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ABSTRACT: The development of effective synthetic pathways is critical in many
industrial sectors. The growing adoption of flow chemistry has opened new
opportunities for more cost-effective and environmentally friendly manufacturing
technologies. However, the development of effective flow chemistry processes is still
hampered by labor- and experiment-intensive methodologies and poor or suboptimal
performance. In this context, integrating advanced machine learning strategies into
chemical process optimization can significantly reduce experimental burdens and
enhance overall efficiency. This paper demonstrates the capabilities of deep
reinforcement learning (DRL) as an effective self-optimization strategy for imine
synthesis in flow, a key building block in many compounds such as pharmaceuticals
and heterocyclic products. A deep deterministic policy gradient (DDPG) agent was
designed to iteratively interact with the environment, the flow reactor, and learn how
to deliver optimal operating conditions. A mathematical model of the reactor was
developed based on new experimental data to train the agent and evaluate alternative self-optimization strategies. To optimize the
DDPG agent’s training performance, different hyperparameter tuning methods were investigated and compared, including trial-and-
error and Bayesian optimization. Most importantly, a novel adaptive dynamic hyperparameter tuning was implemented to further
enhance the training performance and optimization outcome of the agent. The performance of the proposed DRL strategy was
compared against state-of-the-art gradient-free methods, namely SnobFit and Nelder−Mead. Finally, the outcomes of the different
self-optimization strategies were tested experimentally. It was shown that the proposed DDPG agent has superior performance
compared to its self-optimization counterparts. It offered better tracking of the global solution and reduced the number of required
experiments by approximately 50 and 75% compared to Nelder−Mead and SnobFit, respectively. These findings hold significant
promise for the chemical engineering community, offering a robust, efficient, and sustainable approach to optimizing flow chemistry
processes and paving the way for broader integration of data-driven methods in process design and operation.
KEYWORDS: flow chemistry, self-optimization, deep reinforcement learning, deep deterministic policy gradient,
adaptive hyperparameter tuning, Bayesian optimization

1. INTRODUCTION
Chemical reactions are essential steps to synthesis a variety of
products, intermediates, additives, etc., relevant to several key
industries such as the pharmaceutical, agrochemical, and
petrochemical sectors. The total production costs are largely
determined by the performance of the synthetic steps and
inherent purification technologies, besides product quality and
safety, environmental performance, and overall economic
viability. The performance of a reaction is commonly captured
by yield and selectivity which are influenced by a complex
interplay between various factors such as catalysts, solvents,
substrate concentrations, temperature, and reaction technolo-
gies which must be optimized to deliver consistent product
quality. Traditional optimization approaches are labor-
intensive, time-consuming, and very costly, often relying on
“one variable at a time” (OVAT) experimentation or human
intuition. The development of effective synthetic pathways for

active pharmaceutical ingredients in pharma is a painstaking
and very costly process.1,2 Poor reaction pathways may impact
not only costs due to poor yield but also safety of the drug.
The presence of impurities or side products makes the
purification and isolation steps more challenging3,4 and may in
many cases jeopardize the clinical trials and, if not addressed,
may result in product withdrawals, leading to significant
financial and reputational damage.5−7

To address these challenges, it is important to design more
effective synthetic strategies and technologies and develop
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smarter and more systematic optimization strategies to avoid
pitfalls and limitations of the traditional optimization methods
and human intuitions. Continuous manufacturing and flow
chemistry are increasingly adopted in the pharmaceutical
industry to deliver more cost-effective, eco-friendly, and
resilient alternatives to the traditional batch processing.8,9

Most importantly, the interplay between flow chemistry,
advanced real-time process analytical technologies, and self-
optimization can open a new era for effective development,
design, and operation based on plug-and-play strategies. To
deliver these objectives, it is critical to develop the next
generation algorithms and methodologies specifically to
address this new class of real-time optimization problems.
Moreover, Industry 5.0, leveraging advancements in artificial
intelligence, big data analytics, and autonomous robotics, is
emerging as a transformative approach to enhancing efficiency
and minimizing risks in chemical reactions.10−13 Recently,
several machine learning (ML) methods have been successfully
implemented to analyze more effectively both historical and
real-time experimental data, delivering unique insights and
allowing more reliable decision-making and effective design
and operation strategies.14,15

