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Vitamin D deficiency, if left untreated, is associated with bone disorders, cardiovascular

damage, and an increased risk of ischemic stroke. While there are various nutritional

options for the natural intake of vitamin D, we hope to elucidate the potential

mechanisms dietary vitamin D may play in hemorrhagic stroke pathology. This

scoping review outlines findings from studies relevant to the biochemical activity of

vitamin D, the impact of vitamin D deficiency on hemorrhagic stroke outcomes,

and the potential benefit of nutritional vitamin D on hemorrhagic stroke outcomes.

Here, we analyze the relevant factors that can lead to vitamin D deficiency, and

subsequently, a higher risk of hemorrhagic stroke incidence with worsened subsequent

outcomes. The neuroprotective mechanisms through which vitamin D works to

attenuate hemorrhagic stroke onset and post-stroke outcomes have not yet been

thoroughly examined. However, researchers have proposed several potential protective

mechanisms, including reduction of blood brain barrier disturbance by inhibiting the

production of reactive oxygen species, mitigation of inflammation through a reduction of

levels of proinflammatory cytokines, and prevention of cerebral vasospasm and delayed

cerebral ischemia following subarachnoid hemorrhage and intracerebral hemorrhage.

While more research is needed and there are limitations to vitamin D supplementation,

vitamin D as a whole may play a significant role in the dynamics of hemorrhagic stroke.

Further research should focus on expanding our understanding of the neuroprotective

capacity and mechanisms of vitamin D, as well as how vitamin D supplementation could

serve as an effective course of treatment of hemorrhagic strokes.

Keywords: herbal medicine, pathology, ischemia, bioavailabiiity, 25(OH)D deficiency

INTRODUCTION

Vitamin D is a fat-soluble secosteroid hormone primarily responsible for regulating calcium and
phosphorus levels as well as several other physiological functions (1). Cholecalciferol is produced
in the skin in the presence of ultraviolet light, which is then hydroxylated into 25-hydroxyvitamin
D (25(OH)D), calcifediol, in the liver and then again in the kidneys into 1,25-dihydroxy-vitamin D
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(1,25(OH)2D) or calcitriol, which is the active metabolite,
transported systemically via vitamin D binding protein, capable
of entering the cell and binding to an intracellular vitamin
D receptor (VDR) (2). Calcitriol-bound VDR functions in the
regulation of a variety of genes (3). As a transcription factor,
VDRs control growth, differentiation, and functional activity of
various cell types. These changes occur in the immune system,
skin, pancreas, and various bone cells, primarily regulating
mineral metabolism. VDRs and their respective target genes are
thus most common in these cell types (3).

Vitamin D Deficiency
Vitamin D deficiency and insufficiency has become a global
health issue. Roughly one billion people globally suffer from
vitamin D deficiency, and almost 50% of the world’s population
is vitamin D insufficient (4). Currently, there is no universally
accepted definition of vitamin D deficiency; however, it is
generally classified when levels of vitamin D are ≤12 ng/mL
(30 nmol/L) (5–7). Insufficiency is categorized when vitamin
D levels are below the clinical standard of 30 ng/mL (75
nmol/L) and above deficient levels (5–7). Risk factors for both
vitamin D deficiency and insufficiency include older age, darker
complexion, obesity, and limited sun exposure (8). While low
levels of vitamin D have been an issue of a public health
concern due to the increased risk of bone pathologies, such as
bone demineralization or congenital bone abnormalities, more
recently, researchers have shifted their focus to the systemic
implications of vitamin D deficiency, such as hypertension,
obesity, diabetes, cardiovascular disease, and cancer (9, 10).
The preeminent source of vitamin D is sun exposure, which
catalyzes the conversion of cholesterol into vitamin D. For
sufficient vitamin D synthesis, it is recommended that outdoor
sun exposure should last anywhere between 5 and 30min,
particularly between the hours of 10 am and 3 pm (depending
on the season and the latitude), daily or a minimum of twice a
week. Sunlight exposure to the face, arms, legs, and hands is most
effective without sunscreen; however, exposure with sunscreen
is still sufficient (11, 12). The efficacy of vitamin D synthesis
by sun exposure varies based on the season, time of day, cloud
coverage, geographical location, skin melanin content, age, and
sunscreen use (13). When considering the numerous variables
that may contribute to vitamin D deficiency, we turn toward the
possibility of including dietary vitaminD as an option to establish
regimented natural supplementation.

