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Abstract

The study of ecological and behavioral processes has been revolutionized in the last two decades with the rapid
development of biologging-science. Recently, using image-capturing devices, some pilot studies demonstrated the
potential of understanding marine vertebrate movement patterns in relation to their proximate, as opposed to remote
sensed environmental contexts. Here, using miniaturized video cameras and GPS tracking recorders simultaneously, we
show for the first time that information on the immediate visual surroundings of a foraging seabird, the Cape gannet, is
fundamental in understanding the origins of its movement patterns. We found that movement patterns were related to
specific stimuli which were mostly other predators such as gannets, dolphins or fishing boats. Contrary to a widely accepted
idea, our data suggest that foraging seabirds are not directly looking for prey. Instead, they search for indicators of the
presence of prey, the latter being targeted at the very last moment and at a very small scale. We demonstrate that
movement patterns of foraging seabirds can be heavily driven by processes unobservable with conventional methodology.
Except perhaps for large scale processes, local-enhancement seems to be the only ruling mechanism; this has profounds
implications for ecosystem-based management of marine areas.
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Introduction

Movement ecology [1] has gained impetus in recent years [2],

largely as a result of advances in tracking and analytical

methodologies. However, our inability to observe an animal’s

proximate environment at a spatio-temporal scale that approaches

the animal’s perceptive ability has been a fundamental limitation

in the field of movement ecology. This ‘‘perceptual sphere’’ has

remained a ‘‘black box’’, preventing us from accurately linking

behavioral processes to observed movement patterns [2]. Conse-

quently, the processes underlying movement patterns are largely

unknown and speculative so that the interpretation of distribu-

tional data is usually based on assumptions that are not robust.

In recent years, the advent of animal-borne image-capturing

devices has provided an opportunity to observe what happens

within the visual field of an animal [3]. A number of pilot studies

revealed interesting behavioral aspects of foraging animals such as

intra or inter species interactions [4–6], foraging substrate

selection [7] and the use of tools [8], but none has linked video

observations with high resolution movement records (but see [9]

for an example with 1 minute time-lapse photography). In the

absence of real observations, animals are often assumed to move in

relation to a number of suspected important parameters, such as

prey distribution or other environmental conditions.

The Cape gannet (Morus capensis) makes a useful model to

explore the importance of external stimuli in governing foraging

behaviour in seabirds. These birds congregate in large numbers

during the breeding season at six islands along the southern

African coast, where they are readily accessible for deployment of

instrumentation. They primarily feed on spatially dynamic

shoaling epipelagic fish species such as sardines (Sardinops sagax)

and anchovy (Engraulis encrasicolus) [10,11] and we have a poor

understanding on how these food resources are located. Cape

gannets do form foraging flocks at sea, involving other seabirds

and marine mammals [12]. In order to form these associations,

Cape gannets must move in relation to these other predators after

they have encountered prey. Similarly, northern gannets affect

their route with respect to the presence of fishing boats [9]. Hence,

we hypothesized that movement patterns should change with

respect to the various sources of information (i.e. cues or stimuli)

available to the foragers (such as dolphins, boats, seabirds...).

Further, these cues being different in number, displacement speed,

distribution and visibility, we suggest that movement patterns must

carry characteristics specifics to the cues.
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In the present study, we used data recorded with miniaturized

video-cameras and GPS recorders fitted to breeding Cape gannets

in order to understand which stimuli might drive their movement

patterns while foraging and how movement patterns relates to

external stimuli.

Materials and Methods

This study was carried out in strict accordance with the

recommendations from the South-African National Parks –

SANParks. Procedures used in this study are standards and non-

invasives. Steps taken to ameliorate animal suffering include 1)

Light equipment 2) Attachment of equipment on plumage using

removable tape 3) Only one individual of the pair was used for

study to limit impact on chicks 4) Short deployment period (only

one trip at sea recorded, 1-2 days). The protocols have been

specifically approved by the SANParks Animal Use and Care

Committee (AUCC), and access to the island was permitted by

SANParks.

