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Abstract: Hierarchical porous carbon was successfully synthesized from glucose in a molten salt at
800 ◦C for 2 h. It was amorphous and contained numerous oxygen containing functional groups on
its surface. The porous carbon with 1.0 wt% Fe(NO3)3·9H2O oxidizing agent showed the highest
specific surface area of 1078 m2/g, and the largest pore volume of 0.636 cm3/g, among all of the
samples. Raman and TEM results revealed that it had more defects and pores than other as-prepared
carbon materials. The adsorption capacities of as-prepared porous carbon for methylene blue (MB)
and methyl orange (MO) were 506.8 mg/g and 683.8 mg/g, respectively. The adsorption isotherms fit
the Langmuir model and the adsorption kinetics followed the pseudo-second-order kinetic model.

Keywords: hierarchically porous carbon; molten salt method; Fe(NO3)3·9H2O; dye adsorption

1. Introduction

Dyes have long been used in plastic, paper, leather, textile, and other industrial sectors. Wastewaters
discharged from these industrial sectors often contain a certain amount of dyes, especially water-soluble
organic dyes, due to their low biodegradability [1–3]. The conventional biological treatment processes
fail to effectively treat these dye wastewaters, due to which, several physical or chemical processes,
including osmosis [4], electro flotation [5], chemical oxidation [6], ion exchange [7], and filtration [8],
have been developed in recent years. Unfortunately, these processes are not economically-viable and
are still not sufficiently effective for treating a wide range of dye wastewaters [9]. Physical adsorption
has become the most popular method so far for removing dyes from wastewaters, owing to its low
cost, high efficiency, easy operation, diversity in adsorbents, and high stability towards the adsorbents.

Porous carbon materials have been widely applied for removing dyes and other organic
and inorganic pollutants from drinking water due to their high specific surface area [10–12].
In particular, those with hierarchical porosities (micro-/meso-/macropore) exhibit enhanced dye
adsorption performance. This is because that the hierarchical pore structures can provide various
functions: Micropores provide high surface area and large adsorption capacity, mesopores facilitate
dye transporting, and macropores act as reservoirs for dye molecules.

Several techniques, mainly physical or chemical activation combined with templating, have been
used to synthesize hierarchical porous carbon materials [13–15]. However, they exhibited some
disadvantages, such as high carbonization temperature, multiple steps, low carbon yield, vessel
corrosion, and environmental pollution. Recently, molten salt synthesis methods have become
applicable to the preparation of a wide range of nanomaterials, including binary, ternary/multinary
oxides [16–25], hydroxide [26], non-oxides [27], and porous carbon materials [28–31]. For example,
Liu et al. synthesized porous carbon and carbon sheets in molten LiCl/KCl containing different oxysalts
(such as Fe(NO3)3·9H2O, KClO3, and K2CO3), which facilitated pore formation in the final porous
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carbon [32]. Deng et al. prepared nitrogen-doped hierarchically porous carbon materials with high
specific surface area in molten ZnCl2 [33]. Despite these studies, there have been few studies on the
preparation of porous carbon with high specific surface area by using a combined activator, ZnCl2 and
Fe(NO3)3·9H2O.

In this work, hierarchical porous carbon was synthesized in ZnCl2-KCl molten salt using a
low-cost and eco-friendly glucose carbon source and an Fe(NO3)3·9H2O oxidizing agent. The effects
of additional amounts of Fe(NO3)3·9H2O on the specific surface area of as-prepared samples were
investigated, as were their adsorption capacities for methylene blue (MB) and methyl orange (MO).

2. Materials and Methods

2.1. Raw Materials and Sample Preparation

The main starting materials included: Glucose (C6H12O6·H2O, AR; Bodi chem. Co. Ltd. Tianjin,
China), zinc chloride (ZnCl2, AR; Sinopharm chem. Co. Ltd. Shanghai, China), potassium chloride (KCl,
AR; Sinopharm chem. Co. Ltd. Shanghai, China), commercial ferric nitrate (Fe(NO3)3·9H2O, 99.0%,
Lia Chemical Co., Ltd. Wuhan, China), commercial ferric chloride (FeCl3·6H2O, 99.0%, Lia Chemical
Co., Ltd. Wuhan, China), zinc nitrate (Zn(NO3)2, AR; Sinopharm chem. Co. Ltd. Shanghai, China),
methylene blue trihydrate (C16H18ClN3S·3H2O, Sinopharm chem. Co., Lth. Shanghai, China), and
methyl orange (C14H14N3SO3Na, Sinopharm chem. Co., Lth. Shanghai, China).