Dietary Vitamin D
One way to reduce the prevalence of vitamin D deficiency may
be incorporating natural sources of vitamin D into the diets
and lifestyles of the general population. Dairy products without
fortification, such as cheese, contain vitaminD and its metabolite,
25(OH)D. Additional sources that naturally produce vitamin D
include fatty fish such as salmon (570 IU/14.2 µg per serving),
cod liver oil (1,360 IU/34 µg per serving), trout (645 IU/16.2

Abbreviations: BBB, blood brain barrier; ICH, intracerebral hemorrhage;
MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; NF-
κB, nuclear factor kappa B; OPN, osteopontin; ROS, reactive oxygen species; SAH,
subarachnoid hemorrhage; VDR, vitamin D receptor.

µg per serving), tuna (40 IU/1 µg per serving), and sardines
(46 IU/1.1 µg per serving). Eggs (44 IU/1.1 µg per egg) and
mushrooms (366 IU/9.2 µg per serving) also naturally contain
vitamin D per the Institute of Medicine (US) Committee to
Review Dietary Reference Intakes for Vitamin D and Calcium.
Countries around the world have different vitamin D intake
guidelines due to an incomplete understanding of the biological
and clinical implications of vitamin D. For example, to combat
the high rates of vitamin D deficiency, the Endocrine Society
recommends daily dietary vitamin D supplements of 1,500–
2,000 IU every day for adults and at least 1,000 IU for children
and adolescents (14). On the other hand, the United Kingdom
government recommends daily supplementation of 400 IU for all
citizens over the age of three, which further emphasizes a need for
universal guidelines regarding vitaminD intake andmaintenance
(15). Dietary supplements containing vitamins D2 and D3 are
both readily available in consumer markets. The distinction
between these two options of supplements is significant, and it
is important for clinicians, consumers, and patients to be aware
of the differences before their incorporation into therapeutic
regimens (see Table 1). Both ergocalciferol (vitamin D2) and
cholecalciferol (vitamin D3) are effective at increasing serum
25(OH)D levels in the body; however, evidence shows that
vitaminD3 raises these levels to a greater extent and canmaintain
higher levels of serum 25(OH)D for longer periods of time
than vitamin D2, suggesting that vitamin D3 is a preferred
choice for supplementation (16). Two randomized controlled
trials on raising vitamin D levels from insufficient and deficient
levels were conducted. One study reported that patients with
an initial 25(OH)D level of 8 to <16 ng/mL, 16 to 24 ng/mL,
and 24 to 32 ngL/mL required 2,200, 1,800, and 1,160 IU of
cholecalciferol, respectfully, to reach 30 ng/mL (17). A more
recent prospective cohort study by van Groningen et al. analyzed
the daily IU of cholecalciferol required to raise serum 25(OH)D
levels to normal levels in a sample of 208 patients. It was
found that patients with initial 25(OH)D serum levels of 8 to
<16 ng/mL, 16 to 24 ng/mL, and 24 to 32 ng/mL required 1,875
to 2,750 IU, 750 to 1,875 IU, and up to 750 IU, respectively,
depending on the body weight (18, 19). Thus, via the inclusion
of a few servings of the aforementioned vitamin D-rich foods,
the hypothetical equivalent supplementary vitamin D dosage
comparable to synthetic production could be reached naturally
and nutritionally.

Bioavailability and Absorption
To combat vitamin D deficiency and improve patient outcomes
following a hemorrhagic stroke, it is necessary to consider
nutritional methods of obtaining sufficient amounts of vitamin
D. Considering the availability of high vitamin D levels found
in cod liver oil, trout, salmon, and mushrooms, a dietary focus
on raising serum levels of vitamin D should be evaluated for its
potential in providing neuroprotection against stroke outcomes.

