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a b s t r a c t

Several bacteria and viruses remodel cellular membranes to form compartments specialised for replica-
tion. Bacteria replicate within inclusions which recruit membrane vesicles from the secretory pathway to
provide nutrients for microbial growth and division. Viruses generate densely packed membrane vesicles
called viroplasm which provide a platform to recruit host and viral proteins necessary for replication. This
review describes examples where both intracellular bacteria (Salmonella, Chlamydia and Legionella) and
viruses (picornaviruses and hepatitis C) recruit membrane vesicles to sites of replication by modulat-
ing proteins that control the secretory pathway. In many cases this involves modulation of Rab and Arf
GTPases.

© 2009 Elsevier Ltd. All rights reserved.
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. Introduction

Many intracellular pathogens replicate in specialised compart-
ents in cells. For bacteria these are generally described as vacuoles

r inclusions, and for viruses they are called virus factories or
iroplasm (Fig. 1). The formation of replication sites can involve

xtensive modification of membrane compartments. Early changes
robably reflect the mobilisation of cellular defences against infec-
ion such as phagocytosis and autophagy [1,2] while later stages
ndicate the steps taken by the pathogen to avoid cellular defences
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and generate a compartment specialised for replication. Intracel-
lular bacteria remain within membrane-bound vacuoles to avoid
delivery to lysosomes and then recruit vesicles from the secre-
tory pathway to provide nutrients necessary for microbial growth
and cell division. Many viruses generate densely packed membrane
vesicles to shield them from recognition by cellular defence path-
ways that recognise double-stranded RNA, and at the same time the
membranes provide a platform to recruit viral and host proteins
required for replication [3–5]. This review describes how recent

work on intracellular bacteria such as Salmonella, Chlamydia and
Leigionella draws parallels with studies on (+) strand RNA viruses
where microbial proteins recruit membranes by modulating pro-
teins that control the secretory pathway. In many cases this involves
modulation of Rab and Arf GTPases.

http://www.sciencedirect.com/science/journal/10849521
http://www.elsevier.com/locate/semcdb
mailto:T.Wileman@uea.ac.uk
dx.doi.org/10.1016/j.semcdb.2009.03.015
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Fig. 1. Replication compartments formed by bacteria and viruses. Salmonella-containing vacuoles interact with the endocytic pathway while migrating along microtubules.
After reaching a peri-Golgi position, the vacuoles generate long membrane filaments (Sifs) and initiate replication. Legionella and Chlamydia escape interaction with the
endosomal/lysosomal pathway. Chlamydia inclusions migrate along microtubules and replicate next to a fragmented Golgi. Legionella-containing vacuoles attach to ER and
Golgi-derived vesicles and replication begins following fusion of vacuoles with the ER. Picornaviruses and hepatitis C replicate within perinuclear arrays of densely packed
membrane vesicles called viroplasm. ER: endoplasmic reticulum; MVB: multivesicular bodies; SCVs: Salmonella-containing vacuoles; SIF: Salmonella induced filaments; SP:
s
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pacious phagosome; LCV: Legionella-containing vacuole.

.1. Small GTPases regulate formation of vesicles in the secretory
athway

The Rab and Arf families of small GTPases act as molecular
witches which regulate the formation, docking and fusion of mem-
rane vesicles that carry cargo from one membrane compartment
o another (Fig. 2). Vectorial transport through the secretory path-
ay is maintained because different organelles recruit different
TPases and specific tethering proteins able to direct interactions
etween transport vesicles and acceptor membranes. Vesicle fusion
s consolidated by pairing between SNARE proteins [6,7]. The Arf1
TPase regulates the formation of COPI coated vesicles which form
t Golgi membranes to carry cargo back to the ER. COPII coated vesi-
les assemble at the endoplasmic reticulum (ER) and carry proteins
nd lipids to the ERGIC and Golgi where docking and fusion are con-
trolled by Rab1 and Golgi tethering proteins such as p115, GM130
and Golgin-84. The functions of other Rab proteins are described
when they appear in the text.

