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Abstract: This paper proposes a novel phase estimator based on fully-traversed Discrete Fourier
Transform (DFT) which takes all possible truncated DFT spectra into account such that it possesses
two merits of ‘direct phase extraction’ (namely accurate instantaneous phase information can be
extracted without any correction) and suppressing spectral leakage. This paper also proves that
the proposed phase estimator complies with the 2-parameter joint estimation model rather than the
conventional 3-parameter joint model. Numerical results verify the above two merits and demonstrate
that the proposed estimator can extract phase information from noisy multi-tone signals. Finally,
real data analysis shows that fully-traversed DFT can achieve a better classification on the phase of
steady-state visual evoked potential (SSVEP) brain-computer interface (BCI) than the conventional
DFT estimator does. Besides, the proposed phase estimator imposes no restrictions on the relationship
between the sampling rates and the stimulus frequencies, thus it is capable of wider applications in
phase-coded SSVEP BCIs, when compared with the existing estimators.
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1. Introduction

Estimating the frequency, the phase and the amplitude of a signal is a standard classical problem
of signal processing. In particular, phase estimation has been widely applied in synchronization in
communication [1], power analysis [2], speech enhancement [3], GPS navigation [4] and much more.
Until now, phase estimators based on direct Discrete Fourier Transform (DFT) are the mainstream [5].

In [5], Liguori pointed out that, the existing DFT-based phase estimators heavily rely on the result
of frequency estimate. To illustrate this dependency, let us study the sampled version (the sampling
rate is Fs) of a complex exponential signal x(t) = a0exp[j(2π f0t + θ0)] as

x(n) = x(t)
∣∣∣t=n∆t = a0ej(2π f0n∆t+θ0), n = 0, ..., N − 1, (1)

where a0, f0, θ0 are amplitude, frequency and phase respectively and ∆t is the sampling interval 1/Fs.
Accordingly, the frequency resolution of the N-point DFT X(k) is ∆ f = Fs/N = 1/N∆t. Assume the
peak DFT bin is at k = k0, k0 ∈ Z+ (Z+ refers to the set of positive integer numbers). Then, it can be
deduced that the ideal phase value of X(k0) is

θ0 = arg (X(k0))− πδ(N − 1)/N. (2)

The variable δ in (2) is the fractional frequency offset (−0.5 ≤ δ < 0.5) with the value δ = f0/∆ f − k0,
which is closely related to two sampling cases (coherent sampling or noncoherent sampling). For the
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coherent sampling case, i.e., f0 = k0∆ f , δ = 0 and thus the sequence {x(n), n = 0, 1, · · · , N−1} exactly
covers k0 signal periods, it can be easily inferred from (2) that the phase θ0 can be estimated by directly
taking the phase at the peak bin. Nevertheless, in case of noncoherent sampling, i.e., f0 = (k0 + δ)∆ f ,
δ 6= 0 and thus the sequence does not exactly contain integer times of signal periods, it can be inferred
from (2) that the phase estimate θ0 is related to both the peak index k0 and the frequency offset δ.

Up to now, a lot of frequency estimators have been proposed to estimate the fractional offset δ.
For example, Offelli proposed an energy-based approach [6] in which the frequency offset of some
component can be derived from the energy summation of the windowed DFT spectral bins around the
peak bin. Other approaches based on interpolated FFT were reported in [2,7–9], in which δ is calculated
via interpolation between several successive high-amplitude DFT bins centered with peak bin. In recent
years, a lot of high-accuracy interpolation-based estimators such as Provencher estimator [10], Jacobsen
estimator [11], Candan estimator [12], and phase difference-based estimator [13] were proposed.
However, in [5,14,15], Liguori emphasized that “the bias of frequency estimate will introduce the
uncertainty propagation to the phase acquisition”. In other words, the error of frequency offset δ in (2)
will inevitably give rise to the error of phase estimate θ0 accordingly.

Besides, spectral leakage is also a non-ignorable factor of degrading DFT-based phase estimators.
In essence, for the non-coherent sampling case, performance degradation of phase estimation actually
results from DFT’s inherent spectral leakage effect [16]. Therefore, to enhance the accuracy of phase
estimation, some approach capable of suppressing spectral leakage is expected to be developed.

This paper proposes a novel approach of correcting DFT spectra which can alleviate phase
estimate’s dependence on frequency estimate (or rather, the dependence on frequency offset δ).
This improvement actually attributes to the property that the proposed fully-traversed DFT spectrum
has a much slighter spectral leakage compared to original uncorrected DFT spectrum in non-coherent
sampling case. To verify these advantages, we also apply this corrected DFT-based phase estimator into
a phase-coded steady-state visual evoked potential-based brain-computer interface (SSVEP-based BCI).

Recently, for the purpose of increasing realizable targets, phase information is popularly integrated
into frequency-coding in SSVEP-BCI, such as joint/mixed frequency and phase coding [17–19]. In [20],
Lee introduced one scheme of phase coding in SSVEP-BCI system, in which 8 LEDs flickering at
31.25 Hz with the phase interval 45◦ were used to represent 8 cursor functions. However, the phase
decoding in [20] was realized through detecting the maximum amplitude peak of the averaged SSVEP
waveform, i.e., it was realized in time domain instead of frequency domain. In [21], Lee segmented
one stimulus into reference epoch and phase-shift epoch, in which the phase differences between
these two epochs were used to distinguish different targets. Shortly after that, in [22], Lee designed
six SDFS (stepping delay flickering sequences) with stimulus frequency of 32 Hz, among which
6 different phase-tagged objects are represented by 6 distinct delay segments such that they can be
detected by the normalized power of averaged responses. However, SSVEP-BCIs in [21,22] actually
employ special stimulus sequences to facilitate phase decoding, which may be not suitable for the
common situations of phase measurement. In [23], to increase the number of visual stimuli, Gao and Jia
proposed a frequency and phase mixed coding scheme using multiple frequencies. Then, Gao proposed
the phase constrained canonical correlation analysis (p-CCA) to better distinguish frequency-tagged
stimuli from multichannel SSVEPs [24], in which the phase information was estimated from the FFT
result of the SSVEP records over the occipital cortex. Following this, Gao et.al introduced phase
coding in CCA to discriminate six 60◦-interval targets [25]. However, the stimuli frequencies in [23–25]
were actually deliberately chosen such that each stimuli frequency exactly equals the integer times
of FFT resolution and thus the frequency offset is also exactly zero. Therefore, in SSVEP-BCIs, novel
phase estimator capable of detecting the phases of stimuli with any frequency offset is expected to
be developed.