There are a few factors that affect nutritional vitamin D
absorption and bioavailability. Ergocalciferol is the form of
vitamin D present in fortified foods and common dietary
supplements, while cholecalciferol is the main dietary form.
Although ergocalciferol is absorbed similarly to cholecalciferol,
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TABLE 1 | Summary of ergocalciferol supplementation compared to cholecalciferol supplementation.

Vitamin D2 (Ergocalciferol) Vitamin D3 (Cholecalciferol)

Found most commonly in plants and fungi Naturally produced in the skin and the oil of fur (Dark skin requires 4x sun exposure to

acquire the same dose)

Synthetically derived supplement

(An alternative for strict vegetarians or vegans)

Naturally derived supplement

Moderately increases serum vitamin D Significantly increases serum vitamin D (Displays a 3–10-fold differential potency

compared to vitamin D2)

Microsomal 25-hydroxylase does not act on vitamin D2 Substrate for both microsomal and mitochondrial 25-hydroxylases

Serum 25(OH)D response to vitamin D2 supplementation is less in the elderly than

in young adults

Serum 25(OH)D response to vitamin D3 supplementation is the same in both groups

Several known cases of iatrogenic toxicity with vitamin D from vitamin D2 usage Known cases toxicity from vitamin D3 have been accidents (Too much may increase

risk of calcium deposits in blood vessels)

Less stable in dose preparations More stable in dose preparations

Concentration increases rapidly declines over time after a 3 day period Concentration levels maintain over time

Vitamin D binding protein has lower affinity for vitamin D2 as compared to vitamin D3.

calcifediol displays more efficient absorption than both the
previously mentioned compounds. The increased absorption rate
of calcifediol can be accredited to its hydroxyl group, which
increases the polarity of the compound and allows it to be
a water-soluble molecule (20). Moreover, it is proposed that
drugs aimed to diminish obesity, such as sucrose polyesters
and tetrahydrolipstatin, have the potential to inhibit or decrease
vitamin D absorption, although more research into this idea is
needed (21).

The three types of synthetic supplementary vitamin D delivery
systems currently include oil, microencapsulated, and micellized
forms. One experiment utilized Wistar rats to investigate the
supplemental bioavailability of vitamin D and prepared the
animals to receive the three different forms of vitamin D
supplements over a series of weeks using a SmartHit IV model.
The control level of cholecalciferol in the rat serum was recorded
at a concentration of 36.49 ± 4.12 to 40.5 ± 3.05 nmol/L.
Meanwhile, in the microencapsulated and oil-based treatment
groups, levels reached 143.35 ± 14.72 and 150.85 ± 35.77
nmol/L, respectively. Vitamin D was recorded at the highest
concentration in the oil-based cholecalciferol group on day
7, where it reached a peak concentration of 198.93 ± 51.6
nmol/L (22). These results indicate that microencapsulated and
oil supplements were most effective in administering vitamin D
as the encapsulation allowed the vitamin D to travel further into
the digestive system, and the oil allowed for quicker digestion
after it was released.

The rate at which vitamin D is processed within the
gastrointestinal tract is partly controlled by several factors
that directly link to vital lipids, such as phospholipids and
triglycerides (23, 24). Furthermore, the acidity of gastric
juices is a determining factor in vitamin D distribution
and supplement processing. Pepsin and trypsin have been
shown to play a role in cleaving the vitamin D proteins
in food, which allows for its release into the system. With
this data in mind, considerations could be made for the oil
content and delivery of dietary vitamin D to maximize natural
nutritional intake.