In a typical preparation process, 2 g glucose and different amounts of Fe(NO3)3·9H2O (0–2.0 wt%
Fe of carbon amount, the samples are referred to as 0 Fe, 0.5 Fe, 1.0 Fe, 1.5 Fe, and 2.0 Fe, respectively)
were milled together and further combined with 20 g of KCl and ZnCl2 (in the weight ratio of 1:2.
The eutectic point of the binary salt is 234 ◦C.). The mixed powder was contained in an alumina
crucible and heated at 2 ◦C/min to 800 ◦C and soaked for 2 h in an alumina tube furnace protected
by flowing Ar (99.999 vol% pure). The reacted sample was subjected to repeat water-washing before
being oven-dried for 12 h at 80 ◦C.

2.2. Adsorption Test

Adsorption processes were investigated using MB and MO. Typically, 20 mg of as-prepared sample
(porous carbon) powder was added into 50 mL MB aqueous solution with a concentration ranging
from 0 to 500 mg/L. The suspension was then homogenized for 30 min at 25 ◦C using a magnetic stirrer.
After centrifugation, the solution part was examined using a UV-visible spectrophotometer.

To study the adsorption kinetics, 60 mg of as-prepared porous carbon were added to 150 mL
aqueous dye solution (100 mg/L) in a beaker. The suspension was stirred using a magnetic stirrer.
After a certain time period, 5 ml of the solution was taken and centrifuged for UV-vis examination.
The maximum adsorption wavelengths of 665 nm and 464 nm, in the cases of MB and MO, were used
respectively for calculation.

The equilibrium adsorption amount of the porous carbon materials was determined based on the
following equation:

qe =
(c0 − ce)v

m
(1)

where qe (mg/g) is the equilibrium adsorption amount, c0 (mg/L) is the initial concentration of dye
solution, ce (mg/L) is the equilibrium concentration of dye solution, v (L) is the volume of dye solution,
and m (g) is the mass of porous carbon.

2.3. Characterization

Powder X-ray diffraction (XRD) analysis was carried out using a Philips X’Pert PRO diffractometer
(Xpertpro, PHILIPS, Hillsboro, The Netherlands) at 40 mA and 40 kV and with a Cu Kα radiation
(λ = 0.1542 nm). The scan range was between 10◦ and 90◦ (2θ) at 40 mA and 40 kV and the scan rate was
2◦/min with a step size of 0.05◦. Microstructure and phase morphologies of as-prepared samples were
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examined by using a field-emission scanning electron microscope (FE-SEM; Nova400NanoSEM,
15 kV, Philips, Amsterdam, The Netherlands) and a transmission electron microscope (TEM)
JEM-2100UHRSTEM, 200 kV (JEOL, Tokyo, Japan) along with an energy dispersive spectrometer (EDS)
Penta FET X-3 Si (Li) (EDS, IET 200, Oxford, UK). The specific surface area of as-prepared samples
was calculated based on Brunauere Emmette Teller (BET) nitrogen adsorption/desorption analysis
carried out using a gas sorption analyzer Autosorb-1-MP/LP (Quantachrome, Boynton Beach, FL,
USA). Functional groups on the surface of a sample were identified by Fourier Transform Infrared
Spectroscopy (FTIR) VERTEX 70 (Bruker, Karlsruhe, Germany). The adsorption of MB or MO was
examined by Ultraviolet–visible spectroscopy UV-2550 (Shimadzu Corporation, Kyoto, Japan). Raman
spectra were recorded using a Horiba Jobin-Yvon Labram-HR800 Raman spectrometer (Raman, Paris,
France) with an excitation wavelength of 532 nm.