Additionally, high-throughput experimental platforms for
automated reaction optimization are increasingly adopted to
maximize experimental screening.16,17 These methods and
technologies may offer enhanced and systematic exploration of
the reaction recipes and conditions (e.g., reagents, solvents,
catalysts). However, they are often restricted to batch
processes and can be extremely costly due to, due their
intensive experimentation nature, particularly when imple-
mented based on trial-and-error, instead of rigorous
optimization strategies. The combination of flow chemistry
and advanced optimization and control algorithms is opening
new avenues for more effective real-time monitoring and
adjustment of the reaction conditions. Over the past few years,
researchers have implemented several traditional optimization
methods such as Nelder−Mead simplex algorithm,18,19 stable
noisy optimization by branch and fit (SnobFit) algorithm20−22

and mixed integer nonlinear programming (MINLP).23

Additionally, Deep Neutral Networks (DNNs) were used to
optimize residence time, temperature, and catalyst loading in
the Pd-catalyzed Suzuki-Miyaura reaction, predicting yield and
identifying optimal reaction conditions by exploring the
available reaction space.24 However, these approaches can be
data extensive and may require large sets of expensive
experiments.25 Among several other ML methods, Bayesian
optimization has gained increased popularity.26−28 The
method uses kernel density estimators to explore the decision
variable space and, by balancing exploitation and exploration,
optimally identifies the next experimentation/sampling loca-
tions. Shields et al.28 implemented experimental design based
on Bayesian optimization featuring several strategies, such as
density functional theory, cheminformatic, and binary one-hot
encoded, aimed to find the optimal reaction conditions and
functional groups of reactants. The authors proposed a new
encoding of the reactions by concatenating molecular
descriptors for each chemical component and continuous
variables (temperature, reaction time, and concentration).
Schweidtmann et al.29 developed a new package, Thomson
Sampling Efficient Multi-Objective (TS-EMO), to support
initial sampling methods and Bayesian optimization with
Gaussian processing surrogate models. The tool was used to
find optimal reaction conditions for two different organic

reactions, maximizing space-time yield and minimizing the E-
factor. The applicability of Bayesian optimization is extended
to different areas such as multistep reactions,30,31 multi-
objective problems,32,33 and multitask Bayesian optimiza-
tions.34,35 Furthermore, Bayesian optimization supported
with Gryffin can operate with both continuous and discrete
variables.36,37 Overall, data-driven approaches may help
minimize human bias and accelerate the optimization and
development processes, enhancing precision and efficiency in
synthetic route development. Despite these advantages, ML
models, in particular, may face challenges when addressing new
or unknown conditions due to their reliance on labeled data
and pattern recognition techniques. These models also require
substantial amounts of data for effective training, and
interpreting their results can be complex. Alternatively,
reaction optimization can be effectively addressed using
reinforcement learning (RL). As a subset of machine learning,
RL focuses on optimizing action policies to maximize or
minimize rewards based on continuous interactions with the
environment. Deep reinforcement learning (DRL), which
employs DNNs to estimate unknown functions of state and
action spaces (such as policy or value functions), has proven
powerful in many applications. By deriving estimations from a
small sample of observations, DRL addresses the challenges of
high-dimensional state spaces and solves increasingly complex
problems.38 DRL’s impactful applications span numerous fields
such as vision-based navigation and manipulation in
robotics,39,40 autonomous navigation in self-driving cars,41,42

and optimization of energy distribution in smart grids and
buildings.43−45 DRL also revealed pivotal in the control of
crystallization processes for pharmaceuticals,46,47 and optimi-
zation of the production lines in the manufacturing
industries.48,49 Most importantly, DRL has shown capabilities
to effectively manage complex chemical processes by
dynamically adjusting conditions in real-time. For instance,
DRL was effectively applied to reaction control in polymer-
ization processes by integrating a Long Short-Term Memory
(LSTM) network to represent surrogate modeling and
proximal policy optimization for decision making.50,51 In
addition, Zhou and coauthors52 used a recurrent neural
network as a policy function for decision making to optimize
chemical reactions. Due to the time-consuming nature of
evaluating these reactions, their approach involved initially
training the model on simulated reaction data using a mixture
of Gaussian density functions. This probabilistic approach
models a data set as a weighted combination of multiple
Gaussian distributions, each characterized by its own mean and
covariance. It enhanced performance was achieved by
continuously approximating the response surface of the
chemical reaction systems, capturing their complex behavior
with more reliable models. This pretraining strategy was
designed to approximate complex reaction decision spaces and
effectively handle multiple local minima. To improve
exploration and avoid local optima traps, the authors
introduced a randomized exploration strategy. This strategy
uses a stochastic recurrent neural network to generate random
decision choices, enhancing the algorithm’s ability to explore
different experimental conditions more effectively. Their
method achieved optimal reaction conditions in just 40
episodes, delivering a significant improvement over the
traditional methods such as covariance matrix adaptation,
evolution strategy, and OVAT approaches. More recently,
Neumann and Palkovits53 demonstrated the capability of DRL