2. Bacteria replicate within membrane-bound inclusions
and vacuoles

2.1. Role of Rab GTPases during Golgi positioning of
Salmonella-containing vacuoles
Salmonella enterica enters the cell within a membrane compart-
ment known as the spacious phagosome (SP), which then shrinks to
enclose one or two bacteria within Salmonella-containing vacuoles
(SCVs) [8–10]. Early SP and SCV maturation result in recruitment
of Rab 5 and several Rab5 effector proteins which normally con-
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Fig. 2. Role of Rab and Arf proteins in directing vesicle transport. The small GTPases are held in the cytosol as inactive GDP-forms by GDP dissociation inhibitor (GDI) proteins.
Translocation to membranes requires membrane-bound GDI displacement factors (GDFs) which release the GTPase and expose a C-terminal lipid group for membrane binding.
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uanine nucleotide exchange factors (GEFs) exchange GDP for GTP and allow the ac
ycle is completed by GTP-hydrolysis, which requires GTPase activating proteins (G

rol endocytosis. Sorting nexins may facilitate shrinkage of the SP
11] during formation of the SCV, while Rab5 effectors such as early
ndosome antigen 1 prime the SCV for progress along the endocytic
athway. SCV lose Rab5 and accumulate Rab7, LAMP1 and acid-

fy. Rab7 recruits Rab7-interacting lysosomal protein (RILP) which
inks the SCV to the dynein motor protein allowing movement to
he Golgi and MTOC [12]. This, coupled with acidification of the
acuole, activates secretion of bacterial Salmonella pathogenicity
sland 2 (SPI-2) proteins which are needed for continued Golgi
ositioning and replication. The Pip2B and SifA proteins recruit
ost kinesin interacting protein SKIP to the SCV to displace kinesin
nd inhibit outward movement [13,14]. SifA may also impair the
ab7-RILP interaction to release dynein [12]. SseF and SseG locate

o the surface of the vacuole where they may tether the vac-
oles to the Golgi [15,16]. Golgi positioning may also involve
ipA and SifA proteins, actin [17], and recruitment of myosin II
18].

Golgi positioning appears to be crucial for replication [19] and
s thought to facilitate the supply of nutrients from Golgi-derived
esicles. The exact pathway followed by the vesicles remains to
e determined. Vacuoles recruit 18 different RabGTPases during
aturation [20] showing complex interaction with the secretory

athway. Vesicles leaving the trans-Golgi network (TGN) accumu-
ate next to the SCV, but do not appear to fuse [21], making it unclear

hether they deliver nutrients. Interestingly, long thin tubules of
embrane called Salmonella induced filaments (Sifs) containing

ndosomal and lysosomal markers extend from the SCVs soon after
ositioning at the Golgi. Sifs require secretion of SPI-2 proteins, SseF
nd SseG, and extend towards the cell periphery along microubules
here they recruit Rab9 and Rab11 and take up fluid phase endo-

ytic markers [20–24]. Sifs may provide nutrients to bacteria from
utside the cell by fusing with vesicles trafficking between late
ndosomes and the Golgi.

.2. Bacterial effector proteins recruit of Rab GTPases and SNARE
roteins to Chlamydia inclusions
Chlamydia invades the cell as an infectious, but replication defec-
ive, elementary body (EB) and differentiates into a replicative
orm called the reticulate body (RB), within a membrane compart-

ent called an “inclusion”. Chlamydia does not interact with the
d GTPase to bind effector proteins which facilitate vesicle budding and fusion. The
ollowed by extraction of the GDP-bound enzyme from the membrane by GDI.

endosomal/lysosomal pathway [25] but, as seen for Salmonella,
the inclusions recruit dynein and migrate along microtubules to
a peri-Golgi position [26], and again peri-Golgi positioning at the
MTOC is required for replication. Inclusions receive sphingomyelin
and cholesterol from exocytic vesicles that would normally deliver
lipids from the TGN to the plasma membrane [27–30] and can
also gain lipids directly from lipid storage organelles called lipid
droplets. This involves the bacterial Lda3 protein which may link
lipid droplets to the outer surface of the inclusion [31]. Chlamy-
dia infection also results in proteolysis of tethering protein Golgin
84 by caspases leading to fragmentation of the Golgi into min-
istacks. Inhibition of Golgi fragmentation reduces replication and
also prevents the delivery of lipids to the inclusion suggesting that
fragmented Golgi ministacks provide vesicles able to fuse with the
vacuole [32]. Non-lipid nutrients can also be delivered to Chlamy-
dia inclusion by endocytosis and fusion with multivesicular bodies
(MVB) [33].