3. Results and Discussion

3.1. Microstructural Characterization of As-Prepared Porous Carbon

Powder X-ray diffraction patterns of samples resultant from 2 h firing in molten salt at 800 ◦C
are shown in Figure 1a, revealing a broad diffraction peak in each case, centered at approximately
26◦ and corresponding to the (002) lattice plane of graphite, and indicating the amorphous nature
of the carbon formed in the samples. Apart from the amorphous carbon, Fe2O3 and Fe3O4 were
identified in the samples using Fe(NO3)3·9H2O, suggesting the decomposition of Fe(NO3)3·9H2O
into Fe2O3 firstly and then some Fe2O3 became Fe3O4 by reductive carbon coming from glucose
upon firing [34,35]. The obtained lattice parameter values for Fe2O3 were, respectively, a = 13.21 Å,
b = 9.78 Å, and c = 8.37 Å, and a = 6.21 Å, b = 5.89 Å and c = 14.77 Å for Fe3O4. Fourier transform
infrared spectroscopy were used to identify functional groups in as-prepared carbons with various
amounts of Fe(NO3)3·9H2O (Figure 1b). The main bands at 1316 and 1617 cm-1 were attributed to
the C=C stretching vibration, and the other two bands at 3470 and 1380 cm-1 corresponded to the
O–H (hydroxyl or carboxyl) stretching vibration and the C–OH stretching vibration, respectively,
and this later verified the existence of aldehyde. The above observations indicated the existence of
oxygen containing functional groups on the carbon formed in as-prepared samples, which favored the
adsorption of the dyes [36].
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Figure 1. (a) Powder X-ray diffraction (XRD) pattern and (b) Fourier transform infrared spectroscopy (FTIR) of 121 
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Figure 1. (a) Powder X-ray diffraction (XRD) pattern and (b) Fourier transform infrared spectroscopy
(FTIR) of as-prepared samples with various amounts of Fe(NO3)3·9H2O. (ICDD: 00-016-0653 (Fe2O3)
and 01-076-0956 (Fe3O4)).
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Scanning electron microscope images of as-prepared carbon samples resulting from 2 h firing at
800 ◦C in the molten salt with various amounts of Fe(NO3)3·9H2O are shown in Figure 2, and reveal the
formation of irregular carbon particles and carbon sheets. With increasing Fe content, the morphology
of the carbon particles changed very little. The carbon particles resulted from the decomposition
of glucose and the nucleation of intermediates and their subsequent growth during carbonization,
whereas the carbon sheets were formed via the merging and growing of carbon particles facilitated by
highly reactive lithium, potassium, and chloride ions in the molten salt medium [37,38].
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Figure 2. Scanning electron microscope (SEM) images of as-prepared samples whose XRD patterns are
shown in Figure 1a. (a) 0 Fe, (b) 0.5 Fe, (c) 1.0 Fe, (d) 1.5 Fe, (e) 2.0 Fe.

N2 adsorption–desorption isotherms of as-prepared carbon samples, along with the derived
pore size distributions are presented in Figure 3. Similar type I isotherms were seen in all cases,
and the adsorption amounts within different relative pressure ranges reflected different pore structures
(micropores (P/P0 between 0−0.1), mesopores (P/P0 between 0.1−0.8), and macroporous (P/P0 between
0.8–1.0) [39,40]. Therefore, the N2 sorption profiles evidently reveal that the as-prepared carbon
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materials possessed a hierarchical micro-/mesoporous structure. From Figure 3a, it can be seen that
the sample with 1.0 wt% Fe showed the maximum adsorption volume, indicating it has the largest
specific surface area. Figure 3b shows the pore size distribution curves derived from the desorption
isotherms using the Barret–Joner–Halenda (BJH) method, which reveal the formation of mainly micro-
and meso-porosities in as-prepared carbon materials. The porosity parameters of as-prepared porous
carbon materials are listed in Table 1. As can be seen from Table 1, the BET specific surface areas of all of
the samples with Fe(NO3)3·9H2O increased compared to the sample without Fe(NO3)3·9H2O, and upon
increasing the amount of Fe(NO3)3·9H2O to 1.0 wt%, the sample showed the highest BET specific
surface area of 1078 m2/g and the highest pore volume of 0.636 cm3/g. Furthermore, the mesoporous
volume percent reached up to 60% with increasing the Fe amount to 1.0–1.5 wt%, which was probably
mainly due to the decomposition of Fe(NO3)3·9H2O during carbonization [41].
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Table 1. Porosity parameters of as-prepared porous carbon prepared with various amounts of Fe.

Sample SBET (m2/g) Vtotal (cm3/g) Vmeso (cm3/g) Vmeso/Vtotal (%)

0 Fe 753 0.453 0.141 31.1
0.5 Fe 817 0.483 0.173 35.8
1.0 Fe 1078 0.636 0.375 59.0
1.5 Fe 903 0.586 0.357 60.9
2.0 Fe 767 0.484 0.183 37.8

