended in D2O and trimethyl-

silyl propanoic acid (TSP) 5.07 mM. TSP was added to provide

an internal reference for the chemical shifts (0 ppm), and 650 mL

of the solution was transferred to a 5-mm NMR tube.

The samples were analyzed with a Varian UNITY INOVA

500 spectrometer (Agilent Technologies, Inc., Santa Clara,

CA), which was operated at 499 MHz equipped with a 5-mm tri-

ple resonance probe with z-axis-pulsed field gradients and an au-

tosampler with 50 locations. One-dimensional 1H-NMR spectra

were collected at 300 K with a presat pulse sequence to suppress

the residual water’s signal. The spectra were recorded with a spec-

tral width of 6,000, a frequency of 2 Hz, an acquisition time of

1.5 seconds, a relaxation delay of 2 milliseconds, and a 90° pulse

of 9.2 microseconds. The number of scans was 256. Each free

induction decay was zero-filled to 64,000 points and multiplied

by a 0.5-Hz exponential line-broadening function. The spectra

were manually phased and baseline-corrected. The chemical shifts

were referred to the internal standard, TSP (at d 5 0.0 ppm),

using MestReNova software (version 8.1; Mestrelab Research

S.L., A Coruña, Spain).

Data processing and multivariate analysis. Data processing

and multivariate analysis was mainly performed as previously

described.22 Each spectrum was divided into consecutive “bins”

0.04 ppm wide. The spectral area under investigation was the

region between 0.6 and 8.6 ppm. In order to remove variations in

the presaturation of the residual water resonance and spectral

regions of noise, the regions between 4.64 and 5.2 ppm and

between 5.28 and 6.6 ppm were excluded. The integrated area

within each bin was normalized to percent values to minimize the

effects of the different concentrations of plasma samples. This

generated a final dataset consisting of a 154 3 161 matrix. The

values in the columns represent the normalized area of each bin

(variables), and the values in the rows represent the samples (par-

ticipants). A multivariate statistical analysis was performed on the

matrix generated using SIMCA-P software (v13.0; Umetrics,

Malmö, Sweden). In order to emphasize all metabolite signals

and reduce the spectral noise, the variables were Pareto-scaled.

Initially, data analyses were conducted using principal com-

ponents analysis (PCA), which is important in order to explore

the sample distributions without classification. To identify poten-

tial outliers, the DmodX and Hotelling T2 tests were applied.

Partial least squares (PLS-DA) and orthogonal partial least

squares discriminant analyses (OPLS-DA) were subsequently

applied. PLS-DA and OPLS-DA maximize the discrimination

between samples assigned to different classes. The variance and

the predictive ability (R2X, R2Y, Q2) were established. In addi-

tion, a permutation test (n 5 200) was performed to validate the

models.

The scores from each OPLS-DA model were subjected to a

cross-validated analysis of variance (ANOVA) to test for signifi-

cance (p , 0.05).

The most significant variables were extracted by the loading

plot from each model and quantified using the Chenomx

NMR Suite 7.1 (Chenomx Inc., Edmonton, Alberta, Canada).23

Custom library entries were created for unidentified resonances to

carry them through the analysis for relative concentration com-

parisons. These concentrations were used for a 1-way multivariate

ANOVA before conducting a series of follow-up ANOVAs with

SPSS 22 software (SPSS, Armonk, NY). In particular, Wilks l

test was used to test whether there were differences between the

means of the identified subject groups in a combination of
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dependent variables. A Fisher least significant difference (LSD)

test was performed to explore and compare the concentration

means of each metabolite in the 2 groups.

An analysis using receiver operating characteristic (ROC)

curves was generated with MATLAB software (R2012b;

MathWorks, Natick, MA) to test the specificity and sensitivity

of the method. The Mahalanobis distance scale was used to plot

the ROC curves.