Chlamydia effector proteins called ‘integral inclusion mem-
brane’ (Inc) proteins recruit several RabGTPases to the inclusions
[34]. Mature inclusions recruit Rab4 and Rab11 [35,36], which
are generally present in recycling endosomes and could interact
with incoming MVBs. Inclusions recruit Rab1, which may activate
tethering and subsequent fusion with Golgi-derived vesicles or
ministacks. Rab6 and Rab10, which are involved in Golgi traffick-
ing, are associated with inclusions in a species-dependent manner
[35]. Rab recruitment requires the GTP-bound form suggesting that
the Inc proteins act as Rab effector proteins. Inc protein Cpn0585,
has coiled coil domains that share sequence similarity with Rab
effectors such as the tethering proteins Golgin 84 and Golgi matrix
protein GM130, and interacts with Rab1, Rab10 and Rab11 [37].
Whether Cpn0585 plays a role in Golgi fragmentation seen dur-
ing infection has not been tested. IncA proteins such as CT813 have
SNARE motifs and interact directly with host SNAREs that facilitate
vesicle fusion [38]. The glutamate residue in the SNARE-like motif of
IncA suggests similarity with Q-SNAREs that would interact with R-
SNAREs. This is consistent with co-precipitation of Vamp3, Vamp7

and VAMP8 with IncA, and location of Vamp8 in the inclusion
membrane. The precise role the SNARE homologues play in inclu-
sion formation is not known. They interact with SNAREs involved
in endosome trafficking and may aid recruitment of MVBs to the
inclusion.
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.3. Bacterial effector proteins modulate Rab1 and Arf1 during
aturation and fusion of Legionella-containing vacuoles with

ndoplasmic reticulum

Legionella pneunomophila is an intracellular bacterium of
moeba but can infect humans following inhalation of aerosols
rom contaminated water and air cooling systems. Inhaled bac-
eria infect alveolar macrophages and become surrounded by a

embrane compartment called the Legionella-containing vacuole
LCV), which avoids interactions with the endosomal/lysosomal
athway [39]. The LCVs quickly recruit Arf1 and Rab1 GTPases,
nd associate with vesicles containing ER and ERGIC markers, sug-
esting recruitment of vesicles trafficking between ER and Golgi
ompartments. Membrane vesicles remain associated with the LCV
or several hours during which time the LCVs lose Rab1 and Arf1
40,41]. The vesicles tethered to the LCV [42] eventually fuse with
he vacuole and deliver ER markers, and this is coincident with
he onset of replication. Delivery is inhibited by Brefeldin-A, and

dominant negative Sar1[H79G] GTPase slows bacterial replica-
ion, suggesting involvement of COPI and COPII transport vesicles
42].

Rabs are recruited to the LCV by bacterial effector proteins
rrA (also called SidM) and LepB [43]. DrrA first acts as a Rab1-

pecific GDF recruiting Rab1 onto the cytosolic face of the LCV
embrane [44,45]. DrrA then acts as a Rab-GEF protein promot-

ng GDP-GTP exchange to preserve Rab1 in its active form [43,46].
he LepB protein binds the LCV at later times and is also present
n mature LCVs that have acquired ER markers. LepB binds acti-
ated Rab1-GTP and acts as GAP [44] leading to release of Rab1
rom the vacuole and this is coincident with fusion of the vacuole

ith ER-derived vesicles. DrrA and LepB show exclusive binding to
ab1, but Dot/Icm effector LidA binds Rab1, Rab6 and Rab8 [43].
idA does not have GAP or GEF activity and cannot affect GTP
ydrolysis, but works with DrrA/SidM to recruit Rab1 to vacuoles
43].

