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a b s t r a c t

Influenza is a persistent threat to human health and there is a continuing requirement for updating anti-
influenza strategies. Initiated by observations of different endoplasmic reticulum (ER) responses of host
to seasonal H1N1 and highly pathogenic avian influenza (HPAI) A H5N1 infections, we identified an alter-
native antiviral role of tauroursodeoxycholic acid (TUDCA), a clinically available ER stress inhibitor, both
in vitro and in vivo. Rather than modulating ER stress in host cells, TUDCA abolished the proton conduc-
tivity of viral M2 by disrupting its oligomeric states, which induces inefficient viral infection. We also
showed that M2 penetrated cells, whose intracellular uptake depended on its proton channel activity,
an effect observed in both TUDCA and M2 inhibitor amantadine. The identification and application of
TUDCA as an inhibitor of M2 proton channel will expand our understanding of IAV biology and comple-
ment current anti-IAV arsenals.

� 2018 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction of the M2 ion channel occurs in early endosomes, which facilitates
As major human pathogens, influenza A viruses (IAV) continu-
ously induce annual outbreaks and irregular epidemics [1]. The
highly pathogenic avian influenza (HPAI) A H5N1 is one plausible
candidate that can cause deadly flu outbreak [2]. Though the basis
for the incremental virulence of H5N1 is largely unclear, clinical
data suggest high viral load and the resulting cytokine storm are
primary instigating factors [3]. Therefore, identifying therapies
that target viral elements involved in different steps of IAV life
cycle remains a public health priority [3].

Life cycle of enveloped IAV initiates from receptor-mediated
endocytosis, inhibition of which presents an ideal approach to
restrict IAV replication and spread [4]. Dynamic entry of IAV starts
from binding of haemagglutinin (HA) with sialic acid [5], followed
by two pH-controlled events. The optimal acid milieu in late endo-
somes triggers conformational alterations of HA, which fuses IAV
with host endosomal membrane. Prior to fusion, acidic activation
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IAV uncoating [6]. Thus, inhibiting HA or M2 constitutes the pri-
mary mechanisms to suppress IAV entry. Though M2 inhibitors,
amantadine and rimantadine, can block IAV entry, the emergence
of adamantane-resistant M2 and associated adverse effects temper
their clinical application [7].

M2 is a homo-tetramer, and each monomer consists of 97
amino acids, including an ectodomain, a transmembrane (TM)
region and a cytosolic tail containing an amphipathic a-helix
(AH) [8]. M2 proton conduction may involve interactions between
protonated His37 and Trp41 of TM at an acidic pH, which is
responsible for adamantane-based sensitivity [9]. M2 oligomeriza-
tion, based on assessment of either tetramerization of M2 TM pep-
tides or dimerization of full-length M2, was particularly necessary
for its entire channel function [8–11]. TM of M2 was sufficient to
form tetrameric M2 [12], which was unstable unless AH is present
[9,10,13]. Though M2 structural conformation and function
remains unclear [10,14–17], deforming oligomeric M2 will pave
the way for the development of anti-IAV drugs.

Bile acids (BA) are amphipathic molecules composed of a
hydrophobic backbone and hydrophilic hydroxyl groups [18]. BA
are usually conjugated with taurine to increase hydrophilicity. BA-
based medications have evolved from hydrophobic chenodeoxy-
cholic acid (CDCA) and its taurine-conjugate TCDCA to more
ess. All rights reserved.
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hydrophilic ursodeoxycholic acid (UDCA) and its taurine-conjugate
TUDCA. Both later strategies are current FDA-approved treatments
forhuman liverdisorders [19]. SinceBA reduces intracellular protein
aggregates as chaperone 4-phenylbutyrate (4-PBA) does, UDCA and
TUDCA are considered as chemical chaperones [20]. Recently,
TUDCA is implicated as a therapy for hepatitis B virus infection
[21]. TUDCA also inhibits IAV replication [22] by suppressing the
inositol-requiring enzyme 1 (IRE1) branch of the unfolded protein
response (UPR) [22,23], a conserved molecular network orchestrat-
ing ER pathology.