This paper will demonstrate that the proposed phase corrected DFT-based estimator is in
accordance with the above demand of SSVEP-BCIs. Experimental results show that, the proposed
phase estimator is superior to the conventional estimator in SSVEP phase extraction.



Sensors 2018, 18, 4334 3 of 19

The rest of this paper is organized as follows. Section 2 introduces the derivation of the proposed
fully-traversed DFT. Section 3 elaborates the properties of the proposed fully-traversed DFT in the
noiseless case. Section 4 gives accuracy analysis of this phase estimator in noisy case. Section 5
demonstrates the proposed DFT-based phase estimator’s superiority to conventional phase estimators
in the phase-coded SSVEP-BCI with auto-calibration. Finally, we conclude with a summary of results
in Section 6.

2. Derivation of the Fully-Traversed DFT Spectrum

2.1. Phase Property of DFT Spectrum

Consider a sampled signal {x(0), x(1), · · · , x(N−1)} (or denoted as the vector x0). As is known,
the normalized conventional DFT of x(n) is

X(k) =
1
N

N−1

∑
n=0

x(n)e−j 2π
N kn, k = 0, 1, ..., N − 1. (3)

Without loss of generality, assume that ∆ω = 2π/N and ω0 = β∆ω = (k0 + δ)∆ω, k0 ∈ Z+ and
−0.5 ≤ δ < 0.5. Substituting the complex exponential sequence x(n) = exp(j(ω0n + θ0)) into (3) yields

X(k) =
1
N

N−1

∑
n=0

ej( 2π
N βn+θ0)e−j 2π

N kn

=
ejθ0

N

N−1

∑
n=0

ej 2π
N (β−k)n

=
ejθ0

N

N−1

∑
n=0

ej 2π
N (k0−k+δ)n. (4)

Using geometric series summation and Euler equation, one can further deduce (4) as

X(k) =

{
ej[θ0+

N−1
N (k0+δ−k)π] · sin[(k0+δ−k)π]

N sin[(k0+δ−k)π/N]
, δ 6= 0

ejθ0 , δ = 0
(5)

Substituting the peak index k = k0 into (4) and synthesize the two cases of δ 6= 0 and δ = 0,
we can derive a uniform expression of the phase value at peak DFT bin as

φX(k0) = θ0 + (N − 1) /N · δπ (6)

Obviously, (6) is in accordance with (1).
From (6), it can be found that, only for the coherent sampling case (the frequency offset δ = 0),

the observed phase φX(k0) at the peak DFT bin is an accurate estimate. In contrast to this, for the
non-coherent sampling case (δ 6= 0), in order to estimate the phase, δ has to be estimated in advance.
As a result, the phase estimator based on conventional DFT heavily depends on the frequency offset δ.

2.2. The Proposed Fully-Traversed DFT Spectrum

In this work, we aim to develop a phase estimator capable of removing the dependency on the
frequency offset δ. To be specific, our goal is to construct a corrected DFT spectrum whose peak bin
provides accurate phase information whether δ = 0 or not.
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To derive the proposed fully-traversed DFT, it is necessary to study the relationship between the
ideal Fourier transform and the conventional DFT. As known to us, the ideal Fourier transform X(jω)

of an infinite-length sequence {x(n)} = {· · · , x(−N+1), · · · , x(0), · · · , x(N−1), · · · } is

X(jω) =
+∞

∑
n=−∞

x(n)e−jnω (7)

However, X(jω) cannot be realized, since the calculation in (7) consumes innumerous samples
and memory. Thus, in practical applications, X(jω) is replaced by the conventional normalized
DFT X(k) defined in (3). Furthermore, if we define a sequence x0(n), which is truncated from the
infinite-length sequence {x(n),−∞ ≤ n ≤ ∞}, i.e.,

x0(n) =

{
x(n), n ∈ [0, N − 1]
0, others

, (8)

then, apparently, combining (3) with (7), (8) yields a representation of X(k) as

X(k) =
1
N

X0(jω) |ω=k2π/N

=
1
N

+∞

∑
n=−∞

x0(n)e−jnk2π/N

=
1
N

N−1

∑
n=0

x(n)e−jnk2π/N (9)

Now, let us focus on the sample x(0) at which the ideal phase θ0 is located. It can be inferred
from (9) that conventional DFT only considers one truncation case. However, there are N truncated
sequences xm (m = 0, 1, ..., N − 1) containing x(0) listed as

x0 = {x(0), x(1), ..., x(N − 2), x(N − 1)},
x1 = {x(−1), x(0), ..., x(N − 3), x(N − 2)},

...
xN−1 = {x(−N + 1), x(−N + 2), ..., x(−1), x(0)},

(10)

where the elements of sequence xm = {xm(n), n = 0, · · · ,N−1} are

xm(n) =

{
x(n−m), n ∈ [0, N − 1]
0, others

(11)

Similar to the discrete spectrum of the truncated sequence x0 expressed in (8), a reasonable discrete
spectrum for xm = {x(−m), x(−m+1), · · · , x(−m+N−1)} should be

Xm(k) =
1
N

N−1−m

∑
n=−m

x(n)e−jnk2π/N ,

m, k = 0, 1, ..., N − 1. (12)

Furthermore, aiming to rewrite Xm(k) in the form of conventional DFT in which variable n ranges
from 0 to N−1, we should detach the series summation in (12) into two terms as
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Xm(k) =
1
N

−1

∑
n=−m

x(n)e−jnk2π/N

+
1
N

N−m+1

∑
n=0

x(n)e−jnk2π/N , (13)

The first summation in (13) can be denoted as

1
N

−1

∑
n=−m

x(n)e−jnk2π/N

n′ = n + N
1
N

N−1

∑
n′=N−m

x(n′ − N)e−j(n′−N)k2π/N (14)

=
1
N

N−1

∑
n=N−m

x(n− N)e−jnk2π/N .