Vitamin D Pathologies and Hemorrhagic
Stroke
Vitamin D toxicity, also known as hypervitaminosis D, can
occur as a result of excessive consumption of large doses
of vitamin D supplements over an extended period of time,
although it cannot occur from dietary intake or sun exposure
alone. Hypervitaminosis D can cause hypercalcemia, a buildup
of calcium in the blood, and can lead to nausea and vomiting,
frequent urination, and muscle weakness. Vitamin D toxicity can
also lead to the progression of osteodynia and kidney problems
(25). While disease pathology relating to vitamin D toxicity
warrants scientific discussion, the considerable prevalence of
vitamin D deficiency is of great concern and will be discussed
in the rest of the review. Vitamin D deficiency has been
shown to increase the risk of various bone pathologies as
well as be an independent risk factor for stroke, suggesting
that vitamin D supplementation may serve as a potential
therapy for stroke patients (26–31). While existing research
focuses on the dynamics of vitamin D relating to ischemic
stroke, we hope to elucidate the relationship between dietary
inclusion of vitamin D and, specifically, hemorrhagic stroke.
Studies have shown that hemorrhagic stroke patients often
suffer from vitamin D deficiency or insufficiency with median
vitamin D levels on presentation ranging from 10.5 nmol/L
(32) to 42 nmol/L (33), both of which fall short of the
clinical standard for vitamin D sufficiency. This review aims
to analyze if a causal relationship exists between vitamin D
deficiency and hemorrhagic stroke outcomes and evaluate if
vitamin D-rich diets could improve these outcomes following the
incidence of intracerebral hemorrhage (ICH) and subarachnoid
hemorrhage (SAH).

Hemorrhagic stroke is a subtype of stroke that is caused by
the rupturing of a blood vessel, resulting in bleeding in the
brain or meninges and can be further classified as ICH or SAH.
Spontaneous ICH makes up about 15–20% of all strokes and
affects roughly 120,000 individuals in the United States each
year (34); however, this number is expected to grow with the
aging population (35). Furthermore, 78–88% of ICH cases are
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primary accounts that originate from the spontaneous rupture
of small arteries in the brain that were damaged by either
hypertensive arteriolosclerosis or amyloid angiopathy (35, 36).
Secondary cases are far less common and are directly related
to preexisting conditions such as coagulopathy, brain tumors,
aneurysms, vascular anomalies, or thrombolytic treatment of
ischemic stroke (35, 36). In all ICH incidents, blood accumulates
in the brain and compresses the tissue surrounding the ruptured
artery. Secondary brain damage, including a cascade of damaging
inflammatory and oxidative events as well as dysfunction of the
blood brain barrier, is commonly induced by ICH (37). Notably,
this damage has been shown to be limited by treatment with
1,25(OH)2D3 in vitro (38). The second type of hemorrhagic
stroke is SAH, which occurs due to bleeding in the brain between
the subarachnoid space and the skull. This bleeding leads to
a stroke by increasing pressure on the brain, damaging brain
cells, and irritating the brain lining while depriving the affected
artery of blood. SAH may be caused by a ruptured aneurysm,
arteriovenous malformation, or traumatic brain injury (TBI)
(39). One primary concern in the treatment of SAH is the
prevention of cerebral vasospasm, a complication of the blood
vessels that vitamin D levels may play a role in preventing.

BIOCHEMISTRY AND MECHANISMS OF
VITAMIN D PROTECTION IN ICH AND SAH

Vitamin D regulates a broad spectrum of physiological processes
that contribute to cerebrovascular health and the potential for
dysfunction. Activation of these processes, or inhibition of those
active during vitamin D deficiency, could establish vascular
inflammatory and oxidative conditions conducive to improved
health outcomes following the incidence of hemorrhagic stroke.
See Figure 1.