Fieldwork took place at Bird Island (33u 50’ 26.6’’ S, 26u 17’

14.5’’ E), Algoa Bay, South Africa, between the 7th and 28th of

December 2010. We fitted 36 chick-rearing Cape gannets with a

micro-video-camera (Camsports nano, CamsportsTM, Estrablin,

France) and a GPS (i-GotU GT-600, Mobile-Action-Technology

Inc., Taipei, Taiwan) in order to record fine-scale foraging

behavior of this threatened species. The video camera (68 mm

length, 19 mm diameter, 22 grams) provided us with 7366480

pixels images at 25 frames per seconds (fps) with a 74u lens angle,

for about 1.5 hours. The GPS units were reconditioned from their

original packages and cast in epoxy resin for shock and water

resistance. They measured 43640612 mm and weighed 36 g

after modification and were set to record GPS location every 5

seconds allowing for the full foraging trip to be recorded. The two

loggers were consolidated as a single unit using a custom-made

thin Kevlar strip (,2 g) which was attached to the lower dorsal

feathers with adhesive tape (TesaTM, Hamburg, Germany). The

whole package weighed 70–75 g, corresponding to ,2–3% of the

birds’ body mass. The units were recovered after a single foraging

trip. The information from the video records was extracted and

merged with positional following [13].

In order to relate a particular movement pattern with a given

foraging context, we first determined the foraging context for each

observed dive. Three foraging contexts were observed: a dive was

considered ‘‘with dolphins’’, ‘‘with fishing boat’’ or ‘‘with other

gannets’’ if it occurred within 5 min of the respective observations

on the video. Second, because most of the descriptors of

movement such as speed or sinuosity are dependent on the scale

at which they are measured, and because marine foragers operate

at several embedded scales [14], we measured movement metrics

at three distinct scales. As there is no consensus on how should the

scale be measured (i.e. distance, area, circle radius etc.?) [15] we

used segments of the track, the length of which defines the scale.

Centered on each dive, we selected a segment that measured two,

six and twelve kilometers in total length. These three scales were

chosen empirically based on careful observations of the tracks.

Segments of two kilometers typically encompass localized foraging

patterns at the diving site, such as a succession of loops. Segments

of six kilometers encompass medium scale movements that could

be described as ‘‘hopping between potential diving sites’’.

Segments of 12 km are long enough to describe relocations from

a foraging area to another one. It is important to note that these

values are adapted to our dataset and cannot be generalized. In

order to test the sensitivity of these values on the final results, we

replicated the analysis using some variations in these numbers (1,5,

10 km, and 2,8, 20 km). The results were virtually the same (data

not shown). In each segment, we measured the average speed, the

standard deviation of the speed, the sinuosity (total traveled

distance/straight distance between the beginning and the end of

the segment), and the fractal dimension, as an index of space-

coverage index, following [15].

We used a decision tree as a classification procedure in order to

relate movement descriptors (response data) with foraging context

(nominal predictor data). We used a bagging procedure [16] with

200 iterations in order to better estimate the classification errors.

The process consists in generating 200 trees based on a random

subset of the data (the bag). The out-of bag data were then used to

estimate the out-of-bag error, a reliable estimate of the ensemble

error [16].

The wind data were derived from the Cross-Calibrated Multi-

Platform Ocean Surface Wind Vector L3.0 First-Look Analyses:

http://podaac.jpl.nasa.gov/dataset/CCMP_MEASURES_

ATLAS_L4_OW_L3_0_WIND_VECTORS_FLK. Documenta-

tion can be found at:

"ftp://podaac-ftp.jpl.nasa.gov/allData/ccmp/L3.0/docs/ccmp_

users_guide.pdf". Wind data were available at 6 hours intervals. The

wind data was chosen in time and space to correspond to the position

of the birds after 1 hour at sea (2 thirds of the data collection period).

The wind data associated with each of the three foraging situations

were stable in time, and the data obtained were likely to have been a

true reflection of foraging conditions.

Data analysis was performed using Matlab (R2010a, The

MathWorks, Natick, MA, USA).

This study was carried out in strict accordance with the

recommendations from the South-African National Parks (SAN-

Parks).

Results

Out of the 35 deployments that provided usable data (additional

table S1), particularly sinuous movement patterns (visually

determined, Figure 1) were recorded in 10 birds (always in the

context of group foraging) and only three birds seemed to have

foraged alone during the camera running-time. All others had

joined other predators, con-specific or not. Therefore, over 90% of

birds were associated with other predators. Despite the fact that

only the first 1.5 hours (,10%) of the foraging trips were recorded

(additional table S1), diving was observed from 14 instrument-

carrying birds, with gannet, dolphin and trawler-associated

feeding occurred in 79%, 36% and 7% of these birds, respectively.