Hence, it is necessary to introduce N new truncated sequences x̃m (m = 0, 1, ..., N − 1) whose
elements are

x̃m(n) =

{
x(n) , n = 0, ..., N −m− 1
x(n− N), n = N −m, ..., N − 1

. (15)

In terms of (15), N sequences x̃0 ∼ x̃N−1 are listed as

x̃0= {x(0), x(1), ..., x(N − 2), x(N − 1)},
x̃1= {x(0), x(1), ..., x(N − 2), x(−1)},

...
x̃N−1 = {x(0), x(−N + 1), ..., x(−2), x(−1)}.

(16)

Then, combining (13) with (15), we have

Xm(k) =
1
N

N−1

∑
n=0

x̃m(n)e−jnk2π/N = DFT[x̃m(n)],

m = 0, 1, ..., N − 1. (17)

Finally, averaging all the DFT results of x̃0 ∼ x̃N−1 yields the proposed corrected spectrum, i.e.,

Y(k) =
1
N

N−1

∑
m=0

Xm(k), k = 0, 1, ..., N − 1. (18)

From (8)–(18), it can be noticed that, the center sample x(0) fully traverses all the possible starting
positions of N truncated sequences xm (m = 0, 1, ..., N − 1) in (10). Moreover, all the DFT results (17) of
these traversed sub-sequences are fully averaged in (18) to yield the final spectrum Y(k) in (18). Hence,
this novel spectral analysis is named as Fully-traversed DFT, whose dataflow is summarized as:

step 1. Construct N N-length sub sequences x0 ∼ xN−1 from the given (2N − 1) input samples
x(−N + 1), · · · , x(0),· · · , x(N − 1), as (10) lists;

step 2. For each index m, m = 0, 1, · · · , N − 1, circularly left move m samples of xm = {x(−m), · · · ,
x(0), · · · , x(−m + N − 1)} to generate N sequences x̃m = {x(0), x(1), · · · , x(N − m +

1), x(−m), · · · , x(−1)}.
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step 3. Implement normalized DFT on each x̃m to obtain the discrete sub-spectrum Xm(k), m =

0, · · · , N−1;

step 4. Average all N sub-spectra Xm(k) to acquire the proposed phase corrected spectrum Y(k).

3. Property of Phase Estimation in the Noiseless Circumstance

3.1. Single-Tone Case

Consider a single-tone signal x(n) = exp(j(ω0n + θ0)), ω0 = β∆ω = (k0 + δ)2π/N. Since Y(k) is
obtained by averaging X0(k) ∼ XN−1(k), substituting x(n) into Xm(k) in (12) and (18) yields

Y(k) =
1
N

N−1

∑
m=0

[
1
N

−m+N−1

∑
n=−m

ej(β2nπ/N+θ0)e−jnk2π/N

]

n′ = n + m
ejθ0

N2

N−1

∑
m=0

[
N−1

∑
n′=0

ej(β−k)2(n′−m)π/N

]
(19)

=
ejθ0

N2

N−1

∑
m=0

e−j(β−k)2mπ/N

[
N−1

∑
n=0

ej(β−k)2nπ/N

]

Obviously, (19) can be rewritten as

Y(k) = ejθ0

(
ejθ0

N

N−1

∑
m=0

e−j 2π
N (k0−k+δ)m

)
·(

ejθ0

N

N−1

∑
n=0

e−j 2π
N (k0−k+δ)n

)∗
(20)

where the superscript ‘∗’ represents complex conjugate operation. Then, combining (20) with (4) yields

Y(k) = ejθ0 X(k)X∗(k) = ejθ0 |X(k)|2,

k = 0, 1, ..., N − 1. (21)

Taking the phase part of (21), we can obtain the phase spectrum ϕY(k) as

ϕY(k) = θ0, k = 0, 1, ..., N − 1. (22)

Equation (22) shows that, for the signal x(n) = exp(j(ω0n + θ0)), −N + 1 ≤ n ≤ N − 1, the
phase values at all N spectral bins (including the peak bin k = k0) uniformly equal the ideal phase
θ0 (also refers to the instantaneous phase of the center sample x(0)). In other words, the synthesized
spectrum Y(k) directly provides the accurate phase estimate at any spectral bin, thus removing the
conventional DFT-based phase estimator’s dependency on the frequency offset δ.

Furthermore, since Y(k) is obtained by linearly averaging the N sub DFT spectra as (18) shows,
the proposed fully-traversed DFT spectrum is of linearity, also. Thus, for a single-tone signal with
amplitude a0 (a0 6= 1), the following holds

Y(k) = a0ejθ0
sin2 [(k0 + δ− k)π]

N2sin2 [(k0 + δ− k)π/N]
, k = 0, 1, ..., N − 1, (23)
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among which the peak spectral bin is

Y(k0) = a0ejθ0
sin2(δπ)

N2sin2(δπ/N)
. (24)

3.2. Multi-Tone Case

Consider a signal containing Q (Q ≥ 2) components expressed as

x(n) =
Q

∑
q=1

aqej(ωqn+θq) =
Q

∑
q=1

aqej[(kq+δq)∆ωn+θq], kq ∈ Z+, 0 < |δq| < 0.5. (25)

Since the conventional DFT is a linear transform, combining (5) and (25), its multi-tone spectrum
X(k) is composed of Q single-tone spectra, i.e.,

X(k) =
Q
∑

q=1
Xq(k)

=
Q
∑

q=1
aqej[θq+

N−1
N (kq+δq−k)] sin[(kq+δi−k)π]

N sin[(kq+δq−k)π/N]
, k = 0, ..., N − 1

(26)

Similarly, since the proposed phase corrected DFT spectrum is also of linearity, combining (5)
with (23), its multi-tone spectrum Y(k) equals the summation of Q single-tone spectra as

Y(k) =
Q
∑

q=1
Yq(k)

=
Q
∑

q=1
aqejθq sin2[(kq+δq−k)π]

N2 sin2[(kq+δq−k)π/N]
, k = 0, ..., N − 1

(27)

Furthermore, to measure the phase of the i-th tone, the peak bin at k = ki should be focused.
Therefore, the conventional DFT spectrum X(ki) can be written as