Blood Brain Barrier
The blood brain barrier (BBB) is an important border between
the circulatory system and the brain and functions to protect the
neural tissue of the brain from contacting neurotoxic material
or pathogens. The BBB works by regulating the exchange of
substances from circulation to the brain. A defect or loss
of integrity in the BBB can contribute to a variety of CNS
diseases (40, 41). Epithelial tight junctions are critical features
for maintaining the structural integrity of the BBB. There is
a loss of BBB integrity during and shortly following a stroke
episode due to increased tight junction vulnerability and BBB
permeability. A main contributor to the BBB disturbance is
the increased production of reactive oxygen species (ROS),
which cause direct damage as well as upregulation of cell-
disrupting proteins such as matrix metalloproteinases (MMPs)
and nuclear factor kappa B (NF-κB). However, it has been shown
that 1,25(OH)2D3/VDR interaction can protect against stroke-
inflicted BBB disturbance via the inhibition of NF-κB activation
and, therefore, downstream MMP-9 expression (38). NF-κB
activation in neurons following a stroke leads to neuronal damage
and cell death. Activation of NF-κB in astrocytes and endothelial
cells in the BBB due to inflammation is associated with increased

FIGURE 1 | Visual schematic representing the dynamics of vitamin D’s impact

on hemorrhagic stroke patient health.

permeability of the BBB due to the disruption of tight junctions
and opening of the BBB. NF-κB activation in pericytes causes
MMP secretion, degrading the basement membrane and opening
up the BBB to further damage (42). The VDR interacts with
IκB kinase β (IKKβ) to block the activation of NF-κB. This
VDR-IKKβ interaction is amplified by 1,25(OH)2D3 treatment
(43). Therefore, via VDR activity, high levels of vitamin D are
suggested to be directly neuroprotective via stabilization of the
BBB post-stroke. Furthermore, vitamin D deficiency has been
shown to contribute to downregulation of tissue inhibitors of
MMPs, making vitamin D a critical candidate for protecting BBB
integrity (44).

Inflammation, ROS, and Vitamin D
There is an inflammatory response that occurs in the brain
following the incidence of stroke. While acute inflammation may
protect the brain by clearing deposited iron and encouraging
neural plasticity, chronic inflammation displays damaging effects
to both the brain and the BBB (45). ICH- and SAH-induced
hemolysis leads to hemoglobin release, which subsequently
releases heme and iron after degradation into the brain
and meninges. These cytotoxins are a principal contributor
to secondary brain injury following ICH. Free heme is a
powerful neurotoxin that catalyzes oxidative reactions that
induce damage to proteins, DNA, lipids, and the BBB, leading
to irreversible impairment in the brain (46). Additionally,
heme leads to cytokine upregulation and leukocyte activation
(47). In excess, these molecules can impact signaling pathways
in the brain and impair a variety of motor and sensory
functions (48). Furthermore, hemoglobin and heme, when
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oxidized to methemoglobin and hemin, respectively, become
high-affinity ligands for toll-like receptors, TLR-4 and TLR-
2. TLR-4 signaling leads to activation of the inflammatory
proteins NF-κB and TNFα along with production of ROS,
further contributing to post-stroke neuroinflammation and
BBB disturbance (47, 49). In ICH and SAH, accumulating
arterial blood in the brain compresses the surrounding brain
tissue and leads to necrosis, which signals the release of
additional proinflammatory mediators (35). These mediators
include proinflammatory cytokines such as interleukin 1 beta (IL-
1β) and interleukin 6 (IL-6), which are released intracranially
after a stroke and are responsible for local inflammation (50).
The induction of IL-6 and chemokine CXCL-1 are dominant
in the peripheral inflammatory response to stroke and can
increase brain tissue injury as well as lead to BBB breakdown
(51, 52). Once BBB permeability is increased, peripherally derived
mononuclear phagocytes, T-lymphocytes, natural killer cells,
and polymorphonuclear neutrophilic leukocytes, which produce
cytokines, can all cross the BBB and further contribute to brain
inflammation (53). Higher levels of proinflammatory cytokines,
like IL-6, are also associated with worse neurological outcomes
in patients post-stroke (54). Studies have reported that vitamin
D deficiency elevates inflammatory protein levels, including IL-
1β, TNFα, NF-κB, and IL-6, in the brain (55). It has also been
shown that vitamin D deficiency leads to reduced modulatory
autophagy and Sirtuin 1 and increased levels of NADPH oxidase.
Overall, this molecular milieu leads to exacerbated oxidative
conditions (44). Sufficient levels of vitamin D have been shown
to attenuate this response, suggesting that it displays anti-
inflammatory properties (56). Therefore, those with diets high in
vitamin D could potentially avoid the deleterious effects of these
proinflammatory molecules and resultant damage.