Diving was generally not associated with directional movement.

However, images showed that during these relatively straight-

trajectories the birds reacted to the presence of other birds, by

joining them and/or orientating in an opposite direction. Given

the challenge of quantifying coupled video and GPS data, we

chose to qualitatively describe three out of the 35 records in order

to exemplify how combined video and tracking data allows for an

understanding of stimuli that drive the birds’ trajectories (Figure

1). These three records were selected to represent all foraging

situations observed.

The beginning of foraging trips
Foraging trips of the three birds began in a similar fashion.

Shortly after take-off, they landed on the water near the colony

with other gannets and preened. They then flew in the direction

from which other birds were returning to the colony, suggesting

information transfer between those birds. During out-going flights,

they formed small groups (often 3–5 individuals). Landings,
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reorientations in relation to other birds, and group flights were

repeated several times prior to the location of feeding sites.

Gannet-associated flock feeding, Figure 1a
Fifteen minutes (13 km from the island) after leaving the colony

the number and frequency of gannets in the images increased

rapidly, as the study bird approached a large feeding flock of .150

gannets. The bird initiated its first dive 1–2 minutes after arriving

at the feeding aggregation. The bird then engaged in a series of

nine ,0.5 km diameter clockwise loops that spread over two

kilometers. During the 18 minutes it took to do this, a total of

seven dives were performed. Prey, other gannets and dolphins

were occasionally visible, showing that this feeding aggregation

was multi-specific. Loops were not superimposed suggesting that

the school of fish had moved straight in response to predation, at

an estimated speed of 6.7 km per hour. Our study bird then

relocated ,3 km away in a South-Westerly direction, joining

other gannets flying in the same direction, and reached another

flock of .80 foraging gannets where it dived four times before

stopping on the water surface for ,11 minutes. The bird then

returned to where it left the first school of fish 25 minutes earlier

but the flock was gone. During this time, the school of fish could

not have been further than 2.8 km away (assuming speed

estimated previously). The bird did not search for the school but

instead, initiated another South-Westerly flight, apparently alone.

The camera stopped recording during this flight. The GPS

however continued sampling positions and the data indicated a

relatively straight trajectory of ,15 km followed by a high level of

tortuousness in its movement. The initial directional movement

suggests that the bird aimed at this specific locality. The camera

data showed that the coastline was clearly visible at ,17 km

distance, but the resolution was too low to distinguish other gannet

at this distance.

Dolphin-associated feeding, Figure 1b
The first dive of this study bird took place at ,16 km from the

colony, in association with other gannets. No dense flocks of

gannets were observed, but instead, birds were far apart (estimated

50–100 m). The highest densities of birds (groups up to 80 birds)

were found during feeding bouts. The bird flew from site to site,

with other birds often seen flying in the same direction, with short

periods of time spent at each site, even after diving. During 40

minutes, the bird dived 18 times at 13 different sites (.500 m from

each other) spread longitudinally within a 763 km zone. Within

this area, 20 dolphins could be seen. The faster movement of

gannets in relation to dolphins suggests that most of the dolphin

sightings were different individuals or groups. Other Cape gannets

were always visible around dolphins. The track pattern resulting

within this ecological context was a medium scale (500 m–7 km)

tortuousness, with sudden changes in azimuth followed by

directional movements, occasionally interrupted by small scale

(,50 m) zig-zags or loops usually at the diving sites.

