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Abstract

Background

Endogenous ouabain (EO) and atrial natriuretic peptide (ANP) are important in regulation of

sodium and fluid balance. There is indirect evidence that ANP may be involved in the regula-

tion of endogenous cardenolides.

Methods

H295R are human adrenocortical cells known to release EO. Cells were treated with ANP at

physiologic concentrations or vehicle (0.1% DMSO), with or without guanylyl cyclase inhibi-

tor 1,2,4 oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). Cyclic guanosine monophosphate

(cGMP), the intracellular second messenger of ANP, was measured by a chemiluminescent

immunoassay and EO was measured by radioimmunoassay of C18 extracted samples.

Results

EO secretion is inhibited by ANP treatment, with the most prolonged inhibition (90 min vs

� 60 min) occurring at physiologic ANP concentrations (50 pg/mL). Inhibition of guanylyl

cyclase with ODQ, also reduces EO secretion. The inhibitory effects on EO release in

response to cotreatment with ANP and ODQ appeared to be additive.

Conclusions

ANP inhibits basal EO secretion, and it is unlikely that this is mediated through ANP-A or

ANP-B receptors (the most common natriuretic peptide receptors) or their cGMP second

messenger; the underlying mechanisms involved are not revealed in the current studies.

The role of ANP in the control of EO synthesis and secretion in vivo requires further

investigation.
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Introduction

Endogenous cardenolides (ECs) are groups of steroid back-boned chemicals that include oua-

bain, digoxin, bufodienolides, and their metabolites [1–5]. These chemicals were originally

identified from plants and non-mammalian sources including the foxglove (Digitalis species)

[6], climbing oleander (Strophantus gratus and other Apocynaceae) [7], and in toads (Bufo)

and frogs (Atelopus) [8]. More recently, it has become clear that these compounds or very

similar mammalian counterparts are synthesized and released from adrenal gland and hypo-

thalamus [2, 9–12]. In the human body, they are thought to play important roles in sodium

and fluid homeostasis by affecting sodium- and potassium-activated adenosine triphosphatase

(Na+-K+-ATPase) activity, and in cellular signaling pathways [13–17]. Their role in blood pres-

sure control has been more extensively examined.

Endogenous ouabain (EO) has been implicated in many cellular mechanisms and physio-

logic pathologies [17], including modulation of cellular or organ size [18, 19], sodium homeo-

stasis [20], hypertension [21, 22], mood disorders [23, 24], and possibly cancer [25]. This is

accomplished via regulation of sodium pump activity [13–17] and cellular signaling pathways

[26–28].

The natriuretic peptide family mainly consists of Atrial Natriuretic Peptide (ANP), Brain

or B-type Natriuretic Peptide (BNP), and C-type Natriuretic Peptide (CNP). Each natriuretic

peptide in this family appears to induce diuresis, natriuresis, vasodilation, and inhibition of

the renin-angiotensin-aldosterone system and the sympathetic nervous system [29–31]. Recent

research suggests multiple interactions between cardiotonic steroids (CTS) and ANP [32].

Both ANP and ECs are thought to play important roles in sodium and fluid homeostasis. In

cardiac tissue, both endogenous cardenolides and ANP were increased in similar pathological

conditions [32]. For example, in a study to test possible interactions between ANP and ouabain

in the heart it was found that ANP antagonizes stimulation of the Na+-K+-ATPase by low con-

centrations of ouabain [33]. However, ANP when used alone stimulated Na+-K+-ATPase

activity [33].