In our current study, we observed distinct ER responses to sea-
sonal H1N1 and highly pathogenic H5N1 infections in lung epithe-
lium. Though lack of typical UPR signaling, the ER stress inhibitor
TUDCA is sufficient to prevent H5N1-induced lung injuries in an
UPR independent manner. Our results show that disrupting the
M2 proton channel may account for TUDCA inhibition of IAV
infection.
2. Materials and methods

2.1. Cell lines

Human lung adenocarcinoma (A549) cell lines were obtained
from ATCC. Madin-Darby canine kidney (MDCK) and human
embryonic kidney (HEK293T) cells were purchased from Cell
Resource Centre of Peking Union Medical College (Beijing, China).
Details are given in Supplemental Experimental Procedures.
2.2. Influenza viruses, virus propagation and animal infection

Avian influenza virus A/Jilin/9/2004 (H5N1) and seasonal influ-
enza virus A/New Caledonia/20/1999 (H1N1) used in this study
were obtained by inoculating stock virus into 10-day old specific-
pathogen-free (SPF) embryonated chicken eggs and harvested from
allantoic fluid (AF) of eggs. For animal infection, SPF-housed
C57BL/6J mice (4-week old, male, 16–18 g) from Vital River
(Beijing, China) were used and infected. Lung injury was induced
by intratracheal injection of live H5N1 IAV at a titre of
1 � 106 TCID50-1.6 � 106 TCID50 or identical volume of AF (vehicle
control). Body weight and survival rate were recorded every day
after intratracheally challenged with either AF or H5N1 IAV.
TUDCA at 150 mg/kg was intratracheally administrated to mice
24 and 6 h before IAV exposure or 6 and 24 h after IAV injection
to determine prophylactic and therapeutic effects, respectively.
Dose of TUDCA for in vivo tests was chosen from previous studies
[20]. Histological assessment of mouse lung tissue and measure-
ment of mouse lung wet/dry ratio were performed 4 days post
infection. Lung injury scores were fulfilled as described [24].
Details are given in Supplemental Experimental Procedures. All
applicable institutional and/or national guidelines for the care
and use of animals were followed.
2.3. Experiments with iVLP

IVLPs were obtained by transfection of HEK293T cells with plas-
mids encoding IAV elements. IVLP-based M2 proton channel activ-
ity was measured by modifying previously published protocols
[25]. Details are given in Supplemental Experimental Procedures.
2.4. Flow cytometry and immuno-blotting

Quantification of intracellular iVLP was determined by Accuri
C6 Flow Cytometer (Becton Dickinson, BD, Franklin Lakes, NJ,
USA) and analyzed using FlowJo software (TreeStar, Ashland, OR,
USA). Corresponding antibodies and details are in Supplemental
Experimental Procedures.

2.5. Experiments with microscope

Confocal images, including those with acid bypass tests, were
acquired using an Olympus FV1000 confocal microscope (FV-
1000, Olympus, Tokyo, Japan). Quantification of signals was per-
formed with Olympus Fluoview 3.0 (Olympus). Negative staining
of iVLP and observation of infected A549 cells were performedwith
transmission electron microscope (JEM 1230, JEOL, Tokyo, Japan).
Details are given in Supplemental Experimental Procedures.

2.6. Statistics

All data shown are mean ± SEM, analyzed according to at least 3
independent experiments. Two-group comparison was analyzed
by student’s t-test, and statistical tests of multiple groups were
performed by ANOVA followed by Turkey post-test with IBM SPSS
19.0 or GraphPad Prism 5.0 (San Diego, CA, USA). P < 0.05 was con-
sidered as statistically significant.
3. Results