Figure 1. Portions of GPS tracks and video-camera images recorded concurrently, in Cape Gannets. Dots represent events seen in the
images. For each track, the wind speed and direction (clockwise from true North) is given. a) b) c) Zoom in each of the tracks. Arrows indicate dives,
blue = other gannets, red = prey, green = dolphins, magenta = boat.
doi:10.1371/journal.pone.0088424.g001
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Trawler scavenging, Figure 1c
This study bird rapidly approached a fishing boat and dived

next to it. The boat was a South-African trawler in fishing

operation (flag and cables were visible at the back) at about 26 km

East South-East from Bird Island. A group of ,20 gannets and at

least one kelp gull (Larus dominicanus) were also present. The bird

dived four times around the boat before the camera stopped

recording. After each dive, the bird stayed for relatively long

periods of time (1 to 6+ minutes) drifting on the water before

taking off again, and this seemed to be the case for other gannets

around the boat. As gannets move much faster than trawlers they

probably adopt a sit-and-wait strategy, rather than circling the

vessel. Consequently, the overall movement pattern was relatively

straight and often interrupted with pauses, zig-zags and loops as

the bird regains close contact with the boat and dive around it.

Given the initial directional movement during an extended time

period, it seems clear that the bird was heading towards the boat at

a distance of seven kilometers (although the boat was not visible on

the images from this distance). Later during the rest of the trip

(GPS data only), other similar patterns of movement suggested

that the bird encountered other fishing boats.

Classifying the ecological context around dives locations
These descriptions of foraging activity can be inferred from the

trajectories’ characteristics, using data from all of the 35 birds.

Given the numerous pauses on the water surface during boat-

foraging periods, the dives performed around boats can be flagged

by low flying speeds calculated both at two and six km scales

(Figure 2). Foraging in association with dolphins involve different

patterns, and are best described by high speed at a 2 km (small)

scale, intermediate fractal dimension at 6 km (medium) scale and a

relatively low straightness index at 12 km (large) scale (Figure 2).

Interestingly the best classifiers involved several scales and the

fractal dimension (over 6 km segments) is the second most

important factor. The variations (SD) in speed did not appear to

be discriminant. Cross-validation for the pruned-tree in figure 2

showed a high percentage of correct classification (95.8%).

However, the more robust estimate of correct classification

obtained using the bagging procedure indicate a cumulative out-

of-bag error of around 0.12, indicative of a lower – but still high –

correct classification percentage (88%).

Applying these classification rules to the portions of tracks for

which we do not have video data to infer the foraging context (i.e.

,90% of the tracks) revealed that 100%, 90.9% and 90.9% of

birds foraged at least once in association with other gannets, with

dolphins, and with fishing boats, respectively. However, the

average (6 SD) occurrence of these association was 33.3 (6 30.0),

5.5 (6 5.2) and 19.9 (633.0) times per trips for gannet, dolphin,

and fishing boat associated feeding, respectively (n = 35).

Discussion

The detailed description of combined video and GPS data has

proven extremely powerful in terms of understanding movement

patterns, because it provided an immediate understanding of the

movement context and causation. However, the quantification of

such processes is challenging and would require further method-

ological developments. On another hand, the simple description of

video events and the associated animal movement patterns

highlights and facilitates an understanding of processes in an

obvious and compelling manner. Except for the three birds that

seemed to have been alone for the time of the video recording, all

others showed systematic movement adjustments in relation to

other foragers, showing a remarkably high prevalence of

information sharing in these birds. The three patterns described

above correspond to known aspects of the ecology of these birds

[10,12], however it was enlightening to see how patterns of

movement were typical of given ecological contexts.

Predators within the proximate environment of Cape gannets

were the main drivers of their movement patterns at scales roughly

, 20 km. It is unlikely that foraging bird relied on olfactory senses

as the wind directions were such that the use of smell would not

have aided prey patch location (Figure 1). Foraging was

furthermore exclusively diurnal, demonstrating the reliance on

visual hunting. Given the obvious superiority of the bird’s eye

compared to the camera, and the high contrast of the birds on the

seascape, it seems possible that our study birds visually cued on

other foraging birds up to 15–17 km, as previously suggested for

other seabirds species [17]. Gannets generally fly in clockwise

loops when many other gannets are present around the breeding

colony before landing at their nests (pers. obs.). As collisions rarely

happen, but can be fatal [18], looping pattern could represent an

anti-collision strategy, and may suggest the presence of a high

density of aerial predators.