There are three known natriuretic peptide receptors: Natriuretic Peptide Receptor-A

(NPR-A), NPR-B, and NPR-C. ANP and BNP preferentially bind to NPR-A [34], while

NPR-C has 50-fold greater affinity to CNP than either ANP or BNP [35]. Both NPR-A and

NPR-B are coupled with guanylyl cyclase [34]. In contrast, NPR-C has no guanylyl cyclase

activity [36] and has long been thought to act as a natriuretic peptide clearance receptor

because it is primarily found in the kidney, has similar affinity for two of the three natriuretic

peptides [35, 37], and its elimination in transgenic mice increases the half-life of ANP by 66%

[38]. NPR-C appears to be coupled with the Giα protein and other intracellular signals, but not

cGMP [39]. Activation of this receptor with a ring deleted ANP analogue, cANF4-23, which

blocks natural ANP and does not increase cGMP, results in natriuresis and reduction of blood

pressure in conscious rats [40]. The NPR-C is widely distributed [36] including in the adrenal

gland, where it is 5-fold less abundant than NPR-A [41].

The vasodilatory effects of ANP appear to be mediated by stimulation of guanylyl cyclase,

elevation of intracellular cyclic guanosine monophosphate (cGMP), and activation of cGMP-

dependent protein kinase [42–44]. ANP increases cGMP production and attenuates agonist-

stimulated aldosterone synthesis in adrenal zona glomerulosa cells [42]. Over 30 years ago,

ANP was demonstrated to reduce synthesis of a Na+-K+-ATPase inhibitor by brain tissue both

in vivo and in vitro [45].

In the present study, we investigated whether ANP is involved in the secretion of EO in

H295R human adrenocortical cells, which have previously demonstrated to spontaneously

excrete endogenous cardenolides [12] and which have functional ANP receptors [46]. We
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examined the roles of guanylyl cyclase (using 1H-[1,2,4]oxadiazolo[4,3-a] quinoxaline-1-one

{ODQ} to inhibit the enzyme) and cGMP in mediating an inhibitory effect of ANP on EO

synthesis.

Methods

Cell culture

Human adrenocortical cells (H295R) were from American Type Culture Collection (ATCC).

NCI-H295R was adapted from the NCI-H295 pluripotent adrenocortical carcinoma cell line

(ATCC CRL-10296). While the original cells grew in suspension, the adapted cells were

selected to grow in a monolayer with a 2 day doubling time.

The cells were grown and maintained in DMEM/F12 medium (GIBCO, Grand Island, NY)

containing 25 mL/L NuSerum type I, 10 g/L ITS culture supplements (Corning, NY), and anti-

biotics in 75 cm2 flasks at 37 ˚C under a humid atmosphere of 5% CO2−95% air.

Treatments

For the experiments, flasks were seeded with H295R cells and grown to ~80% confluent den-

sity at 37˚C in air containing 5% CO2 (~1 x 106 cells). Culture medium was removed and dis-

carded; 3.0 mL of Trypsin-EDTA solution (HyClone™, Cytiva, Marlborough, MA) were added

until the cell layer dispersed (usually within 5 min). Then, 6 mL of complete growth medium

were added, and the cell suspension was centrifuged at 125 x g for 5 min. The cell pellet was re-

suspended in fresh growth medium. The subculture ratio was 1:3 to 1:4. The media was

replaced every 3 days.

H295R human adrenocortical cells were treated with: 1) 0.1% DMSO or ANP (5, 50, 200

pg/mL; California Peptide Research, Inc, Salt Lake City, UT) dissolved in 0.1% DMSO for 30

min, 60 min and 90 min; 2) 0.1% DMSO, 50pg/mL ANP, 10 μM of guanylyl cyclase inhibitor

1,2,4 oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; Cruz Biotechnology, Inc Santa Cruz, CA) for

90min; and 3) pretreated with ODQ for 30min followed by 50 pg/mL ANP for 60 min. Normal

serum ANP levels are frequently reported in the mid 30s pg/mL with a range up to 200 pg/mL

in renal failure [47–49]. The culture media was collected after different time points and differ-

ent treatment for EO measurements. We only used no treatment controls, and did not exam-

ine the effect of adding other non-ANP peptides to the cell cultures. All experiments had 3–6

replicates.