3.1. Different ER responses to seasonal H1N1 and highly pathogenic
H5N1 infection

Previous studies showed that TUDCA constrained seasonal
PR/8/34 H1N1 IAV-induced UPR in lung epithelium [22]. We con-
sistently observed increased IRE-1a and Bip signals of UPR in
A549 cells after infection with seasonal New Caledonia/20/1999
H1N1 IAV (Fig. S1a online). UPR activation occurred in parallel with
hyperplasia of smooth ER, which became striking 24 h post infec-
tion (Fig. 1a). However, UPR responsive pathways were absent in
HPAI A H5N1-challenged host (Fig. S1b online), including IRE-1a
branch (Fig. S1a online). Though lack of typical UPR signatures, a
remarkable ER swelling was detectable 1 h after H5N1 infection
(Fig. 1a). This result confirmed ER involvement in IAV life cycle
and further suggested different ER responses to seasonal and
highly pathogenic IAV infection. In contrast to previous reports
where UPR activation mediates pandemic IAV-induced acute lung
injuries (ALI) [23], the absence of UPR in highly pathogenic
H5N1-infected cells in our study suggests alternative underlying
mechanisms. In light of severe ER swelling induced 1 h after
H5N1 infection, we explored the potentiality of clinically available
ER stress inhibitors, TUDCA and 4-PBA, as anti-H5N1 strategies.

3.2. TUDCA protects the host against H5N1 IAV infection independent
of UPR

To investigate anti-H5N1 actions of ER chaperones, we first
tested the effects of TUDCA in H5N1-infected cells. When added
12 h before and during infection, TUDCA restored A549 cell viabil-
ity from 41.6% to 82.5% 48 h after H5N1 exposure (Fig. 1b) with a
nearly undetectable viral load (Fig. 1c). Notably, the anti-H5N1
effect of TUDCA was only achieved at relatively high doses, which
were much greater than those used to relieve ER stress [22,23]. In
view of good tolerance and apparent benefits of high dose TUDCA
against lethal IAV infection (Fig. S1c, d online), we utilized 3 mmol/
L in our in vitro studies. Due to lack of UPR, TUDCA did not impact
UPR markers in H5N1-exposed cells, though H1N1-infected cells
could possess a tight association of TUDCA with IRE-1a (Fig. S1a,
b online), as shown previously [22]. In contrast, 4-PBA failed to res-
cue H5N1-induced cell death (Fig. S1e, f online), which supports an
UPR-independent antiviral action of TUDCA. Moreover, protection
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Fig. 1. Different ER morphologies after IAV infection and effects of TUDCA. (a) TEM data from A549 cells 1 and 24 h after H1N1 or H5N1 IAV infection compared to non-
infected (0 h). (b) A549 cell viability measured 48 h after H5N1 IAV infection compared with non-infected AF controls in the absence (PBS) or presence of TUDCA. (c) Virus
titre measured in MDCK cells to evaluate viral load (b) 12 h post infection. (d) Prophylactic and therapeutic efficacy of TUDCA in H5N1-infected A549 cells. Prophylactically,
TUDCA was added 6 or 3 h prior to and concomitant with H5N1 exposure. Therapeutically, TUDCA was given 1, 2 or 3 h after H5N1 infection. *, P � 0.05 and **, P � 0.01.
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of the host against H5N1 infection was unsuccessful when TUDCA
was added 3 h post H5N1 challenge compared to prophylactic
interventions (�6 and �3 h) or therapeutic treatments within 2 h
after infection (Fig. 1d). As 2–3 h is the critical time point corre-
sponding to the end of HA fusion and the start of viral genome
transportation [26], our results suggest IAV entry as a target of
TUDCA.
3.3. TUDCA targets IAV entry

To examine the anti-entry role of TUDCA, we quantified inter-
nalized H5N1 IAV 1 and 3 h post infection (Fig. 2a, S2a). In infected
cells, NP positive staining was 1.5% and 16.7% of the total cell area
after 1 and 3 h of H5N1 infection, respectively. TUDCA reduced
about 90% NP signals at both 1 and 3 h post infection. Of note,
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blockage of IAV entry by TUDCA was not exclusive to H5N1, as we
found a similar 90% suppression of IAV entry in cells infected with
H1N1 (Figs. 2b and S2b (online)). Altogether, these results provide
evidence that TUDCA inhibits IAV entry.