Metabolic pathways were built using the Ingenuity Pathway

Analysis software (IPA; QIAGEN, Redwood City, CA); only

Table 1 Demographic and clinical features of patients with multiple sclerosis and healthy controls

MS (n 5 73) HC (n 5 88) p Value

Female/male 46/27 61/27 NS

Age, y, mean 6 SD (range) 39.6 6 10.1 (20–61) 44.3 6 14.1 (20–77) NS

MS phenotype Total, N
Clinical
activity, N

MRI
activity, N

Age at onset, y,
mean 6 SD

Disease duration, y,
mean 6 SD

EDSS score,
mean 6 SD

Relapsing-remitting 61 28 18 32.6 6 5.3 5.2 6 4.1 2.3 6 1.2

Progressive 12 2 0 33.4 6 4.1 11.6 6 7.4 5.4 6 1.2

Abbreviations: EDSS 5 Expanded Disability Status Scale; HC 5 healthy controls; MS 5 multiple sclerosis; NS 5

nonsignificant.
Clinical activity was defined by the presence of relapses and brain MRI activity by the presence of gadolinium-enhancing
lesions and/or new or unequivocally enlarging T2 lesions in the last 6 months.2

Figure 1 OPLS-DA model healthy controls vs patients with MS built using bins as variables

(A) Distribution of healthy controls (black circles) and multiple sclerosis (MS) samples (white circles) with orthogonal partial least squares discriminant anal-
ysis (OPLS-DA) (R2X 5 0.615, R2Y 5 0.619, Q2 5 0.476; p, 0.001). (B) Validation of the corresponding partial least squares discriminant analysis model
via a permutation test. (C) The contribution plot generated by the spectral differences of the 2 groups identified the metabolic changes.
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metabolites with significantly different (p, 0.05) concentrations

between HC and patients with MS were used.

RESULTS Seventy-three patients with MS and 88
HC were included. Clinical and demographic features
of the participants are summarized in table 1. The age
and sex distributions were similar between the 2
groups.

PCA was performed (data not shown). The
DmodX test identified the presence of moderate out-
liers that may not affect the model. The Hotelling T2

test did not identify any strong outliers; therefore, all
samples were used for the subsequent analyses.

The OPLS-DA (figure 1A) identified a differential
distribution of the HC and MS samples (R2X 5

0.615, R2Y 5 0.619, Q2 5 0.476; p , 0.001).
Validation of the corresponding PLS-DA model was
performed with a permutation test (figure 1B).

An additional validation test was performed via
the blind introduction of an external test set of 20
samples (10 from each class). Class membership de-
pends on matching the value of the unknown obser-
vation, and a value close to one class indicates
membership in the class. Two MS samples were not
correctly classified. The values returned by the model
as yPREDps were used to build the corresponding

ROC curve (area under the curve [AUC] of 0.93).
The contribution plot generated by the spectral dif-
ferences of the 2 groups identified the metabolic
changes (figure 1C).

From the NMR profile, it was possible to identify
41 molecules belonging to different classes, such as
sugars, amino acids, etc. Seventeen metabolites dis-
criminating between patients with MS and HC were
identified and quantified using Chenomx software
(listed in table 2).

After removal of the outlier samples, OPLS-DA
was performed on a training set model, generated
by randomly excluding 10 HC and 10 patients with
MS from each class and using the matrix of the 17
metabolites identified and quantified (R2X 5

0.427, R2Y 5 0.615, Q2 5 0.583; p , 0.001) (fig-
ure 2A). Validation of the corresponding PLS-DA
model was performed with a permutation test (figure
2B). The contribution plot generated by the quanti-
fied metabolites indicated the differences in patients
with MS and HC (figure 2C). A validation test was
performed by using the external set of 10 samples
from each class, and the values returned by the model
as yPREDps were used to build the corresponding
ROC curve (AUC of 0.98).

The matrix that contained the concentrations of
the discriminant metabolites for each patient was ana-
lyzed with SPSS using an ANOVA with multivariate
and univariate tests. Wilks l indicated a difference in
the metabolite concentrations between the 2 groups:
F17,143 5 11.39, p, 0.0005. The individual p values
of the discriminant metabolites are shown in table 2.

Fisher LSD test indicated that glucose, 5-OH-
tryptophan, and tryptophan (TRP) were lower in
the patients with MS; 3-OH-butyrate, acetoacetate,
acetone, alanine, and choline were higher in the same
clinical group. The box plots of the individual metab-
olites are provided (figure e-1 at Neurology.org/nn).
Repeating the analysis excluding progressive patients
did not show any difference (figure e-2).