Measurements

H295R human adrenocortical cells were treated with ANP at various concentrations (0, 5, 50,

200 pg/mL) for 30, 60 and 90 min in serum-free medium. The culture media were collected for

assay of endogenous ouabain (EO) by radioimmunoassay of C18 extracted samples [50]. In

brief, 200 mg Bond Elut C18 columns (Varian) were preconditioned by sequential passage of 3

mls each of 100, 50, 25, and 5% CH3CN in water. Thereafter, each column was washed twice

with 3 ml water. For the samples, 10–12 ml of the conditioned cell culture fluid was centrifuged

at 2,500 x g for 20 min. The supernatants were applied to the columns which were then washed

sequentially with 2 x 3 ml water and 3 ml 5% CH3CN. Differential elution was then used to

elute the desired bound steroids as follows: Bound EO was eluted by a 20% CH3CN wash,

while less polar steroids including endogenous digoxin-like immunocrossreactive materials [9,

51] and aldosterone, that remained bound after the 20% CH3CN wash were eluted with a 50%

CH3CN wash. Sample blanks were run in parallel. In some experiments, the recovery of EO as

well as the success of the differential elution was assessed by inclusion of tracer amounts of 3H-

PLOS ONE Control of ouabain release

PLOS ONE | https://doi.org/10.1371/journal.pone.0260131 November 18, 2021 3 / 14

https://doi.org/10.1371/journal.pone.0260131


ouabain and 3H-digoxin. For immunoassay, all eluates of interest were dried by vacuum cen-

trifugation (Savant) and reconstituted at 60–120 x their original concentration in water. For

analysis of the efficiency of steroid recoveries, aliquots of the eluates were taken directly for liq-

uid scintillation counting. The radioimmunoassay was performed in a manner similar to that

previously described using the R8 ouabain-antiserum [50] with the exception that a micro

format was employed wherein the total assay volume was 50 μL. In this assay, 30 μL was the

reconstituted sample and the remainder was comprised of 3H-ouabain (final concentra-

tion = 1.35 nM) and buffer. The reaction was incubated at room temperature for one hour and

terminated by rapid filtration over glass fiber filters (Whatman GF/B) using a 24 well cell har-

vester (Brandel). The filters were soaked in scintillation cocktail (Ultima Gold, Perkin Elmer)

for 40 hours and then counted (Beckman TA3000) with quench correction. Non-specific bind-

ing was determined by inclusion of excess ouabain in the reaction and typically was< 4% of

the total bound count. The antiserum exhibits no meaningful crossreactivity (<0.01%) with

the vast majority of common adrenocortical, ovarian, or testicular steroids (see Table 1 in

[51]). In addition, the immuno-crossreactivities for dihydro-ouabain, digoxin, digitoxin, and

aldosterone were 0.16, 5.2, 28 and 0.012%, respectively. The crossreactivity of the latter three

steroids is of no concern; the use of a differential elution process excludes the vast majority of

digoxin, digoxin-like materials, and aldosterone from the eluates used for EO measurement.

The low crossreactivity for dihydro-ouabain, i.e., 625-fold less than for ouabain, makes it

unlikely that any dihydro-ouabain that may have been secreted [11, 12] contributed signifi-

cantly to the EO measurement. All measurements were made with an operator blinded to the

study design.

We did not assay intracellular EO concentrations because previous work revealed that the

intracellular EO concentrations in H295R cells was below assay detection [12]. Four mL PBS

were added to the remaining cells that were scratched twice, and then transferred to a centri-

fuge and spun at 125x g for 5 minutes. The cell pellet lysates of were used for intracellular

cGMP assay using a chemiluminescent immunoassay kit (Arbor assay, Ann Arbor, Michigan)

based on the product manual. Protein was determined by the BCA method (Pierce, Grand

Island, NY). Samples were stored at -80˚C.

Statistics

Student’s T-test was used to examine differences in response. The data were presented as

mean ± SE.

Results

Fig 1 shows the integrity of the C18 extraction with respect to ouabain and digoxin. Essentially

all of the 3H-ouabain added to samples appeared in the 20% eluate with a yield approaching

100%. The small amount of label detected in the flow through (i.e., unbound label) for both

ouabain and digoxin likely represents free 3H in water. In contrast, the vast majority of the 3H-

digoxin was detected in the 50% eluate, there being minimal cross contamination (~ 6%) in

the 20% eluates.