3.4. TUDCA interferes with IAV

Mechanisms of IAV entry reflect the interplay between IAV and
host endocytic machineries. To clarify in which step TUDCA plays a
role, we permuted TUDCA treatment into four tactics based on
when TUDCA is administered to the host, namely either before or
concomitant with IAV infection (Figs. 2c and S2c (online)).
Intriguingly, even when cells were not pre-exposed, as long as
TUDCA was applied during IAV infection (�/+), TUDCA inhibition
of IAV entry was comparable to the condition where TUDCA was
added both before and during infection (+/+). Meanwhile, presence
of TUDCA during infection (�/+ and +/+) was critical, as removal of
TUDCA during infection even after a 12 h pre-treatment of the host
(+/�) failed to prevent viral infection, an effect similar to non-
TUDCA-treated cells (�/�). This result suggests that the anti-IAV
effects of TUDCA unlikely rely on priming host cells. We further
verified this point by testing dynamics of host cell endocytosis
using virus-free, fluorescence-labeled dextran (Fig. 2d). Our results
showed no inhibition of dextran uptake by TUDCA at both 20 and
60 min after dextran loading, indicating that TUDCA does not affect
host endocytosis. In addition, TUDCA as a bile acid may sequester
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cholesterol from the cellular membrane, leading to attenuated viral
entry [27]. Here, we found no decrease of internalized H5N1 when
cells were pre-incubated with cholesterol-depleting methyl-b-
cyclodextrin (MbCD, Figs. 2e and S2d (online)), consistent with
H1N1-infected cells [28]. Altogether, these data indicate TUDCA
may target IAV instead of the host.

3.5. TUDCA disrupts M2

As HA mediates both receptor-binding and acid-controlled
fusion during IAV entry, we tested the effects of TUDCA on HA
using the acid bypass assay [6]. Briefly, acid bypass mimics the
acidic environment of late endosomes in the extracellular com-
partment, which deceives the viral HA expose fusion-peptide with-
out allocation in late endosomes. In response to acid, the pre-
attached IAV should immediately fuse with the plasma membrane.
As shown in Fig. 3a, inhibition of TUDCA on IAV internalization was
completely abolished when acid bypass was applied, suggesting
that TUDCA does not interfere with receptor-binding and fusion
of HA.

To gain deeper insight into other individual elements of the IAV
envelope, we utilized the influenza virus-like particles (iVLPs).
Since M1 is essential for efficient iVLPs assembly, we created iVLPs
containing HA, NA and M1 (iVLPhnm1), M1 and M2 (iVLPm1–2) or
HA, NA, M1 and M2 (iVLP4, Fig. S3a, b online). We then determined
entry of iVLPs in A549 cells (Figs. 3b and S3c–e (online)). Our
results showed that TUDCA had minor effects on iVLPhnm1 uptake.
However, TUDCA interrupted the internalization iVLPm1–2, even
in the absence of fusion protein HA (Fig. 3b).

To gain insight into the mechanism by which TUDCA suppresses
iVLPm1–2 cell-penetration, we tested whether iVLPm1–2 was
internalized via an endocytic pathway. By employing bafilomycin
A1 and chloroquine (CQ), we observed elevated iVLPm1–2 signals
in A549 cells (Fig. S3e online). This pattern indicates a deficiency
in degrading engulfed iVLPm1–2, suggesting endocytosis as a
mechanism for iVLPm1–2 entry into cells.

To clarify which components of iVLPm1–2 determine its cell-
penetration, we utilized mammalian-cell derived M1 or M2 protein
to treat A549 cells. In cell-based experiments, we did not detect
any endocytosed M1 in A549 cells; however, M2 from both
H5N1 and H1N1 IAV could be clearly detected, which was attenu-
ated by TUDCA (Figs. 3b and S3h (online)). Together with inhibition
of iVLPm1–2 uptake by M2 inhibitor amantadine (Fig. 3b), it is
likely that entry of iVLPm1–2 is M2-dependent.