X(ki) = Xi(ki) + ∑
q 6=i

Xq(ki)

= aiej(θi+
N−1

N δi)
sin(δiπ)

N sin(δiπ/N)
+ ∑

q 6=i
aqej[θq+

N−1
N (kq+δq−ki)] sin

[
(kq + δq − ki)π

]
N sin

[
(kq + δq − ki)π/N

] . (28)

Similarly, the proposed fully-traversed DFT spectrum Y(ki) can be expressed as

Y(ki) = Yi(ki) + ∑
q 6=i

Yq(ki)

= aiejθi
sin2(δiπ)

N2 sin2(δiπ/N)
+ ∑

q 6=i
aqejθq

sin2 [(kq + δq − ki)π
]

N2 sin2 [(kq + δq − ki)π/N
] . (29)

In (29), the first term is the expected i-th single-tone spectrum which directly provides the phase
estimate, and the second item represents the interference of other tones. Obviously, for either the
conventional DFT spectrum or the fully-traversed DFT spectrum, the accuracy of the i-th tone’s phase
estimation depends on the intensity of interference. Particularly, this accuracy depends on the relative
magnitude ratio between Xq(ki), q 6= i, and Xi(ki). From (28) and (29), we have

|Xq(ki)|
|Xi(ki)|

=
aq
ai
·
∣∣∣ sin((kq+δq−ki)π)/sin((kq+δq−ki)π/N)

sin(δiπ)/sin(δiπ/N)

∣∣∣
|Yq(ki)|
|Yi(ki)|

=
aq
ai
· sin2((kq+δq−ki)π)/sin2((kq+δq−ki)π/N)

sin2(δiπ)/sin2(δiπ/N)

(30)
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From (30), we have∣∣Yq(ki)
∣∣ / |Yi(ki)|∣∣Xq(ki)
∣∣ / |Xi(ki)|

=

∣∣∣∣ sin((kq + δq − ki)π)/sin((kq + δq − ki)π/N)

sin(δiπ)/sin(δiπ/N)

∣∣∣∣ (31)

Please note that 0 < |δi|, |δq| < 0.5, |kq − ki| ≥ 1 and thus |kq + δq − ki| > 0.5. Since
sin(δπ)/ sin(δπ/N) is a monotonously descending even function, we have∣∣∣∣ sin((kq + δq − ki)π)

sin((kq + δq − ki)π/N)

∣∣∣∣ < ∣∣∣∣ sin(δiπ)

sin(δiπ/N)

∣∣∣∣ (32)

Combining (31) with (32), we have∣∣∣∣Yq(ki)

Yi(ki)

∣∣∣∣ < ∣∣∣∣Xq(ki)

Xi(ki)

∣∣∣∣ , q 6= i. (33)

Equation (33) shows that, for the fully-traversed DFT spectrum, the relative magnitude ratio
between any other tone and the tone of interest is smaller than that of the conventional DFT. In other
words, compared to the conventional DFT spectrum, the fully-traversed DFT magnitude spectrum
does better in suppressing spectral leakage and interferences, thus yielding a higher accuracy of
phase estimation.

3.3. Simplified Dataflow of Phase Estimation

From the aforementioned 4-step procedure listed in Section II, one can find that the fully-traversed
DFT experiences N times of DFT operation. Therefore, to reduce computation complexity,
this procedure needs to be simplified.

According to the linearity of DFT, the average of N sub-spectra is equivalent to the DFT result of
the averaged data. Therefore, if we average the N sub-sequences x̃0 ∼ x̃N−1 in (15) and (16), then one
new sequence {y(n), n = 0, 1, · · · ,N−1} can be constructed as

y(n) =
1
N

N−1

∑
m=0

x̃m(n)

=
N − n

N
x(n) +

n
N

x(n− N), n = 0, 1, ..., N − 1 (34)

Accordingly, the DFT result Y(k) of y(n) is

Y(k) =
1
N

N−1

∑
n=0

[
N − n

N
x(n) +

n
N

x(n− N)

]
e−j 2π

N nk,

k = 0, 1, ..., N − 1 (35)

Clearly, Equation (35) only involves one time of DFT operation, thus greatly reducing computation
complexity. Accordingly, its simplified dataflow is illustrated in Figure 1 (take N = 4 as an example),
from which a low-complexity procedure of multi-tone phase estimation can be summarized as follows.

Firstly, weight the input (2N − 1)-length data sequence [x(−N + 1), · · · , x(0), · · · , x(N − 1)]
with one (2N − 1)-length triangular window [1/N, · · · , (N − 1)/N, 1, (N − 1)/N, · · · , 1/N];

Secondly, (N − 1) weighted data pairs (in each pair, the two data are spaced with N samples) are
individually summed up to generate (N − 1) data y(1), · · · , y(N − 1), except the center sample x(0)
due to y(0) = x(0);

Thirdly, implement normalized DFT on the data sequence [y(0), y(1), · · · , y(N − 1)] to provide
the final spectral result Y = [Y(0), Y(1), · · · , Y(N − 1)].

Lastly, collect all the peak indices k1, ..., kQ of Y(k). For each index kq, directly taking the phase
value of Y(kq) provides its phase estimates θ̂q.
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Z-1 Z-1Z-1 Z-1Z-1Z-1

Normalized DFT

(3)x (2)x (-1)x(0)x(1)x (-2)x (-3)x

(0)y (3)y(2)y(1)y

(0)Y (1)Y (2)Y (3)Y

Figure 1. Simplified flow diagram of phase corrected DFT (N = 4).