Vitamin D and Osteopontin (OPN)
Osteopontin (OPN) is a neuroprotective glycoprotein that has
been shown to attenuate the post-ICH inflammatory response
and decrease brain injury induced by ICH while improving
neurological function after a hemorrhagic stroke (57). While the
interaction between OPN and levels of vitamin D is currently
inconclusive, a few studies found that increasing levels of vitamin
D through vitaminD receptor agonist (VDRA) therapy or in vitro
treatment with 1,25(OH)2D3 upregulates OPN, while disrupting
the VDR inhibits OPN transcription (58–60). Recombinant OPN
(r-OPN) has been shown to suppress IL-1β-induced activation
of the nuclear factor NF-κB and MMP-9 without affecting levels
of IL-1β, which preclinically prevented BBB disruption following
SAH (61). IL-1β is reported to activate three types of proteins that
reduce the induction of MMP-9, including mitogen-activated
protein kinase (MAPK), extracellular signal-regulated kinase
(ERK), and c-Jun N-Terminal kinase (JNK), as well as NF-κB
(62). The use of r-OPN has been shown to induce an endogenous
MAPK inhibitor, MAPK phosphatase (MKP-1), in the spastic
cerebral arteries and prevent cerebrovasospasm (63). Cerebral
vasospasm is the delayed narrowing of large arteries located at
the base of the brain. This narrowing is believed to be the most
preventable secondary complication of SAH and a primary cause
of morbidity and mortality (63, 64). Conversely, other studies

have found a negative correlation between vitamin D and OPN
expression, where vitamin D deficiency resulted in higher levels
of OPN (65). Therefore, more research is necessary to clarify the
definitive relationship between OPN and vitamin D levels and
how this dynamic may impact ICH and SAH pathologies.

CURRENT STUDIES

It is postulated that vitamin D deficiency could lead to worsened
stroke outcomes due to its anti-inflammatory properties and role
in protecting the integrity of the BBB. This relationship has been
studied in clinical and preclinical models, primarily centered
around ischemic stroke. Few studies have been conducted
regarding hemorrhagic strokes, although more research would
prove beneficial to comprehensively elucidate the relationship
between vitamin D deficiency and hemorrhagic stroke outcomes.
While vitamin D deficiency has been shown to increase the
severity of stroke symptoms, current research only shows some
degree of association between vitamin D and stroke outcomes
(29). There has been a direct correlation in patients with
older age/malnutrition having a higher risk for severe clinical
presentation of ICH (66). A meta-analysis of several stroke
studies reported that higher dietary vitamin D levels were
associated with a 24% reduction in cognitive impairment (28).
Additional research suggests that 25(OH)D is inversely linked
to chronic brain injury associated with small vessel disease,
showing vitamin D deficiency was associated with lacunes, white
matter damage, and microbleeds in the brain (95% CI: 0.04–0.95,
1.31–6.45, and 1.03–2.78, respectively) (67).