ACS Engineering Au pubs.acs.org/engineeringau Article

https://doi.org/10.1021/acsengineeringau.5c00004
ACS Eng. Au 2025, 5, 247−266

248

pubs.acs.org/engineeringau?ref=pdf
https://doi.org/10.1021/acsengineeringau.5c00004?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


in optimizing methane oxidation in a plug flow reactor,
highlighting the potential of self-optimization in flow
chemistry. However, their approach relies on fixed hyper-
parameters and predefined target conditions, which can be
particularly limiting in chemical reaction optimization. In these
systems, even slight variations in reaction parameters can
significantly alter outcomes, and a rigid framework may fail to
explore the full parameter space.54 Additionally, as seen in
continuous control tasks,55 the sample inefficiency and high
computational cost associated with simulating numerous
reaction iterations pose substantial challenges. Moreover,
analogous issues have been observed in related fields such as
de novo drug design56 and in automated chemical synthesis,57

where balancing exploration with computational expense is
critical. Future work could benefit from integrating adaptive
hyperparameter tuning and more robust exploration strategies
to better capture the dynamic behavior of chemical systems,
thereby improving the discovery of true optimal reaction
conditions.
Addressing these limitations could enhance DRL’s applica-

tion in reaction optimization, including incorporating more
complex scenarios and benchmarking against traditional
methods.
In this paper, we propose addressing the challenges

discussed earlier by introducing DRL, allowing more effective
optimization of the reaction conditions of continuous chemical
reactions. DRL combines the strengths of deep learning and
reinforcement learning, allowing the development of strategies
that can handle high-dimensional state and action spaces,
which is critical in the complex environment of continuous
action spaces. Deep Deterministic Policy Gradient (DDPG), a
model-free, off-policy actor-critic method, is well-suited for
such environments, as it allows agents to navigate an infinite
number of possible actions efficiently.58,59 The model-free
nature of DDPG facilitates the self-optimization of reaction
conditions by enabling autonomous decision-making, where
RL agents select actions that maximize expected rewards
without human inputs. The proposed DDPG agent uses deep
learning capabilities to extract meaningful features from
complex data and consolidates it by the reinforcement learning
power to learn optimal policies through interaction with the
environment. It simplifies the learning process and enhances
sample efficiency by focusing on learning a deterministic policy
that directly maps states to actions, rather than learning a
distribution over actions (stochastic approach) that requires
more exploration and data. The performance of the RL agent is
further enhanced by optimizing hyperparameters and set up of
the episodes and actions. The proposed DRL self-optimization

strategy is validated using a case study relevant to flow
chemistry, offering a continuous, adaptive, and scalable
approach that enhances efficiency, resource utilization, and
cost-effectiveness. The imine synthesis, which exhibits side
reactions, is used to show the capabilities and performance of
the proposed approach.
Additionally, the DDPG agent’s performance is compared

against the state-of-the-art gradient free optimization techni-
ques, highlighting the effectiveness of DDPG in achieving
superior optimization outcomes.