With video data available for only about 10% of the foraging

trips, we were limited in associating movement patterns to the

respective foraging contexts. It is important to note that the first

10% of these tracks were mostly associated with locating foraging

zones and the beginning of foraging phases in some cases. From a

methodological standpoint, we propose that 90 minutes of camera

autonomy is required to enable foraging phases to be recorded for

Cape gannets and other similar study species. The results from the

extrapolation of the foraging contexts from the first 10% to the

remaining 90% of the trip using the classification tree need to be

interpreted carefully, because the foraging phases were determined

as short low-speed periods, without certainty about dive occur-

rence. The results might therefore be overestimated. However, the

number of putative dives averaged 62 per trip, which is very

similar to what has previously been reported at the same breeding

period for this species (66 and 68 dives per trip at Lambert’s bay

and Malgas respectively [19]). Despite this uncertainty, our

extrapolation thus appears plausible and confirms the very high

prevalence of the use of other predators in shaping the movement

patterns in these birds during the whole trip. Interestingly, a

similar proportion of birds might have used boats and dolphins

during their trips, but the actual estimated occurrences suggest

that boats were much more often used as compared to dolphins.

This is possibly due to the fact that boats are more visible than

dolphins. It therefore appears that boats form a strong attraction

to these seabirds, thus potentially impacting time budgets and

foraging efficiencies. Interestingly, we did not find fishery discards

in the diet of Cape gannets during the study period (data not

shown) suggesting that boats are used as cues for inferring the

presence of live prey. The high prevalence of boat association that

we estimated for Cape gannets in Algoa bay is very similar to

recent findings in northern gannets Morus bassanus [9], although

the later study did not mention dolphins associations, possibly as a

result of lower sampling frequency of images (1 min) which might

limit the probability of detecting elusive underwater predators.

The high prevalence of the use of other foragers in shaping the

movement patterns in Cape gannets shows that local enhancement

mediated through information transfer is fundamental in deter-

mining foraging decisions. A recent modeling study showed that

informed movement processes are much more efficient than those

that are non-informed [20]. As a result, the number of behavioral

changes in a track increases when other predators are present

[13]Our study takes it one step further and show that informed

movements are the rule, and that information mostly comes from
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the predatory guild. This has profound implications because then,

the predator community structure is of primary importance and a

prey-rich environment alone might not suffice for these animals.

When considering the paramount importance of facilitation

between these predators, it becomes reasonable to argue that the

relative effects of competition could be negligible, except under

conditions of extreme prey shortage.

Our data provide a mechanistic explanation for discrepancies

observed between seabird and prey distributions or remote-sensed

oceanographic variables [21,22]. Local enhancement induces local

peaks in predator densities leaving other zones free of predators

thus deviating from the hypothesis of an ideal-free distribution

[23]. Our results further explain why gannets are not necessarily

associated with clearer-waters were prey are more visible [24] and

show that seabirds do not look for prey, but instead, it is likely that

their cognitive search image is oriented towards cues of the

presence of prey (mostly other predators). This distinction is

fundamental if we are to understand foraging flexibility and

adaptation to change. Reasonable changes in the amount of prey

might not be as important as changes in the predator community

structure. As such, changes in the fishing fleet, dolphins, sharks,

seals, other seabirds or whale populations and their relative

distributions might considerably affect the foraging efficiency of

seabirds and their ability to cope with changes in prey availability.

This also brings to light the importance of the at-sea community of

juveniles and non-breeding con-specifics. Those individuals are

not as constrained as breeding seabirds to commute to the colony,

and their permanent presence at sea might allow for the

maintenance of a functional foraging network enabling some

elements of the population to remain in proximity of prey while

others commute to the breeding sites.

Finally, our results suggest that research focused on the

quantification of interactions within the predatory guild and on

the sensory abilities of predators, are necessary in order to gain

further insights on the likelihood that these species will be able to

successfully adapt to a rapidly changing world.

Figure 2. Determining the foraging context using GPS data only, in Cape Gannets. Procedure a) and results b) of the classification-tree
classifying the foraging context around diving events using some track characteristics.
doi:10.1371/journal.pone.0088424.g002

Seabirds, GPS and CamerasSeabirds, GPS and Cameras

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e88424



Supporting Information

Table S1 Main characteristics of the data collected.
(PDF)

Acknowledgments

We would like to thank SANParks for access to Bird Island and for

providing support during field work. Thanks also to Peter Ryan for

contributions during the initial phases of the project. Further thanks to

both David Green who provided help in the field, Pierre Lopez for the

artwork and design of figures and Hervé Demarcq for providing wind data.
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