Fig 2 shows the standard curve for the ouabain radioimmunoassay. The data were fitted by

a standard sigmoidal four parameter Hill equation of the form: f = y0+a�xb/(cb+xb). The slope

of the relationship was -1.069 consistent with a single class of specific binding sites with mini-

mal apparent negative or positive cooperativity under the conditions used. The EC50 was 4.83

+/- 0.27 nM. The threshold sensitivity of the assay, defined as 5% displacement of the label

from the control value, ranged from 2–5 femtomoles. The coefficient of error for the EO mea-

surement expressed as a % variance of the mean value from three replicates for each sample
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ranged between 0.42 and 5.2%. The assay precision ranged from 94–99% in the working range

of the samples.

Human H295R adrenocortical cells grown in culture spontaneously secrete EO at low rates,

especially when compared to aldosterone. The concentration in the supernatant spontaneously

increases over time, and nearly doubles in 90 minutes (Fig 3). Addition of ANP inhibited the

appearance of EO at 60 minutes and 90 minutes of treatment compared to untreated cells (Fig

3). At 60 minutes, all concentrations of ANP tested inhibited EO secretion with no obvious

dose-effect (Fig 3). However, at 90 minutes, the inhibitory effect of ANP persisted at the physi-

ological concentration of 50 pg/mL. In contrast, the significant effects of subphysiologic ANP

concentrations (5 pg/mL) or supraphysiologic ANP concentrations (200 pg/mL) that were

apparent at 60 minutes had waned by 90 minutes (0.014 ± 0.003 vs 0.062 ± 0.006, t = 6.58,

P = 0.03; 0.014 ± 0.003 vs 0.053 ± 0.003, t = 8.70, P<0.001, respectively) (Fig 3).

Fig 1. Elusion of ouabain and digoxin. A: Extraction and differential elution of 3H-ouabain 9upper panel) and 3H-

digoxin (lower panel) from C18 columns. Labelled steroids were introduced into conditioned cell culture medium and

applied to preconditioned C18 columns as described. The flow through (FT) as well as the eluates from the 0, 20, 50

and 70% CH3CN washes were collected and counted. Results are shown as the average of duplicate experiments.

https://doi.org/10.1371/journal.pone.0260131.g001
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The ANP-A receptor mediates its effect through activation of guanylyl cyclase that gener-

ates cGMP. However, the generation of cGMP by ANP in H295R cells was muted and dose-

dependent. Specifically, cyclic GMP levels increased significantly when the cells were treated

with ANP at 50 pg/mL for 60 min (0.084 ± 0.008 vs 0.050 ± 0.011, t = -2.65, P< 0.05), but this

effect was transient, returning to baseline after 90 min (Fig 4). Based on this result, ANP 50 pg/

mL was selected for the following experiments that explored the role of guanylyl cyclase.

Fig 2. ouabain standard curve. Radioimmunoassay standard curve for ouabain. Each point is the mean ± SEM for triplicate

determinations. Error bars are obscured where the symbol diameter> sem. The data were fitted iteratively to the equation

described in the text and the resultant parameters including coefficients (a = Bmax, b = slope, c = EC50, d = nonspecific binding),

standard errors, t statistics, and probability values for the fit are shown below the figure.

https://doi.org/10.1371/journal.pone.0260131.g002

Fig 3. EO content in culture media. The EO content in the culture media of H295R human adrenocortical cells

increased significantly at 90 min. in the absence of ANP treatment. ANP concentrations of 5, 50, 200 pg/mL reduced

EO secretion at 60 and 90 min. The inhibitory effect of 50 pg/mL ANP was significantly lower compared to lower

(ANP5) and higher (ANP200) at 90 min. Error bars represent standard error. (�P< 0.05, compared to 30 min

untreated, ��P< 0.05, compared to untreated at corresponding time point, ���P< 0.05, compared to ANP5 and