Preclinical Studies With Vitamin D
Several preclinical trials using rats have addressed the anatomical
and functional outcomes of vitamin D deficiency in stroke
patients. Sayeed et al. showed that post-ischemia BBB breakdown
was increased in Wistar rat models that were fed vitamin D
deficient diets and displayed lower serum levels of vitamin D.
BBB breakdown was measured by western blot analysis of IgG
and MMP-9 levels present in 72-h post-ischemia infarct areas.
The functionality of the tight junctions was also monitored
through immunofluorescence and western blotting for claudin-
5 and occludin expression to measure BBB permeability. Rats
that were on a vitamin D deficient diet had increased BBB
permeability according to IgG extravasation following middle
cerebral artery occlusion (p < 0.01) and showed increased
intensity of MMP-9 staining (p < 0.05) compared to rats given
a diet containing sufficient levels of vitamin D. These results
indicate that vitamin D deficiency would likely correlate with
more severe complications after ischemic stroke (68). These
findings are supported in another study that concluded mice
fed vitamin D deficient diets showed a significant increase
in infarct volume and decreased functionality post-ischemic
stroke. Sprague-Dawley rat models were treated with normal
control or vitamin D deficient diets and subjected to middle
cerebral artery occlusion to model prolonged ischemia. Post-
stroke functionality was then tested using sensorimotor and
tape tests, finding that vitamin D deficient rats took longer
to respond to tactile stimulus and remove the tape from their
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forearms (p < 0.05), inferring worse functional outcomes in
vitamin D deficient stroke patients. Infarct volumes were also
compared using brain slices and TTC-staining, revealing no
significant difference in infarct volume at 3 days post-stroke.
However, at 5 days post-stroke, there was a significant difference
(p < 0.05) in infarct volume due to improvement of stroke
tissue observed in the control rats that was not seen in the
vitamin D deficient rats, revealing the possibility that vitamin
D deficiency may result in worse stroke outcomes due to its
potential inhibition of stroke tissue recovery (69). While the
majority of preclinical studies have centered around vitamin D
in terms of ischemic stroke outcomes, Enkhjargal et al., studied
SAH and vitamin D interactions to determine the effect of
pretreating Sprague-Dawley rats with 30 ng/mL of calcitriol on
stroke outcomes. It was found that the pretreated mice displayed
better post-stroke neurological scores (p < 0.05), which suggests
a therapeutic role of vitamin D in the treatment of hemorrhagic
stroke (70).

Vitamin D Supplementation Effect on
Hemorrhagic Stroke Outcomes
A clinical trial by Narasimhan et al. found that vitamin D
deficient ischemic stroke patients showed restored vitamin D
levels and significant improvement in post-stroke outcome
when treated with supplemental vitamin D. Sixty vitamin D
deficient (vitamin D serum levels <20 ng/mL) or vitamin D
insufficient (21–29 ng/mL) ischemic stroke patients participated
in the study. Half of the participants received a single 6 lac IU
injection of cholecalciferol upon arrival, while the other half
were given no vitamin D supplements. Stroke outcomes for both
groups were assessed by comparing stroke-severity scores upon
arrival and 3 months post-treatment. The test group receiving
the cholecalciferol treatment experienced greater improvement
of stroke-severity scores than the untreated group. The test
group experienced a 6.39 ± 4.56 score improvement, while the
control group only showed a gain of 2.50 ± 2.20 (p < 0.001)
(71). Contrastingly, a subsequent double-blind study of 100
participants was conducted to test the effects of cholecalciferol
supplementation on post-ischemic and hemorrhagic stroke
outcomes. This study found that there was no statistically
significant difference in 8-week post-stroke outcomes assessing
the Barthel Index score (p = 0.46), Brunnstrom stage, handgrip
strength improvement (right p = 0.77; left p = 0.74), and
calf circumference improvement (right p = 0.77; left p =

0.60) between the placebo group and the test group receiving
2,000 IU of oral cholecalciferol supplements daily (72). While
variable results are expected, these contrasting outcomes may
be a result of concluding the latter study too early. Due
to the metabolism necessary to convert cholecalciferol to the
active metabolite, calcitriol, more than 8 weeks may have
been necessary to note efficacy in the vitamin D receiving
group. Consideration for the significant time required for
vitamin D bioactivity should be made in future research via
longer trial times, such as the former study’s three-month
trial period.