4. Variance Analysis of Phase Estimation in Noisy Circumstances

4.1. CRLB for Conventional DFT Phase Estimator

Now we consider the phase estimation in noisy case, in which one random complex Gaussian
process η(n) should be considered in (1), i.e.,

s(n) = x(n) + η(n) = a0ej(ω0n+θ0) + η(n), (36)

where n = −N + 1, · · · , N − 1, ω0 = β∆ω = (k0 + δ)2π/N, and η(n) is a complex Gaussian variable
with mean zero and variance σ2. As mentioned in (2), the conventional phase estimate is

θ̂0 = ϕX(k0)− (1− 1/N) (β− k0)π

= ϕX(k0)− (1− 1/N)πδ. (37)

(37) indicates that, since the conventional DFT-based phase estimator relies on the frequency offset δ,
the estimate error of frequency offset δ will propagate to the phase estimate. In fact, this dependency
makes phase estimation obey a 3-parameter mathematical model parameterized with α = [ω0, θ0, a0]

T .
With regard to this model, previous studies [26,27] have derived a CRLB (Crammer-rao lower bound)
for the variance of the phase estimate (consuming 2N − 1 samples) as

CRLB3(θ0) =
4N − 3

2N(2N − 1)ρ
, (38)

where ρ = a2
0/2σ2 is the SNR (Signal to Noise Ratio). Constrained by CRLB3(θ0) in (38), the error

variance of phase estimate obtained by any conventional DFT-based estimator cannot exceed this
bound. This has been especially claimed for algorithms in [1,2,5–9,27–29].

4.2. CRLB for the Proposed Phase Estimator

Different from conventional 3-parameter model-based phase estimators, mathematical model for
the proposed corrected DFT-based phase estimator can be simplified. The reasons are as three aspects.

Firstly, (29) implies that the proposed phase detector only requires roughly searching the peak
spectral bin and then taking the phases directly, i.e., independent of frequency offset δ.
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Secondly, as previously mentioned, the proposed fully-traversed DFT spectrum equals the average
of N sub DFT spectra. This actually reflects the following mechanism: averaging N sub vectors plays
the role of compensating the angles of N sub DFT spectra with each other, which leads the synthesized
phase to automatically fall at the ideal phase value, whether the frequency offset δ = 0 or not.

Lastly, as previously mentioned, the proposed phase estimator can directly determine the ideal
phase θ0, referring to the ‘instantaneous phase’ of the center sample among the 2N − 1 input samples
x(−N + 1) ∼ x(N − 1). Obviously, the position for the center sample is at n = 0, which can be easily
determined in advance. Thus, if we rewrite x(n) = a0ej(ω0n+θ0) as a0ejϕn , then, for the position n = 0,
the entire term ϕn equals the ideal phase θ0, which also indicates that estimation of frequency ω0 can
be omitted.

For the above 3 reasons, the error variance of fully-traversed DFT phase estimator obeys
a 2-parameter mathematical model with α = [θ0, a0]T , in which the estimate of frequency offset δ

is bypassed. Now we deduce the CRLB of this 2-parameter model using the classical parameter
estimation theory [27].

Since η(n) is a Gaussian noise, the joint probability density function (pdf) of the (2N − 1)-length
observation sequence S = [s−N+1, · · · , s0, · · · , sN−1]T conditioned on the unknown vector α = [θ0, a0]T

is given by [26]

f (S|α) =
(

1
2πσ2

) 2N−1
2

exp

(
− 1

2σ2

N−1

∑
n=−N+1

(sn − xn)
2

)
(39)

From (39), we can derive a 2 × 2 Fisher information matrix J whose entries are

Jij = −E

{
∂In f (S|α)

∂αi∂αj

}

=
1
σ2

N−1

∑
n=−N+1

∂xn

∂αi
· ∂xn

∂αj
, i, j = 1, 2. (40)

Since x(n) = u(n) + jv(n) = a0cos(ω0n + θ0)+ja0sin(ω0n + θ0), (40) can be further expressed as

Jij =
1
σ2

N−1

∑
n=−N+1

(
∂un

∂αi
· ∂un

∂αj
+

∂vn

∂αi
· ∂vn

∂αj

)
, i, j = 1, 2 (41)

with
∂un

∂α1
=

∂un

∂θ0
= −a0 sin(ω0n + θ0), (42)

∂un

∂α2
=

∂un

∂a0
= cos(ω0n + θ0), (43)

∂vn

∂α1
=

∂vn

∂θ0
= a0 cos(ω0n + θ0), (44)

∂vn

∂α2
=

∂vn

∂a0
= sin(ω0n + θ0). (45)

Substituting (42)∼(45) into (41) yields

J11 =
a0

2

σ2

N−1

∑
n=−N+1

(
sin2(ω0n + θ0) + cos2(ω0n + θ0)

)
=

a0
2

σ2 (2N − 1), (46)
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J12 = J21 = 0, (47)

J22 =
1
σ2

N−1

∑
n=−N+1

(
sin2(ω0n + θ0) + cos2(ω0n + θ0)

)
=

1
σ2 (2N − 1). (48)

Thus the 2 × 2 Fisher information matrix J takes the following diagonal form

J =
1
σ2

[
(2N − 1)a2

0 0
0 2N − 1

]
, (49)

and has the inverse as

J−1 = σ2

 1
(2N−1)a2

0
0

0 1
(2N−1)a2

0

 . (50)

Thus, the CRLB for the error variance of the proposed phase estimator is

CRLB2(θ0) =
σ2

(2N − 1)a2
0
=

1
2(2N − 1)ρ

(51)

Since the two CRLBs in (38) and (51) share a same sample length (2N − 1), their ratio is

CRLB2(θ0)

CRLB3(θ0)
=

N
(4N − 3)

≈ 1
4

. (52)

Hence, the CRLB for 2-parameter joint estimation is only 25% of that for 3-parameter
joint estimation.

4.3. Numerical Results

To further verify the superiority of the proposed phase estimator, simulations performed under
various noisy conditions and different spectral orders are presented. The phase error variance of the
proposed estimator was also compared with that of conventional DFT-based estimator (we choose the
ratio method based on interpolated DFT [2]). Assume k0 = 3, N = 128 and θ0 = 60◦. Then, the specific
signal based on (36) is

s(n) = a0ej[(3+δ)× 2π
N n+ π

3 ] + η(n), (53)

where the frequency offset δ is specified with 3 values: 0.1, 0.2, 0.3. Figure 2a–c gives the error variance
curves versus SNRs for these 3 frequency offsets, respectively. For each SNR and δ case, 500 Monte
Carlo trials were conducted.
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Figure 2. Error variances of the phase estimator with (a) δ = 0.1, (b) δ = 0.2 and (c) δ = 0.3.