The ROC curves (figure 3) were subsequently
built considering all 17 metabolites (AUC 0.78).
To define the minimal number of metabolites needed
to discriminate the 2 groups, only the metabolites
with a p , 0.05 (5-OH-TRP, acetoacetate, acetone,
glucose, TRP, 3-OH-butyrate, choline, and alanine)
and then with a p , 0.01 (5-OH-TRP, acetoacetate,
acetone, TRP, and 3-OH-butyrate) were used
(figure 3).

The significant metabolites allowed identification
of the main canonical pathways, the biofunctions,
and diseases by IPA (figure 4).

DISCUSSION We performed a metabolomics study
with pattern recognition methods on blood in a large
cohort of patients with MS and HC using 1H-NMR.

Table 2 Metabolites that discriminate the HC
and MS classes

Metabolite HC MS
Fold
change p Value

5-Hydroxytryptophan 1 2 21.77 ,0.001

Citrate 1 2 21.05 NS

Glucose 1 2 21.15 ,0.05

Glycerol 1 2 21.21 0.05

Isoleucine 1 2 21 NS

Lactate 1 2 21.03 NS

Tryptophan 1 2 22.40 ,0.001

3-Hydroxybutyrate 2 1 1.45 ,0.01

Acetate 2 1 1.11 NS

Acetoacetate 2 1 3.57 ,0.001

Acetone 2 1 9.34 ,0.001

Alanine 2 1 1.5 0.01

Choline 2 1 1.27 0.01

Glutamate 2 1 1.13 NS

Malonate 2 1 1.19 NS

Methylmalonate 2 1 1.05 NS

Scyllo-inositol 2 1 1.05 NS

Abbreviations: HC 5 healthy controls; MS 5 multiple scle-
rosis; NS 5 nonsignificant.
Fold change was calculated as ratio between MS and HC
concentrations. Calculation of the p value refers to univar-
iate analysis of the concentrations.
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This approach enables the simultaneous identifica-
tion and quantification of a wide range of endogenous
and exogenous metabolites in tissues or biofluid sam-
ples, which results in a holistic view of the functional
state of the organism.12 In addition, the pattern rec-
ognition approach categorizes the samples on the
basis of the metabolic differences and similarities
and recognizes the metabolic fingerprint of a disease
or a peculiar condition. Therefore, it is also possible
to detect the metabolites responsible for the differ-
ences and to identify novel pathways involved in a
disease.12

One concern with metabolomics could arise from
the high sensitivity of the approach (i.e., lifestyle may
modify findings), which could limit its use in prevalence
studies. Recent data obtained from the EPIC-Potsdam
study,24 which analyzed the intra- and interperson met-
abolic variations in 100 healthy individuals over a
4-month period, demonstrated high reliability for most

metabolites tested. Thus, a single analysis can potentially
be used in risk assessments.24

In this respect, we built a model able to discrimi-
nate patients with MS from HC on the basis of the
degree of metabolic similarities and differences
between the participants who belonged to the same
or different categories, respectively. The model ap-
pears to be robust, because when an external set of
samples was blindly introduced, it was capable of cor-
rectly recognizing all but 2 samples.

Moreover, considering the well-known sex bias in
MS occurrence,25 the analysis was repeated separately
for each sex. Apart from the increased lactate concen-
tration in men (both those with MS and HC), the 2
models were similar to the overall model, which sug-
gests that the metabolic differences identified were
associated with the disease (data not shown).

A possible limit of our approach is due to the
intrinsic characteristics of NMR-based technique.

Figure 2 OPLS-DA model healthy controls (black circles) vs patients with MS (white circles) built using the concentrations of metabolites

(A) The orthogonal partial least squares discriminant analysis (OPLS-DA) of the training set model after the removal of the outliers (R2X 5 0.427, R2Y 5

0.615, Q2 5 0.583; p , 0.001). (B) Validation of the partial least squares discriminant analysis model via a permutation test. (C) The contribution plot
generated by the quantified metabolites with the indication of their different ratios in patients with multiple sclerosis (MS) and healthy controls.
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This technique is excellent for quantification and
reproducibility of the data, but there is a lack of sen-
sitivity. In order to be detected by NMR, concentra-
tions of metabolites need to be high (as opposed to
mass spectrometry). This could explain the relatively
limited number of metabolites found to be
discriminants.