ANP200 at 90 min. Y axis units are pM/mg protein).

https://doi.org/10.1371/journal.pone.0260131.g003
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EO secretion by human H295R adrenocortical cells was significantly reduced after treat-

ment with ANP 50 pg/mL for 60 min (untreated 0.145 ± 0.003 vs ANP 50 pg/mL 0.067 ± 0.004

pM/mg protein; P< 0.05) and to a similar degree when 10 μM of the guanylyl cyclase inhibi-

tor, ODQ, was used alone (untreated 0.145 ± 0.003 vs ODQ 10 μM 0.092±0.012 pM/mg pro-

tein; P< 0.05) (Fig 5). The combination of the two treatments, pretreatment with ODQ 10 μM

for 30 minutes followed by ANP 50 pg/mL for 60 minutes, suppressed EO secretion further

when compared with untreated or ANP alone or ODQ alone (to 0.03 ± 0.006 pM/mg protein,

P< 0.05 for both) (Fig 5).

While we use the term ‘secretion’, our data does not determine the mechanism involved or

the intracellular source of the secreted EO that was measured. The present experiments do not

Fig 4. cGMP Levels. Intracellular cGMP levels following ANP treatment for 30, 60, and 90 min in H295R human

adrenocortical cells. A significant increase in cGMP was observed only with 50 pg/mL at 60min. Error bars represent

standard errors. (�P< 0.05 compared to control; Y axis units are pM/mg protein).

https://doi.org/10.1371/journal.pone.0260131.g004

Fig 5. Effect of ANP on EO secretion. Change in EO secretion 60 min following addition of ANP 50 pg/mL, 10 mM

ODQ and ODQ+ANP treatment. ANP alone and ODQ alone reduced EO secretion (#P< 0.05 compared to control).

Pretreatment with ODQ followed by ANP further decreased secreted EO when compared to ANP or ODQ alone

(�P< 0.05). (Error bars represent standard error; Y axis units are pM/mg protein).

https://doi.org/10.1371/journal.pone.0260131.g005
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determine whether the spontaneous secretion of EO from the unstimulated cells is derived

from de novo synthesis, as seems likely, or is the result of the release of stored EO, or even if

there is a degradation of a carrier protein that obscures EO measurements at baseline. Like-

wise, the ability of ANP to suppress the basal EO secretion may involve one or more of the

phenomena mentioned above.

Data has been submitted to Zenodo under the title and authors of this publication (and

may be accessed at: https://zenodo.org/record/5594568#.YXRY-S2z3a8).

Discussion

EO is produced in the adrenal and to some limited extent in the hypothalamus [2, 9, 11, 12].

Human H295R adrenocortical cells also produce and secrete small amounts of EO in culture

[12]. In the present work, we have replicated earlier observations concerning the spontaneous

production of an ouabain-like compound by these cells in culture (Fig 3). We have also dem-

onstrated that ANP at physiologic concentrations inhibits the production of EO (Fig 3). How-

ever, our observations are of some surprise because they indicate that the inhibitory effect of

ANP on EO secretion is unlikely to be mediated through the ANP-A receptor, which is the

most common natriuretic peptide receptor [41], and utilizes cGMP as a second messenger

[34]. In our studies, inhibition of generation of cGMP did not prevent the ANP effect, and

actually reduced EO production independent of ANP (Fig 5). Further, the effects of ANP and

of guanylyl cyclase inhibition appear to be additive (Fig 5), suggesting that they are mediated

by independent mechanisms. Nonetheless, there are potential alternative explanations of the

data. For example, nitric oxide (NO) is known to activate guanylyl cyclase and sufficient NO

can overcome ODQ inhibition [52]. Likewise, confirmation of a guanylyl cyclase component

does not exclude other potential mechanisms of ANP, as is the case with NO [44, 53]. This is

especially important given the lack of a clear dose response effect of ANP on either EO or

cGMP production.