As can be seen in each figure, the majority of phase corrected DFT’s error variance curve (marked
in ‘∗’) lies below CRLB3, proving that the proposed phase estimator is independent of the conventional
3-parameter joint estimation model. Furthermore, the proposed estimator’s error variance curve is
bounded by CRLB2 curve, verifying the correctness of (51). Figure 2 also demonstrates that the error
variances of the conventional interpolated DFT estimator are nearly one order of magnitude higher
than that of the proposed estimator.
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5. Applying Fully-Traversed DFT in Phase-Coded SSVEP-BCI

Recently, BCIs have become a very hot topic in neural engineering. A BCI detects an user’s
ongoing brain activities and translates them into meaningful messages, which helps patients with
severe motor disabilities to express their messages to external world [30]. In particular, BCI based
steady-state visual evoked potential (SSVEP) has received much attention in bioengineering research
due to its satisfactory performance [31]. To increase the number of recognizable targets, the
phase-coded SSVEP-BCIs use phase information to encode subject’s visual intention. In this system,
the phase-tagged visual stimuli are characterized with flashing at one frequency but different phases,
resulting in that subjects’ SSVEPs also differ in phase features. Therefore, through extracting the phase
information of SSVEP potentials, a computer is able to distinguish which flicker the subject desires
to select.

5.1. Experiment Paradigm

In general, SSVEP is always elicited after some latency time L (or labeled as lag phase ‘θL’),
which actually corresponds to a phase difference between flicker’s phase ‘θF’ and SSVEP’s phase ‘θS’.
Hence, the relationship between the phase difference ‘θL’ and latency L is described by

θS = θF + θL (54)

θL = − (L× 360× fs − q× 360) (55)

where fs, q denote the stimulus frequency and the integer cycles, respectively. Under normal condition,
L is stable in a short period of time but differs in inter-subject such that θL cannot be calculated in
advance [21,23,24]. From (54), it can be found that the flicker’s phase is usually not equal to SSVEP’s
phase (or θF 6= θS) due to θL, which means that we cannot directly use θs to identify which flicker the
subject desires to select if θL is unknown. As a result, an additional measure of phase calibration is
necessary for phase-coded SSVEP-BCI to calibrate this error θL in the detection algorithm.

Hence, we build up a BCI system which uses a half-field phase-tagged stimulus to evoke the
SSVEP with two different frequency components f1, f2 at the same time. This system does not adopt
any phase calibration since it is able to identify the flicker by introducing the phase difference instead
of the phase under the assumption f1 6= f2 (this frequency distinction makes a subject more sensitive
to flickering stimuli than to those with the same frequency), i.e.,

θS( f1)− θS( f2) = θF( f1)− θF( f2) + θL( f1)− θL( f2) (56)

If f1 ≈ f2, then θL( f1) ≈ θL( f2). Therefore, the difference between θS( f1) and θS( f2) approximately
equals the difference between θF( f1) and θF( f2). Hence, the lag phase difference can be removed.

In our phase-coded SSVEP-BCI system, a visual stimulator (ViewSonic, 22 inch, 120 Hz refresh
rate, 1680× 1050 screen resolution) presenting two phase-tagged flickers (with the size 12 cm × 8 cm
each) was used to evoke subjects’ SSVEPs (Figure 3 and Table 1).

Table 1. The parameters of two phase-tagged half-field flickers.

Left-Field Right-Field

Freq. (Hz) Phase (deg) Freq. (Hz) Phase (deg)

Flicker 1 10.9 0 12 0
Flicker 2 10.9 0 12 180
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Figure 3. Visual stimulator presenting two half-field phase-tagged stimuli. (Left field of Flicker 1:
10.9 Hz and 0 deg, Right field of Flicker 1: 12 Hz and 0 deg, Left field of Flicker 2: 10.9 Hz and 0 deg,
Right field of Flicker 2: 12 Hz and 180 deg).

It should be noted that, in our SSVEP-BCI illustrated in Figure 3, the selected flickering
frequencies f1 and f2 should be as close as possible (this helps to remove the possible jump change
of multiple of 360◦ for the lag phase difference between θL( f1) and θL( f2), which was solved in [17]
by means of a exhaustive search procedure based on least-square fitting). Otherwise, their lag phase
difference (θL( f1)− θL( f2)) would not be removed. However, due to the fact that all the stimulus
frequencies in our SSVEP-BCI are acquired by integer dividing a fixed LCD display refresh frequency
Fr = 120 Hz (see [32]), we can only obtain a limited number of flikering frequencies (they are 120/7 Hz,
120/8 Hz, 120/9 Hz, 120/10 Hz, 120/11 Hz) falling at the visual sensitive region (10 Hz, 20 Hz).
Therefore, among these candidate flickering frequencies, the frequency pair with the minimum interval
is ( f1, f2) = (120/11 Hz, 120/10 Hz) = (10.9 Hz, 12 Hz). Obviously, in this case, the lag phase difference
between θL( f1) and θL( f2) will not be removed as f1 and f2 are not close enough. Hence, this phase
difference should be taken into account in order to achieve an accurate result. In practice, it can be
roughly estimated according to their empirical results of the apparent latency of SSVEPs [24]. In our
experiment, (θL( f1)− θL( f2)) cam be roughly estimated as 36◦.

Different from the well-known CCA (Canonical Correlation Analysis) method, which also uses
phase information to enhance the classification accuracy of SSVEPs, our proposed scheme consumes
lower hardware cost. As [17] pointed out, the CCA method needs multiple stimulus frequencies
(6 frequencies were adopted) to remove the possible jump change of multiple of 360◦ for the lag
phase difference. In contrast, our proposed scheme only employs 2 frequencies, thereby lowering the
hard cost.

Three subjects (S1∼S3, two males and one female) were seated on a comfortable chair before the
visual stimulator in an illuminated room. The subjects’ EEG signals were recorded by a g.USBamp EEG
amplifier from 13 electrodes (PO3, PO5, PO7, POZ, PO4, PO6, PO8, P1, PZ, P2, O1, Oz, and O2). Specify
the sampling rate Fs = 600 samples/s. This experiment consisted of 5 runs containing 10 trials each.
Each trial lasted for 8 s. Subjects were instructed to focus on one of flickers according to the following
paradigm: From 0 to 2 s a cue appeared indicating which flashing flicker was required to focus on;
From 2 s to 8 s the subjects gazed at the specified flicker; Then the next trial started. The order of
gazed-flickers was ‘1212121212’ in each run. Thus this dataset had 25 trials for each flicker. The whole
experiment lasted about 30 minutes. During this experiment, the subjects’ EEG signals were recorded
for offline analysis later.