The presence of Arf1 and Rab1 could facilitate fusion with both
R and Golgi-derived membranes. Rab1 may interact with effec-
or proteins such as p115 or the GM130/Grasp65 complex would
ormally tether COPI and COPII vesicles to the cis-Golgi. Silenc-

ng experiments suggest that the TRAPP1 tethering complex, which
acilitates docking of COPII vesicles to ERGIC and Golgi membranes,
nd Sec22b, which is a v-SNARE found in ER to Golgi transport
esicles are both required for replication [47–49]. These results
uggest that COPII vesicles deliver the host factors required to
ustain microbial growth and cell division within the ER-derived
acuole.

. Viruses generate densely packed membranes for
eplication

The (+) strand RNA viruses produce replicase proteins with
NA-dependent RNA polymerase and helicase activity which are
argeted to the cytoplasmic face of the ER by non-structural pro-
eins with membrane binding motifs. This invariably results in the
eneration of densely packed membrane vesicles called viroplasm.
ork in this area has concentrated on understanding how these

esicles are formed, and how their use as replication sites impacts
n the secretory pathway. Multiple interactions between replicase
roteins probably induce the membrane curvature required to gen-
rate vesicles in a way that parallels virus budding from membranes

4,50]. Virus replication can, however, slow secretion suggest-
ng that the formation of viroplasm may divert vesicles normally
nvolved transport between the ER and Golgi into the replication
omplex. As described above for bacteria, this can involve modula-
ion of small GTPases.
mental Biology 20 (2009) 828–833 831

3.1. Role of Arf1 and Arf-GEF proteins in modulating membrane
traffic during picornavirus replication

A search for a link between virus replication and membrane
trafficking proteins was stimulated by the observation that BFA
blocks replication of enteroviruses such as poliovirus and coxsack-
ieviruses [51]. BFA inhibits Arf-GTP exchange proteins (Arf-GEFS)
and reduces the Arf1-GTP needed to generate COPI coats in the
Golgi. Inhibition of replication by BFA has led to a model where
viral activation of Arf-GEFs would recruit Arf1, and Arf effector pro-
teins, needed to recruit membranes into replication compartments
[52]. This is supported by genome-wide interference screens where
COPI proteins are important for replication of both animal and plant
picornaviruses [53,54], and is consistent with the increase in Arf-
GTP levels seen in cells following poliovirus infection. Moreover,
Arf-1 and Arf-GEF proteins GBF1 and BIG1/2 are recruited into repli-
cation complexes [55,56], and poliovirus replication is inhibited by
siRNA for GBF1 [57]. Sequestration of Arf-1 into the replication com-
plex would also explain the block in secretion seen in infected cells
[58].

For poliovirus, secretion is blocked by the 3A protein which
tethers the replicase to ER membranes. 3A does not have intrin-
sic Arf-GEF activity but the 3A protein recruits Arf-GEFs such as
GBF1 and BIG1/2 to membranes, and 3A activates Arf-GEF activ-
ity ‘in vitro’ [56]. This provides an explanation for inhibition of
poliovirus replication by BFA, and how the sequestration of Arf1
and Arf-Gefs into replication sites, could block secretion. Evidence
that this generates densely packed vesicles is less clear. 3A alone
cannot generate the vesicles, and recruitment of Arf-GEFs by 3A
is not essential for replication [57]. Moreover, BFA does not pre-
vent formation of densely packed vesicles by poliovirus, so vesicle
formation does not require activated Arf-GEF proteins [57].

An alternative mechanism of action for 3A is provided from
coxsackievirus, which is also a BFA-sensitive enterovirus. The
coxsackievirus 3A protein inhibits Arf-GEF activity, and reduces
Arf-GTP [59–61] and may inhibit ER to Golgi transport by stabi-
lizing ARF1-GDP-GBF1 complexes which would in turn reduce the
supply of Arf1-GTP for COPI coats. 3A may also slow secretion by
inactivating LIS1, a component of the dynein–dynactin motor com-
plex [62] and contribute to microtubule-dependent disruption of
the Golgi apparatus seen during poliovirus infection [63]. These
experiments explain how 3A would slow secretion, but again do not
provide a mechanism for generation of the densely packed vesicles,
or paradoxically, explain why the virus would be sensitive to BFA.