Given that inhibition of guanylyl cyclase does not reverse the EO inhibition caused by ANP

and may actually magnify it (Fig 5), the control of EO synthesis may be mediated in part by

NPR-C. This conclusion is further supported by the minimal and transient increase of cGMP

seen in the cells (Fig 4). Conversely, the transient nature of effects of ANP on both EO and

cGMP may be consistent with the apparent tachyphylaxis seen in blood pressure control with

ANP [54].

The existence of endogenous cardenolides, like EO, remains controversial to some [55]

despite overwhelming evidence of its existence and physiological and pathological roles—

some of which has been proven in studies using transgenic animals [21]. Many of the chal-

lenges related to the successful measurement of EO have been described elsewhere [21]. Of

critical importance is the extraction procedure which must be performed with care. Ouabain

is a highly polar steroid; its interaction with C18 is much weaker than all of the known adreno-

cortical steroids and most of the known CTS. Accordingly, it is critical to fully precondition

the C18 columns, bringing them carefully and fully to water before sample application to

ensure that all of the sample EO will become bound. The presence of even small amounts of

organic solvents such as acetonitrile or methanol will prevent EO from binding and it will be

lost to the flow through. Further, the mass of the C18 sorbent must be sufficient to trap all the

EO and this is a function of the sample mass, type, and origin. For example, 200 mg of C18

sorbent will typically trap all the EO from 2–3 ml of plasma. With conditioned cell culture

medium, up to 20 ml can be extracted per column because this matrix is much less complex

than native plasma and the competition of ancillary polar chemical entities with EO for bind-

ing to the sorbent is much less. Once the sample has been applied and EO is bound, it is
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necessary to wash with the appropriate volumes of water and then low concentrations of aceto-

nitrile (2.5 to 5%) or methanol (5–10%) to reduce some of the very highly polar entities that

can interfere in the radioimmunoassay and lead to massive suppression of ionization in mass

spectrometry. The volume of this organic wash also is critical; overly large wash volumes will

eventually elute bound EO, and it will be lost. Similarly, the concentration and volume of ace-

tonitrile used to elute EO is important. Typically, 20–25% acetonitrile is used and the volume

is chosen to ensure that all the EO is recovered without significant contamination by e.g.,

digoxin (Figs 1 and 2) or other less polar eCTS. In validating the extraction method, it is most

useful to use 3H labeled steroids of interest using the anticipated sample conditions. For the

immunoassay, a highly selective antiserum with affinity for ouabain in the high picomolar to

low nanomolar range is required that has minimal crossreactivity with the common classical

mammalian steroids. Thus far, this antibody requirement has been met with polyclonal but

not monoclonal sources. The final critical factor in the radioimmunoassay method we use

concerns the method by which the binding assay is terminated. With the vast majority of high

affinity ouabain antibodies, the half time for the dissociation of ouabain or EO from antibody

binding sites is surprisingly rapid ranging from 2–15 minutes. Thus, the method used to sepa-

rate bound from free must be much faster than the dissociation half time if the high sensitivity

required to detect EO is to be retained. Among the various options, filtration over glass fiber

filters is convenient and very rapid, typically requiring<15 seconds including multiple washes.

Another advantage of the method is the very low background binding of the tracer 3H-ouabain

to the filters. Other assay formats including ELISA [51, 56], radioimmunoassays that do not

require a bound/free separation as well as mass spectrometry [21] can be used with the appro-

priate modifications.

In the adrenal glands, EO is synthesized in and secreted from the cortex, which also synthe-

sizes cortisol, aldosterone, and a number of other steroids. Like aldosterone, EO biosynthesis

requires progesterone [57]. However, in the normal adrenal, the amount of EO secreted is

some 20–50 times lower than the amount of aldosterone secreted, and some 10,000-fold lower

than the amount of cortisol made [21]. Although H295R cells maintain their aldosterone secre-

tory phenotype in prolonged cell culture, their ability to secrete EO is reduced ~10–20 fold

when compared with unstimulated adrenocortical cells in primary cell culture [56]. Hence,

when working with H295R cells and when feasible it is helpful to extract large volumes of cell

conditioned media and, critically, to concentrate the samples post extraction prior to immuno-

assay. In the present work, the extracted samples were concentrated between 60–120 fold prior

to introduction into the assay. In order to obtain interpretable data under these conditions,