5.2. Procedure of SSVEP Phase Extraction

We collected a total amount of 50 trials for each subject. Basically, the procedure of SSVEP phase
extraction would contain the following steps:
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step 1. Apply both conventional DFT and phase corrected DFT to extract the phase values θS( f1) and
θS( f2), respectively;

step 2. Substitute θS( f1)− θS( f2) and the estimate (θL( f1)− θL( f2)) = 36◦ into (56) to estimate the
difference ∆θ̂ = θF( f1)− θF( f2);

step 3. Use the estimate ∆θ̂ to identify the gazed-flicker. If ∆θ̂ is close to 0 (or 180) deg, then the
gazed-flicker is judged as flicker 1 (or 2).

The judgement involved in step 3 can actually be extended to distinguish C targets (C ≥ 2) by
finding the maximum among C decision variables Rk as

Rk = cos(∆θ̂ − ϕk), k = 1, ..., C (57)

where ϕk refers to the ideal phase difference (θF( f1)− θF( f2)), i.e., the ideal clustering center of pattern
recognition. For the above 2-category recognition problem, we have ϕ1 = 0◦, ϕ2 = 180◦. From (57),
it can be found if the detected phase difference ∆θ̂ → ϕk, then Rk → 1. In other words, if R1 is close
to 1, the gazed-flicker is judged as flicker 1 and vice versa. Furthermore, (57) also allows to assume
more clustering centers. As will be elaborated, introducing more assumed clustering centers helps to
evaluate the performance of phase estimator.

5.3. Result of Offline Analysis

The classification rates of this 2-class experiment are listed in Table 2.

Table 2. The classification rate of each subject under different window length.

Subject Method Electrode Window Length (sec) Average
3 4 5 6

S1 Proposed POZ 0.94 1.00 1.00 0.98 0.98
DFT PO7 0.92 0.88 0.78 0.78 0.84

S2 Proposed O2 0.98 1.00 1.00 1.00 1.00
DFT P2 0.92 0.88 0.84 0.64 0.82

S3 Proposed P1 0.80 0.96 0.92 0.94 0.91
DFT PZ 0.92 0.94 0.88 0.74 0.87

Average Proposed – 0.91 0.99 0.97 0.97 0.96
DFT – 0.92 0.90 0.83 0.73 0.84

It can be found that the proposed phase estimator can achieve a higher classification rate than
conventional DFT-based estimator does, which is entirely over 10%.

Table 3 lists not only these two estimators’ detected phase values (θs(12), θs(10.9)) but also
4 columns of phase decision values Rk(j), k = 1, 2, 3, 4, calculated by (57). Here decision variable
Rk(j) corresponds to the kth assumed clustering center (4 assumed phase clustering centers are
0◦, 180◦, 90◦, 270◦, respectively) while the subject actually gazes at the flicker j. Therefore, for any
flicker index j (j = 1, 2), Rj(j) (marked with shadow in Table 3) is close to 1 and tends to be the
maximum among Rk(j), k = 1, 2, 3, 4, if the accuracy of selected phase estimator is high enough.
The data for all trials involved in Table 3 are recorded within 4 s.
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Table 3. The phase and phase feature Rj of each subject (mean ± S.D.)

Subject Method Flicker j θS(12) (deg) θS(10.9) (deg) R1(j) R2(j) R3(j) R4(j)

S1
Proposed 1 322.74 ± 29.3 6.84 ± 31.4 0.985 ± 0.03 0.133 ± 0.11 0.741 ± 0.1 0.651 ± 0.13

2 126.52 ± 23.1 2.25 ± 27.2 0.253 ± 0.16 0.954 ± 0.05 0.56 ± 0.18 0.789 ± 0.18

DFT 1 329.22 ± 39.3 57.09 ± 38.0 0.857 ± 0.17 0.416 ± 0.26 0.896 ± 0.1 0.378 ± 0.22
2 151.46 ± 31.9 49.97 ± 34.1 0.422 ± 0.22 0.865 ± 0.16 0.445 ± 0.23 0.848 ± 0.19

S2
Proposed 1 334.22 ± 36.1 23.10 ± 35.5 0.983 ± 0.03 0.132 ± 0.12 0.771 ± 0.09 0.62 ± 0.12

2 146.96 ± 31.0 17.47 ± 35.7 0.193 ± 0.13 0.972 ± 0.04 0.601 ± 0.16 0.774 ± 0.12

DFT 1 332.91 ± 32.2 72.68 ± 37.7 0.833 ± 0.11 0.511 ± 0.19 0.95 ± 0.06 0.25 ± 0.18
2 148.24 ± 29.4 50.71 ± 28.8 0.421 ± 0.19 0.881 ± 0.12 0.362 ± 0.16 0.916 ± 0.07

S3
Proposed 1 15.04 ± 42.4 34.66 ± 43.2 0.899 ± 0.11 0.347 ± 0.25 0.538 ± 0.31 0.75 ± 0.24

2 198.30 ± 26.0 24.81 ± 35.5 0.339 ± 0.21 0.913 ± 0.09 0.822 ± 0.19 0.471 ± 0.27

DFT 1 9.71 ± 39.0 73.81 ± 36.8 0.899 ± 0.13 0.349 ± 0.24 0.794 ± 0.22 0.508 ± 0.27
2 198.94 ± 24.5 81.04 ± 38.3 0.323 ± 0.26 0.892 ± 0.19 0.522 ± 0.22 0.814 ± 0.15