Figure 4 presents Raman spectra of porous carbon materials prepared at 800 ◦C for 2 h with
various amounts of Fe. Two main peaks at 1350 and 1590 cm-1 were respectively assigned to the D
band and G band [42]. With the increase of the Fe amount, the value of ID/IG increased initially and
then decreased, demonstrating the existence of many defects in the as-prepared porous carbon.
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Based on the above test results, it can be concluded that addition of 1.0 wt% Fe(NO3)3·9H2O,
resulted in the largest specific surface area. In order to compare and further reveal the effectiveness of
Fe(NO3)3·9H2O, samples using respectively FeCl3·6H2O and Zn(NO3)2 as oxidizing agents were also
prepared under similar processing conditions to those in the case of using 1.0 wt% Fe(NO3)3·9H2O.
Amorphous carbon was also formed in these two cases (Figure S1). For the sample with added
FeCl3·6H2O, one peak at about 36.2◦ appeared, which was corresponded to Fe3O4. As shown in
Figure S2, porous carbons prepared using FeCl3 and Zn(NO3)2 as oxidizing agents were mainly
comprised of carbon particles. Different from the case of using Fe(NO3)3·9H2O, carbon sheets were
only occasionally seen. FTIR identified the existence of some oxygen containing functional groups and
C–H groups on the surface of as-prepared porous carbon (Figure S3). The specific surface areas of the
samples prepared with FeCl3 and Zn(NO3)2 were 534 and 654 m2/g, respectively (Figure S4), which are
even lower than that of the sample prepared without using any oxidizing agents (Table 1), indicating
that neither FeCl3 nor Zn(NO3)2 was useful for increasing the specific surface area. The sample with
Zn(NO3)2 had a higher surface area than in the case of using FeCl3, which was attributed to the
oxidizability of Zn(NO3)2. The samples prepared with Fe(NO3)3·9H2O showed the highest surface
area, since Fe(NO3)3·9H2O can act as an effective oxidizing agent during carbonization [43]. It reacts
with glucose and releases some gaseous phases, such as NOx, CO, and CO2, facilitating the formation
of micro/mesopores [41]. Comparison of the Raman results (Figure S5 and Figure 4) also reveals that
the samples with Fe(NO3)3·9H2O had a higher ID/IG value, suggesting the existence of more defects
in them.

In order to further reveal the porous structures of the as-prepared carbon materials, Figure 5, as an
example, shows TEM images and EDS results of the sample prepared with 1.0 wt% Fe. As seen from
Figure 5a,b, the as-prepared carbon contained a large number of mesopores, which were consistent
with the BET results (Figure 3). EDS of the selected region in Figure 5a indicated that the sample was
mainly composed of C, Fe, and O elements.
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3.2. Adsorption Performance of As-Prepared Porous Carbon for Methylene Blue and Methyl Orange

The adsorption behaviors of porous carbon materials prepared with various amounts of Fe
(Figures 1–5) were also examined using MB and MO as adsorbates, and the adsorption isotherms were
simulated using the Langmuir and Freundlich models expressed as follows:

Langmuir isotherm : qe =
Q0

bce

1 + c
1
n
e

(2)

Freundlich isotherm : qe = kFc
1
n
e (3)

where qe (mg/g) is the equilibrium adsorption amount, Q0 (mg/g) is the maximum adsorption amount,
b (L/mg) is the constant term related to the energy of adsorption, ce (mg/L) is the equilibrium
concentration of dye solution, and kF and n are the Freundlich constants.

The calculated adsorption parameters and correlation coefficients (R2) (Tables 2 and 3) suggest
that the Langmuir model fits the data better than the Freundlich model. The maximum monolayer
adsorption capacity (Q0) of the as-prepared porous carbon (1.0 Fe) for MB and MO were calculated to
be 506.8 and 683.8 mg/g, respectively, which was mainly attributed to the much larger specific surface
area of the hierarchical porous carbon materials and the oxygen containing functional groups existing
on their surfaces. Table 4 compares the adsorption capacity for dyes of hierarchical porous carbon
materials and other adsorbents. The high adsorption capacity of hierarchical porous carbon materials
prepared in this work indicates their feasibility in dye removal.
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Table 2. Kinetics parameters calculated on the basis of Equations (2) and (3) for methylene blue (MB)
adsorption of porous carbon prepared with various amounts of Fe.

Sample Dyes Langmuir Freundlich Pseudo-First-Order Pseudo-Second-Order

Q0 B R2 KF N R2 Qe K1 R2 Qe K2 R2

0 Fe

MB

188.4 0.031 0.83 1.6 1.15 0.91 124.8 0.50 0.995 142.9 0.016 0.999
0.5 Fe 412 0.012 0.94 1.5 1.01 0.95 240 0.59 0.992 250 0.012 0.999
1.0 Fe 506.8 0.009 0.96 1.4 0.99 0.96 274.7 0.59 0.995 333.3 0.009 0.998
1.5 Fe 442.5 0.011 0.95 1.4 1.0 0.95 260.9 0.41 0.993 277.8 0.005 0.999
2.0 Fe 194 0.029 0.84 1.6 1.2 0.91 127 0.50 0.996 142.9 0.012 0.998

Table 3. Kinetics parameters calculated on the basis of Equations (2) and (3) for methyl orange (MO)
adsorption of porous carbon prepared with various amounts of Fe.