EO was differentially eluted from the C18 columns to minimize assay cross-contamination

with all of the classical adrenocortical steroids. Of particular relevance to the present experi-

mental conditions, the differential elution minimizes aldosterone, digoxin-like materials and

other non-polar eCTS in the samples used for the EO measurement. In addition, a highly

selective ouabain antiserum was used to minimize interference from any dihydro-ouabain

that may have been present in the EO extract [11, 12]. Under these conditions, it was possible

to explore the impact of ANP and its related signaling on basal EO secretion with reasonable

confidence.

A number of studies have previously implicated both angiotensin II and ACTH in vitro and

more especially ACTH in vivo as stimulants to EO secretion [21]. However, investigation of

the hormonal factors that might suppress EO secretion are very few. In particular, there are

three reports regarding the influence of ANP on eCTS-like activity and these have led to differ-

ent conclusions. One study indicated that ANP suppressed the secretion of an eCTS-like factor

from brain fragments in vitro [45] while two others suggested that central infusions of ANP in
vivo increased eCTS-like activity in the circulation [58]. Further, the latter response was
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blocked by electrolytic lesions in the anteroventral third ventricular region of the brain [59]. It

may be noted that all of these studies used bioassays where the nature of the eCTS-like factor

was unknown. The new results from the present study, made with extracted samples and a

highly selective ouabain-antiserum, confirm that physiological concentrations of ANP do have

a modulatory role and significantly suppress EO secretion from adrenocortical cells in vitro.

But the question remains regarding the significance of this phenomenon. Is the suppressive

action of ANP on EO secretion sufficiently dramatic to reduce the circulating levels of EO

and lower blood pressure in vivo? Various experimental models are available to test this idea

including animals transgenic for various ANP receptor subtypes and the rodent model of

ACTH induced hypertension. In the latter model plasma EO is elevated and the elevated

blood pressure depends upon the ouabain binding site of the sodium pump [60].

The roles of EO and ANP regarding blood pressure and sodium control overlap consider-

ably [20, 34, 41, 60–62] and overlap in their role in pathological states [32], so that one would

expect that they may play a role in modulating each other [34]. In this study we found evidence

that ANP inhibits the production of EO, and that mechanism does not appear to involve acti-

vation of NPR-A or NPR-B receptors. The implication, not tested here due to preconceived

expectations about NPR-C, is that NPR-C receptors contribute to the control of EO secretion.

Accordingly, future work will be needed to determine the inhibitory mechanism of ANP

including the specific role of Giα proteins.

In the present study ANP suppressed the secretion of EO from H295R cells. The effects of

ANP we observe could involve an action on the biosynthesis of EO, its secretory mechanism,

or both. Our experimental design does not discriminate among these possibilities. However, it

is a generally accepted assumption in most all steroid-related studies that secretion occurs by

passive diffusion across the plasma membrane and, accordingly, that altered secretion is a

simple reflection of corresponding changes in biosynthesis. In the adrenal cortex, it is widely

understood that steroids are secreted as they are synthesized and, with the exception of choles-

terol esters, are not stored.

As mentioned above, the normal adrenal cortex secretes very little EO when compared

with aldosterone. This phenomenon is mirrored also in H295R cells and measurements of EO

secretion under basal secretory conditions add further to the challenge. Nevertheless, the sup-

pressive effects of ANP on EO secretion we observed are noteworthy, appear to be indepen-

dent of intracellular cGMP and are generally consistent with the effects of ANP on the

secretion of other adrenocortical steroids. Accordingly, further studies will be needed to fur-

ther dissect the site of action of ANP on EO secretion under baseline and stimulated condi-

tions and especially when the flow of carbon from cholesterol to aldosterone is blocked.
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