Average
Proposed 1 – – 0.956 ± 0.06 0.204 ± 0.16 0.683 ± 0.17 0.674 ± 0.17

2 – – 0.262 ± 0.17 0.946 ± 0.06 0.661 ± 0.18 0.678 ± 0.19

DFT 1 – – 0.863 ± 0.14 0.425 ± 0.23 0.88 ± 0.13 0.379 ± 0.22
2 – – 0.389 ± 0.22 0.879 ± 0.16 0.443 ± 0.2 0.859 ± 0.14

In Table 3, generally speaking, the detected phases θS(10.9) by the proposed phase estimator are
closer to the ideal phase ‘0◦’ than that of conventional DFT estimator. This result can be explained
as follows: Since the sampling rate Fs = 600 samples/s and the window length equals 4s, it follows
that N = 2400 samples are recorded and thus DFT frequency resolution ∆ f = Fs/N = 0.25 Hz.
Hence, the stimulus frequency f1 = 10.9 Hz can also be written as f1 = 43.6∆ f = (44− 0.4)∆ f ,
i.e., the frequency offset δ equals nonzero value −0.4, indicating that severe spectral leakage causing
large phase measurement error will arise in the DFT spectrum. In contrast to this, for our proposed
phase estimator, due to the property of ‘direct phase extraction’, the phase measurement error caused
by frequency offset is much smaller than that of the conventional DFT case, as Table 3 lists.

Different from the case of θS(10.9), both estimators’ detected phases θS(12) are uniformly close
to the ideal phase 0◦ (or 180◦) (Even both mean and standard deviation are similar). This is because
f2 = 12 Hz = 48∆ f , i.e., the frequency offset δ = 0, resulting in that spectral leakage will not appear
in both conventional DFT spectra and corrected DFT spectra.

Hence, since SSVEP phase extraction in this experiment is based on the phase difference between
θS(10.9) and θS(12) rather than either of them, the conventional DFT phase estimator is more likely
to cause large errors than the proposed phase estimator. From Table 3, one can notice that, for the
conventional DFT phase estimator, the phase differences between θS(10.9) and θS(12) are far away
from 36 deg (see the results in 3-rd, 7-th and 11-th row, respectively). Accordingly, the expected
maximum decision values R1(1) or R2(2) detected by conventional DFT estimator are entirely smaller
than that detected by the proposed estimator, as Table 3 lists. This reflects the fact that the conventional
DFT is not so good as the proposed fully-traversed DFT in extracting the phase information of SSVEP.

To further evaluate the performance of the fully-traversed DFT in this experiment, as previously
mentioned, we assume that there were 4 flickers with stimulus phases 0◦, 180◦, 90◦, 270◦ on screen.
Hence, the gazed-flicker was identified by finding the maximum among R1, R2, R3, R4. Moreover,
the average classification rate for these 4 assumed flickers are also listed in Table 4. In this simulated
4-category experiment, compared to the 2-category case in Table 2, the classification rate of the
fully-traversed DFT decreases but still over 80%. In contrast, the classification rate of conventional
DFT is only about 37%, as Table 4 lists. The underlying reason lies in that conventional DFT cannot
accurately extract the phase information at 10.9 Hz due to spectral leakage, while the proposed phase
corrected DFT still works well for its property of ‘direct phase extraction’.
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Table 4. The classification rate of each subject under different window length (Simulated 4-classes
experiment).

Subject Method Electrode Window Length (sec) Average
3 4 5 6

S1 Proposed POZ 0.80 0.90 0.90 0.84 0.86
DFT PO7 0.67 0.43 0.18 0.18 0.37

S2 Proposed O2 0.92 0.90 0.98 0.90 0.93
DFT P2 0.54 0.28 0.16 0.06 0.26

S3 Proposed P1 0.54 0.58 0.68 0.74 0.64
DFT PZ 0.56 0.62 0.46 0.30 0.49

Average Proposed – 0.75 0.79 0.85 0.83 0.81
DFT – 0.59 0.44 0.27 0.18 0.37

In summary, fully-traversed DFT is well suitable for the phase-coded SSVEP-BCI, especially in
our proposed duel-frequency stimulus-based system which uses phase difference to recognize the
gazed flick. Due to the fact that fully-traversed DFT does well in extracting the phase information
at any frequency offset, the proposed phase estimator can achieve a higher classification rate. More
importantly, as listed in Table 3, we find that the corresponding phase’s standard deviation of
the proposed estimator is smaller than that of conventional DFT estimator, although the frequency
resolution of fully-traversed DFT is less than DFT. The reason is actually mentioned in Section 2, i.e.,
the mechanism that fully-traversed DFT is the average of N DFT sub-spectra (see formula (18)) also
helps to reduce the averaged noise’s power.

Based on our preliminary results, we believe that fully-traversed DFT can be applied in the online
system. Although the simulated 4-category experiment results show that the corresponding average
classification rate is only 80%, the classification rate is surely to be further enhanced once the estimate
of the lag phase difference is more accurate. In this experiment, we only roughly estimate it as 36 deg.
In fact, we can use another two very close frequencies (for example, we can replace LCD stimuli with
LED stimuli) such that the lag phase difference will be close to zero and thus we do not need to estimate
it. Moreover, it was also clearly found that the phase variance of fully-traversed DFT estimator does
not get worse than conventional DFT under our experiment condition.

6. Conclusions

A novel phase estimator based on corrected-phase DFT was proposed in this paper. Due to
considering all possible truncated sequences containing the center sample, spectral leakage in corrected-
phase DFT is greatly reduced and thus the instantaneous phase information of the center sample
can be directly extracted. In addition, we have also proved that the process of corrected-phase DFT
is equivalent to a streamline dataflow, and thus the proposed phase estimator has a relatively low
computational complexity. Furthermore, the phase error variance of the proposed phase estimator
follows a 2-parameterized mathematical model and thus it has a higher accuracy than the conventional
DFT-based phase estimators in noisy circumstances.

We also applied the proposed phase estimators to phase-coded SSVEP-BCIs. In particular,
compared to the conventional DFT-based estimators, our offline experiment results demonstrate
that the fully-traversed DFT does better in extracting the phase information of phase-coded SSVEP-BCI.
Moreover, the proposed phase estimator imposes on restrictions on the relationship between the
sampling rates and the stimulus frequencies (i.e., non-synchronous sampling is allowed), it is of wider
applications in phase-coded SSVEP BCIs than the existing estimators. Our future work is to improve
our system design and apply fully-traversed DFT in the practical SSVEP-BCI online system.
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