Sample Dyes Langmuir Freundlich Pseudo-First-Order Pseudo-Second-Order

Q0 B R2 KF N R2 Qe K1 R2 Qe K2 R2

0 Fe

MO

249.5 0.020 0.95 1.7 1.16 0.91 161.5 0.58 0.998 166.7 0.016 0.999
0.5 Fe 559 0.008 0.98 1.5 1.02 0.95 311.9 0.50 0.995 333.3 0.005 0.999
1.0 Fe 683.8 0.007 0.96 1.1 0.99 0.94 370.7 0.60 0.995 379 0.007 0.998
1.5 Fe 521 0.007 0.96 1.4 1.0 0.95 334.1 0.56 0.993 344.8 0.006 0.999
2.0 Fe 254 0.020 0.98 1.8 1.2 0.90 166.8 0.51 0.996 172.4 0.013 0.999

Table 4. Comparison of dye adsorption capacity of hierarchical porous carbon prepared in this work
and other adsorbents reported in the literature.

Adsorbent Dyes T (◦C) BET (m2/g) Qm (mg/g) Reference

Mesoporous
activated carbon MB 30 1135 359 [44]

Activated carbon MB 30~50 1940 434.78 [45]
Activated carbon MB 30~50 1060 102.04 [3]
Activated carbon MG 25~50 1000 149 [46]

Porous carbon RB - 2721 479 [47]
Hierarchical porous carbon materials MB/DB 25 1913 1585.7/438.6 [48]
Hierarchical porous carbon materials MO 25 1338.9 598.8 [49]
Hierarchical porous carbon materials MB/MO 25 1078 506.8/683.8 This work

BET: Brunauere Emmette Teller, RB: Rhodamine B, DB: Direct black 38, MG: Malachite green.

The following pseudo-first-order and pseudo-second-order kinetic models [1] were also used to
assist understanding the relevant adsorption mechanism:

Pseudo-first-order model : qt = qe(1− e−k1t) (4)

Pseudo-second-order model :
t
qt

=
1
κ2q2

e
+

t
qe

(5)

where qt (mg/g) is the adsorption amount at time t, k1 and k2 (g·mg−1
·min−1) are respectively the

pseudo-first-order and pseudo-second-order rate constants.
As indicated by the results listed in Tables 2 and 3, the pseudo-second-order model shows a good

linearity, with correlation coefficients (R2) ≥ 0.99, suggesting that the adsorption kinetics of as-prepared
porous carbon follow this model (Figure 6).
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Figure 6. Adsorption isotherms and kinetics of porous carbon prepared at 800 ◦C for 2 h with various
amounts of Fe. (a) Adsorption isotherms of MB, (b) adsorption kinetics of MB, (c) adsorption isotherms
of MO, (d) adsorption kinetics of MO.

4. Conclusions

A simple molten salt method was used to synthesize hierarchical porous carbon at 800 ◦C for
2 h. Glucose and ZnCl2-KCl were used as the carbon source and reaction medium, respectively.
Numerous oxygen containing functional groups existed on the surface of the as-prepared porous
carbon. The porous carbon prepared with 1.0 wt% Fe(NO3)3·9H2O addition showed the highest
specific surface area of 1078 m2/g and the largest pore volume of 0.636 cm3/g, which were attributed
to Fe(NO3)3·9H2O acting as an oxidizing agent during carbonization, favoring the formation of
micro/mesopores. The adsorption capacities of as-prepared hierarchical porous carbon for methylene
blue and methyl orange were respectively 506.8 mg/g and 683.8 mg/g. The adsorption isotherms fit the
Langmuir model and the adsorption kinetics followed the pseudo-second-order kinetic model.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/8/1098/s1,
Figure S1: XRD pattern of porous carbon prepared at 800 ◦C for 2 h using respectively FeCl3·6H2O and Zn(NO3)2
as oxidizing agents, Figure S2: SEM images of porous carbon prepared at 800 ◦C for 2 h using respectively 1.0 wt%
FeCl3·6H2O and Zn(NO3)2 as oxidizing agents, Figure S3: FTIR spectra of porous carbon prepared at 800 ◦C for 2
h using respectively 1.0 wt% FeCl3·6H2O and Zn(NO3)2 as oxidizing agents, Figure S4: N2 adsorption-desorption
isotherms (a) and pore size distribution curves (b) of porous carbon prepared at 800 ◦C for 2 h with various
amounts of Fe, Figure S5: Raman spectra of porous carbon prepared at 800 ◦C for 2 h using respectively 1.0 wt%
FeCl3·6H2O and Zn(NO3)2 as oxidizing agents.
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