The chemometric analysis indicated that a combi-
nation of 8 metabolites primarily drives the separation
of the patients with MS and HC in our model.

In particular, glucose, 5-OH-TRP, and TRP were
lower in the patients withMS, whereas 3-OH-butyrate,
acetoacetate, acetone, alanine, and choline had higher
concentrations in the patients with MS. In agreement
with our results, choline was increased in a metabolo-
mics study of CSF obtained from patients with MS.21

It is also one of the main metabolites increased accord-
ing to brain MRI spectroscopy performed in patients
with MS.26 Choline has also been associated with the
demyelinating process in the CNS.

The remaining metabolites could be assigned to 2
different metabolic pathways: TRP metabolism (5-
OH-TRP and TRP) and energy metabolism (glucose,
alanine, OH-butyrate, acetoacetate, and acetone).

5-OH-TRP and TRP were 1.7- and 2.4-fold
lower in the patients with MS vs the HC. Consistent
with our observation, decreased TRP concentrations
in plasma and CSF obtained from patients with MS
have been reported,27–29 which suggests a potential
involvement of TRP in MS.

TRP is an essential amino acid, and it is the key
metabolite of 2 pathways, including the synthesis of
the neurotransmitter 5-hydroxytryptamine (seroto-
nin) and the kynurenine pathway (KP), which ulti-
mately lead to the production of nicotinammide
adenina dinucleotide. In particular, the KP performs
regulatory mechanisms of the immune response, and
its metabolites can exhibit both neuroprotective and
neurotoxic properties.30,31 Thus, this pathway is
exceptionally interesting in an inflammatory disease
of the CNS. The influence of the KP in MS has
recently been demonstrated in a metabolomics study
of blood samples from the experimental autoimmune
encephalomyelitis (EAE) model.32 In this case, no
direct changes in TRP levels were identified. How-
ever, the plasma levels of kynurenic acid were
reduced, and the indolepropionate and indoleacrylate
concentrations were increased, which suggests an
alteration in TRP metabolism.32

The indolamine 2,3-dioxygenase enzyme, which
metabolizes TRP in the first step of the KP, drives
immune dysfunction by suppressing T cell prolifera-
tion and altering the Th17/Treg balance.30 Thus, we
can hypothesize a role of TRP in MS pathogenesis
through the KP.30

The metabolites that enter the energy pathways
belong to 2 different arms: the pyruvate production
pathway (alanine) and the “energy shift” pathway (glu-
cose, acetone, acetoacetic acid, and b-hydroxybutyric
acid).

We identified an increased alanine concentration
in the patients with MS. Considering this amino acid
is used as a source for pyruvate production and energy
metabolism or for the de novo synthesis of macromo-
lecules within neuronal and immune cells,33 it could
be involved in MS pathogenesis.

In addition, glucose reductions and increases in
3-OH-butyrate, acetoacetate, and acetone in the
blood of patients with MS were identified, which sug-
gests a contribution of the “energy shift” in MS. In
conditions of low glucose or carbohydrate concentra-
tions, ketone bodies (acetone, acetoacetic acid, and
b-hydroxybutyric acid) are produced in mitochondria
through fatty acid catabolism. Acetoacetic acid and
b-hydroxybutyric acid cross the blood-brain barrier
and can be used by cells as an energy source (i.e.,
converted to acetyl coenzyme A to participate in the
citric acid cycle in mitochondria), and acetone is elim-
inated by excretion. Both b-hydroxybutyric acid and
acetoacetate levels were increased in the blood of the
patients with MS; it is noteworthy that a ketogenic
diet has been proposed in many neurodegenerative
diseases.34 It was also tested in an EAE model with
positive results.35

We observed a nonsignificant increase in acetate in
the patients with MS. Other reports did not identify

Figure 3 ROC curve to test the performance of the selected metabolites

Receiver operator characteristic (ROC) curves with the 17, 8, and 5 identified metabolites to
define the minimal number of variables needed to discriminate patients with multiple sclero-
sis and healthy controls. AUC 5 area under the curve.
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metabolite differences in the blood15 or a reduction in
the CSF.19,36 Nevertheless, other studies performed with
blood or CSF samples have demonstrated increased ace-
tate.14,18,37 A very recent study14 analyzed the blood of
47 patients with MS, 44 patients with neuromyelitis
optica (NMO), and 42 HC using NMR. The authors
identified a 1.9-fold increase in acetate in the patients
with MS vs the HC, but it was mainly increased in
patients with NMO (1.8-fold and 3.4-fold higher than
patients with MS and HC). Acetate is preferentially
metabolized in astrocytes, and it is involved in neuro-
transmitter synthesis and brain metabolism. Thus, the
changes observed could be due to different degrees of
acetate uptake impairment by astrocytes.