Several picornaviruses families are resistant to BFA, and their
3A proteins do not slow ER to Golgi transport [60,64,65]. For
these viruses COPII coated vesicles may provide membranes
for replication [66–69] while other studies implicate a role for
autophagosomes [70]. In the case of Foot-and-Mouth Disease
virus, secretion is blocked by the ER-tethered 2BC protein [65,71],
rather than 3A, and although less well studied, the 2B and 2BC of
enteroviruses also slow secretion when expressed alone in cells
[58,72]. These proteins can therefore affect membrane traffic and
for 2C this may involve binding to ER membrane protein reticulon
3, which is involved in ER to Golgi trafficking and is required for
replication [73].

3.2. Recruitment of membrane trafficking proteins to membrane
webs formed from the endoplasmic reticulum during replication of
hepatitis C virus
Hepatitis C virus replication occurs within a web of ER mem-
branes. The NS5A protein is anchored to the cytoplasmic face of
the web and recruits the RNA-dependent RNA polymerase, NS5B.
Both NS5A and NS5B bind VAMP associated proteins (VAPs) [74,75].
NS5B binds to a coiled coil domain (CCD) in VAP that resembles
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he CCD of SNARE proteins. Silencing VAP-B reduces the stabil-
ty of NS5B, and depletion of VAP-B from cell free assays reduces
NA replication. Current models suggest that a VAPA/B heterodimer

orms a scaffold that supports the replication complex. VAP proteins
lso bind to SNAREs involved in ER to Golgi transport, making it is
ossible that the VAP scaffold also facilitates membrane fusion to
enerate the membrane web from the ER. This may be true for other
+) strand RNA viruses such as Norwalk virus where membrane-
ound nsp48 also binds VAP-A [76].

NS5A also binds TBC1D20, a Rab1-GAP protein, and both
BC1D20 and NS5A co-localise with ER markers. TBC1D20 activates
ab1 GTP hydrolysis, and since depletion of TBC1D20 and Rab1
reatly reduce HepC replication [77,78] it is likely that activation of
ab1-GTP is in some way involved in virus infection. Local blockade
f Rab1 could, for example direct transport vesicles to make mem-
rane webs. Rab5 is also recruited to the replication complex [79] by
inding to NS4B, and virus-induced membranes recruit Rab5 effec-
ors EEA1, rabaptin 5 and Rab4 suggesting the web may fuse with
ndosomes. A functional role for Rab5 in viral genome replication
s suggested because dominant negative Rab5 reduces replication
f replicons, and partial silencing of Rab5 reduces synthesis of viral
NA.

. Conclusions

The studies described above set the stage or further work where
t will be important to analyse interactions between host and

icrobial proteins at a structural level, and see how these inter-
ctions contribute to virulence and/or immune evasion. The work
lso provides a precedent for studies on other pathogens that use
embrane compartments for replication. Brucella for example,

raffic through lysosomes before fusing with the ER [80], and Cox-
ella replicate in a spaceous parasitophorous vacuole formed from
econdary lysosomes [81]. Recent work on coronaviruses draws
arallels with poliovirus where SARS-CoV replicates within densely
acked membranes [82], and mouse hepatitis virus shows sensi-
ivity to BFA and requires GBF1 mediated Arf1 activation [83,84].
isruption or use of the Golgi is not restricted to the (+) strand RNA
iruses. The negative strand RNA Bunyaviruses replicate in the Golgi
pparatus where they form tubes that contain replicase proteins
85]. The large DNA viruses such as Fowlpox encode homologues of
NAP proteins involved in SNARE pairing [86], while African Swine
ever virus replicates at the MTOC, slows secretion, and causes Golgi
ragmentation and microtubule-dependent loss of the TGN [87].
SFV also encodes a multigene family of proteins with C-terminal
EDL sequences able to interfere with KDEL-receptor mediated ER

o Golgi trafficking and redistribute ER proteins to the ERGIC [88].
n all these cases the consequences of modulating the early secre-
ory pathway in the context of virus survival and/or pathogenesis
emain to be discovered.
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