Moreover, co-incubating TUDCA with iVLPm1–2 revealed that
M2 dimer and tetramer, especially tetramer, were lost when
TUDCA was present, while HA, NA and M1 remained unaltered in
all three iVLPs we created (Fig. 3c). We verified bands of M2 oligo-
mers by M2 specific antibody (Fig. S3i online) and confirmed dis-
ruption of M2 oligomers by TUDCA through co-incubating
TUDCA with either authentic H5N1 IAV (Fig. 3d) or corresponding
iVLPm1–2 from A/Jilin/9/2004 strain (Fig. S3j online). Our results
showed that TUDCA impaired M2 tetramer of both H5N1 IAV
and iVLPm1–2 without an obvious impact on HA and M1 of
authentic H5N1 IAV. Collectively, these data provide critical
evidence that the effects of TUDCA are associated with M2.

Since the oligomeric stage of M2 may affect its channel activity
[10], we then examined the proton conductivity of M2. Challenging
iVLPm1–2 (Fig. 3e) or iVLP incorporated with Gag and M2
(iVLPgm2) [25] (Fig. S3k online) with acidic buffer resulted in
membrane depolarization, an indication of M2 activation. In
response to TUDCA injection, acid-stimulated proton translocation
was largely abolished (Figs. 3e and S3k (online)), indicating M2
function requires oligomerization. However, amantadine or
rimantadine treatment augmented tetrameric M2 (Fig. S3l online),
suggesting a dissimilar mechanism of action of TUDCA.
Furthermore, using TEM we observed that iVLPm1–2 formed a
liposome-like structure, which was distinctive from M1 and M2
protein alone. Consistent with endocytosis, M2 protein and
iVLPm1–2, but not M1 protein, were dramatically disrupted after
TUDCA addition (Fig. 3f), which was further confirmed by atomic
forced microscopy (AFM, Fig. S3g online).
3.6. TUDCA ameliorates H5N1-induced ALI in vivo

Finally, we assessed whether TUDCA was a potential anti-IAV
therapy. We tested the effect of TUDCA as both a prophylactic
and a therapeutic approach. We administered prophylactic TUDCA
or saline intraperitoneally in mice both 24 and 6 h before intratra-
cheal challenge with H5N1 IAV. Similar to our in vitro data, TUDCA
increased the survival rate of mice without detectable side effects
(Fig. 4a). Reduced body weight in infected mice improved in
TUDCA-treated subjects (Fig. 4b). Lung injury scores based on
H&E staining (Fig. 4c) indicated a 50% reduction of lung impair-
ment in TUDCA-treated mice (Fig. 4d), and pulmonary edema in
infected mice dramatically recovered in TUDCA-treated groups
(Fig. 4e). These results indicate that TUDCA is a highly effective
prophylactic treatment against IAV-induced disease. Conversely,
when TUDCA treatment began 6 and 24 h after H5N1 exposure,
both survival rate and body weight in the TUDCA-treated group
was indistinguishable from the non-treated group (Fig. S4a, b
online). These in vivo observations confirm TUDCA targets inter-
nalization rather than replication of IAV.
4. Discussion and conclusion

The role of ER during IAV infection is well-documented [22,23],
and the activation of UPR is not a unique feature of ER in IAV-
infected cells [23]. Though mechanisms by which IAV induce ER
stress have been attributed to accumulated IAV proteins in the
ER lumen during IAV replication [22], changes of ER morphology
1 h post H5N1 exposure are indicative of other interactions
between ER and IAV. Besides assembling and folding newly synthe-
sized proteins, ER as intracellular bank of Ca2+ also regulates
cytosolic Ca2+. Indeed, IAV infection induced cytosolic Ca2+ oscilla-
tions in host cells, which was required for efficient IAV internaliza-
tion [29]. Yet, details behind ER pathophysiology during IAV entry
remain mostly unclear, it opens interesting questions – whether
UPR activation induces detrimental or beneficial host responses
following IAV infection and whether typical ER signals serve as
indicators of viral virulence.