It is noteworthy that instead of the great variability
of the results obtained in previous studies, which have
largely been attributed to the heterogeneity of the dis-
ease, the metabolic changes in energy metabolism
pathways are consistent in the majority of studies in
both human and animal models, supporting their
roles in MS pathogenesis.

As previously discussed, some authors14 identified
higher blood levels of acetate in both patients with
MS and patients with NMO compared with HC;
however, the primary metabolite able to discriminate
patients with MS vs both patients with NMO and
HC was a marker of glial proliferation, scyllo-inositol
(increased 2.4- and 2.6-fold compared with patients

Figure 4 Relevant pathways involved in MS

Ingenuity Pathway Analysis showed the main canonical pathways, biofunctions, and diseases identified with significant metabolites. Metabolites playing a
key role are associated to arrows indicating the relative change in patients withmultiple sclerosis (MS) compared with healthy controls (blue arrow: decrease;
red arrow: increase). Among the canonical pathways and cellular functions, the tryptophan degradation and the energy production were the most relevant
(box and lines in green). Decrease of glucose in patients with MS leads to a decrease in the production of acetyl coenzyme A (acetyl-CoA), a fundamental
precursor of the Krebs cycle and the most important pathway in energy production. To overcome the lack of glucose, the b-oxidation of fatty acids in
mitochondria is induced. This leads to an increased production of ketone bodies (3-OH-butyrate, acetoacetate, acetone) in patients with MS. Ketone bodies
can migrate into the bloodstream for use in peripheral tissues where they are metabolized for the production of ATP, especially 3-OH-butyrate. In particular,
tryptophan and some of the intermediaries of this pathway (kynurenine, 3-OH-anthranilate) are implicated in the cell-mediated immune response (differen-
tiation of regulatory T lymphocytes, activation of T lymphocytes). Moreover, the pathways analysis identifies correlation between tryptophan, glucose, and
3-OH-butyrate with immunologic/inflammatory disease and neurologic disease (box and lines in violet).
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with NMO and HC, respectively). In our samples,
scyllo-inositol was only slightly increased in patients
with MS compared with the HC. It is possible that
the different results were due to differences in the MS
populations studied. In particular, the MS population
studied recently14 was largely (42/47) treated (39 with
natalizumab and 3 with interferon b). In contrast, we
considered only therapy-free patients. Because meta-
bolic changes can be induced by exposure to exoge-
nous factors such as drugs and metabolomics can also
be used to follow metabolic changes induced by spe-
cific treatments, this could have led to the different
results.

As demonstrated by our results, metabolomics has
the advantage of enabling the study of several metab-
olites simultaneously, which thereby allows the evalu-
ation of multiple biomarkers in a single experiment
and the creation of a metabolic model able to discrim-
inate patients vs HC. Moreover, it is noteworthy that
Dickens et al.17 determined that serum metabolite
profiles were able to distinguish patients with MS
with different subtypes and stages, which supports
the utility of the metabolomics approach for the iden-
tification of biomarkers in MS.

In addition, the differential metabolites might
facilitate the understanding of the pathophysiology
of MS. More specifically, a definite 1H-NMR meta-
bolic profile of patients with MS was described, and 2
metabolic pathways were identified. This study re-
quires replication in other populations, the results
should be confirmed and completed by mass spec-
trometry, and correlations between blood and CSF
metabolic profiles must be examined.38

The study highlights the potential of 1H-NMR
examination of blood as a novel analytical tool to
discriminate patients with MS and HC. Therefore,
metabolomics appears to be a promising noninvasive
approach to identify new biomarkers and has the
potential to be integrated with other tools for the
diagnosis of MS and to provide a better understand-
ing of the disease pathogenesis.
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