Vitamin D Deficiency Contribution to
Post-stroke Anxiety, Depression, and
Fatigue
Mental health can play a significant role in post-stroke outcomes
and recovery. Low serum vitamin D levels and vitamin D
deficiency have been linked to post-stroke anxiety, depression,
and fatigue. It has been shown that patients who suffer from
post-stroke anxiety compared to non-post stroke anxiety patients
had significantly lower serum levels of vitamin D (p = 0.02).
The post-stroke anxiety patients also exhibited poorer functional
outcomes (modified Rankin scale p < 0.001; Barthel Index p <

0.001), worse cognitive function (mini-mental state examination
p = 0.04), and more severe strokes (NIHSS p = 0.02) (73).
Additionally, depression is observed in roughly one-third of all
stroke patients (74). The patients with symptoms of post-stroke
depression were found to have a mean vitamin D serum level of
8.3 ng/mL, while those not exhibiting depressive symptoms had a
mean level of 15.6 ng/mL. Serum levels under 11.2 ng/mL were
linked to a significant increase in post-stroke depression (95%
CI 4.97–28.63; p < 0.001) as well as linked with worse NIHSS
scores (p < 0.001) (74). Moreover, there is a high prevalence
of vitamin D deficiency among patients who experience post-
stroke fatigue, defined as persistent lack of energy and excessive
physical tiredness following either ischemic or hemorrhagic
stroke. Patients treated with loading doses of cholecalciferol for
a month to replenish vitamin D levels self-reported significant
improvement in post-stroke fatigue symptoms at follow-up
appointments between 4 weeks and 6 months after the stroke
incident (75). While these studies show a correlation between
vitaminD deficiency and post-strokemental illness development,
they were almost exclusively conducted in ischemic stroke
patients. Therefore, further research on the connections between
vitamin D and mental health should be conducted in ICH and
SAH patients to establish further the effects of vitamin D on
overall wellness (73–75).

CONCLUSION AND FUTURE RESEARCH

In conducting this review, it is evident that vitamin D
deficiency has several implications that correlate with dynamic
biochemistry inherent to hemorrhagic strokes. Vitamin
D protects against BBB disturbance, suppresses cytokine
production, as well as reduces cognitive impairment and
inflammation. Although there are limitations to the studies,
advancements within the research show a promising correlation.
More research must be conducted, both preclinical and clinical
in nature, to specifically evaluate the way nutritional vitamin D
could impact the quality of life of patients after the incidence of
hemorrhagic stroke. For clinical investigation, a retrospective
study evaluating active vitamin D metabolite levels in patients
and correlating findings with stroke outcomes should be
designed. Additionally, it would be beneficial to design a
prospective clinical study to screen stroke patients upon arrival
to hospitals and measure their levels of vitamin D metabolite.
Depending on each screening, vitamin D analogs should be
given; accordingly, that would most rapidly transform to the
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active vitamin D metabolite. These findings would provide
additional evidence of the intricacy of vitamin D in stroke
pathology and subsequent outcomes.

STUDY DESIGN AND LIMITATIONS

This scoping review was intended to encompass the existing
research that is available regarding vitamin D, including its
nutritional, supplementary, and endogenous forms and the
impact it may have on outcomes following hemorrhagic
stroke. Our search methodology consisted of the use of all
standard short and long-form references to vitamin D, including:
“Vitamin D, 25(OH)D” in a search pattern of (“Vitamin D”
OR 25(OH)D OR calcitriol OR cholecalciferol OR ergocalciferol
OR 25-hydroxyvitamin D OR 1,25-dihydroxyvitamin D) AND
(“hemorrhagic stroke” OR ICH OR SAH OR “subarachnoid
hemorrhage” OR “intracerebral hemorrhage”) in Pubmed,
Embase, Google Scholar, OneSearch, and Web of Science.
In addition to individual database searches, related literature
present in the bibliographies of other analyzed papers was
used to conduct a more comprehensive search. While this is a
scoping review and not systematic in nature, the bias in literature
selection was avoided, with each author doing independent
searches and compiling studies into an aggregate list. After
compilation of this aggregate list, no papers were excluded from
the study. Clinical studies regarding vitamin D are generally
subject to a degree of variability due to the roles that geographic
location and temporal variations in sun exposure play in its

production. While measuring patient serum vitamin D would
ideally account for these deviations, ambulatory vitamin D levels
could vary widely between clinic visits. Current research typically
accounts for these variables, although the various dynamic factors
that contribute to the biological production of vitamin D should
be considered when reviewing related literature.
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