In the current study, we generated a series of iVLPs, among
which iVLPm1–2 was of unexpected. First, it forms a liposome-
like structure with measurable M2 proton channel activity. Second,
iVLPm1–2 can penetrate freely into cells, probably through endo-
cytic pathways. Third, the penetrating potential of iVLPm1–2
may rely on M2, which is likely endowed with a cell-penetrating
competence. From the first identification of proteins that can move
across cellular membranes, a group of proteins with similar fea-
tures was classified as cell-penetrating peptides (CPPs) [30]. One
class of CPPs was identified comprising a high degree of amphi-
pathicity, where AH is the most common structural motif [31]. In
AH, hydrophilic and hydrophobic amino acids are usually grouped
on separate faces of helix, with a highly hydrophobic patch on one
face and a cationic patch on the other face. Penetration of CPPs con-
taining AH is mainly due to the amphipathicity of AH [32]. Regard-
ing M2, the existence of AH in C-terminus has been reported by
several groups [15,16,33] and its putative function involves viral
budding and scission [33,34]. When expressed in host cells, AHs
of M2, which are arranged parallel to membrane, partially pene-
trate themselves through its hydrophobic face mediating mem-
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non-activated fluorescence of each trace and shown as percentage of basal levels. **, P � 0.01, acid stimulation vs. non-acid-stimulated; ##, P � 0.01, TUDCA vs. non-TUDCA-
treated. (f) TEM observations of M1, M2 and iVLPm1–2 in the absence (Control) or presence of TUDCA.
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brane deformation [35]. In this regard, it is plausible that AH of M2
utilizes a similar mechanism triggering IAV entry by inducing
membrane curvature. However, due to being interior of IAV, it is
more likely that AH of M2 reinforces the contact between the viral
envelope and host membrane by a protruding viral envelope. The
implication of M2 as CPP is by far not fully defined and additional
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Fig. 4. In vivo anti-H5N1 effects of TUDCA. (a) Survival rate and (b) body weight of experimental mice after intratracheal instillation of vehicle control (AF) or H5N1 IAV with
or without intraperitoneal injection of TUDCA (150 mg/kg) 6 and 24 h before infection. **, P � 0.01 vs. AF + PBS; ##, P � 0.01 vs. H5N1 + PBS. (c, d) H&E staining of mouse lung
tissue (c) and corresponding lung injury score (d). (e) Pulmonary edema evaluated as wet/dry ratio. **, P � 0.01.
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work will be required to understand whether the CPP property of
M2 is the nature of IAV entry.

Besides cell-penetration, AH that is positively charged could be
attracted by negatively charged BA. BA are facial amphiphiles,
adopting an almost flat conformation with a rigid steroidal back-
bone in parallel with the interface, which allows contact of hydro-
xyl groups with the aqueous environment [36]. Typically,
conjugated head groups of BAs are able to capture cationic species
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[37]. Our TEM and AFM data (Figs. 3f and S3f, g (online)) suggest
that TUDCA may form a complex with M2, which inherited the flat
conformation of BA. This complex may be composed of a
hydrophobic interface of BA in parallel with a hydrophilic contact
via electrostatic forces between positively charged M2 AH and
negatively charged TUDCA. Thus, TUDCA reorganization of the
M2 protein deforms the liposomal construct of iVLPm1–2, shown
as strings of membranous debris. As binding features of BA usually
appear above millimolar concentrations [37], this may explain the
high doses of TUDCA required in this study.

Taken together, we identified an alternative antiviral role of
TUDCA. Rather than modulating the UPR of host cells, disrupting
viral proton channel M2may mediate the anti-IAV effect of TUDCA.
Application of this class of inhibitors will unravel previously
unidentified but important mechanisms to expand our under-
standing of IAV biology. As TUDCA is a clinically available medica-
tion for liver disorders and currently under clinical evaluation for
metabolic syndromes, its antiviral potential to repurpose an exist-
ing pharmacological treatment may complement the current anti-
IAV arsenal.
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