2. METHOD
The proposed general methodology to address the self-
optimization problem is outlined in the workflow presented
in Figure 1. The process begins with the definition of the
environment, including decision variables, states, and outputs,
which sets the foundation for the subsequent steps. An RL
agent is then designed to interact with the environment,
followed by the formulation of a reward function to steer the
agent toward achieving the desired behaviors. The agent
undergoes a training phase involving the hyperparameter
optimization to identify and fine-tune key hyperparameters.
After training, the agent is tested to evaluate its performance
and robustness. Finally, the experiment is conducted under
optimal conditions to validate the effectiveness of the trained
agent.
2.1. Environment

The environment represents the system of interest which can
be influenced by a set of manipulated or decision variables
which are captured by the set of actions initiated by the agent
at a given time. The response of the system to a set of actions
is captured by the states and outputs which allow the
evaluation of instantaneous and cumulative rewards. In this
study, the environment is represented by a mathematical
model which allows more cost-effective training before
validation or deployment in the real system. The imine
synthesis in a tubular reactor (continuous) is considered as a
case study to validate the proposed approach. The Imines and
their derivatives are considered as key intermediates for the
synthesis of nitrogen heterocycles and versatile pharmaco-
phores.60 In addition, they are used in several important classes
of compounds with herbicidal, anticancer, and antimycotic
activities.61 The imine synthesis considered in this study is a
condensation reaction between benzylamine 1 (ReagentPlus,
≥99%, Sigma-Aldrich, United Kingdom) and benzaldehyde 2
(ReagentPlus, 99%, Sigma-Aldrich, United Kingdom) in the
presence of methanol (for synthesis, Fisher Scientific, United

Figure 1. Workflow of the proposed deep reinforcement learning-based self-optimization method.
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Kingdom), to produce imine N-benzylidenebenzylamine 3 as
shown in Scheme 1.

2.1.1. Mathematical Model. The mathematical model of
the imine synthesis system in flow is used as the environment
for the RL-based self-optimization. The mathematical model
was constructed using the following key assumptions:

• The reaction is homogeneous.
• No axial dispersion (plug flow reactor).
• The feeding temperatures (Tf) and initial reactor

temperature (T0) are equal.
• The overall heat transfer coefficient is constant over the

length of reactor and during the reaction.
• The density of the reaction mixture (ρ) is constant.
• Chemical reactions are the only processes that can

produce heat, and the cooling system is the only way for
heat removal (no heat loss).

The residence time (Rest) of the flow reactor can be
expressed as a function of the total volumetric flow rate (Q)
and the reactor volume (V) by eq 1:

= V
Q

Rest
(1)

The concentration of each reactant is determined by its
individual flow rate relative to the total feed rate (Q) and
concentration of the stock solution of the reactant. The total
flow rate (Q) is the sum of the individual flow rates of all
reactants.
The concentration of each reactant (cjf) in the feed stream is

described as

= ×c
Q

Q
Cj

j
jf s

(2)

where Qj is the individual flow rate and Csj is the concentration
of the stock solution of the reactant, j, respectively.
The mass balance for the reactants and product in the

tubular reactor are shown in the partial differential equation
below, which depicts the spatial-temporal changes in the
concentration of the different species.

= ±c
t

v
c
z

ri
z

i
i (3)

where ci represents the concentration of the reactant or
product i, vz is the velocity in the z direction, and r is rate of
reaction.
The general form of the rate law (reaction rate) for a

bimolecular irreversible reaction is given by

=r kc c1 2 (4)

The reaction rate constant (k) follows an Arrhenius law,
expressed as

= ×k k
E

R T T
exp

1 1
ref

a

f ref

i
k
jjjjj

i
k
jjjjj

y
{
zzzzz

y
{
zzzzz

(5)

Here kref represents the reference reaction rate coefficient, Ea is
the activation energy, R is the universal gas constant, and Tf
and Tref represent the feed temperature and reference
temperature, respectively,
The energy equation accounts for the heat of reaction,

diffusive flux, and heat exchange between the reaction side and
the coolant. The energy balance equation is given by eq 6.

= ± × +C T
t

v C T
z

r H T TUA( )p z p react c (6)

=C x Cp
i

i pi
(7)

where Cp in the above reaction refers to the average specific
heat capacity and Cp,i specific heat capacity of ith species, xi is
the mole fraction of each species, T and Tc represent
temperature inside the tubular reactor and of the coolant,
respectively. UA is the overall heat transfer coefficient, and
ΔHreact is the reaction enthalpy. All relevant parameter values
can be found in Table 1.

2.1.2. Experimental Setup and Analytical Technolo-
gies. The experimental setup was designed to estimate kinetic
parameters and validate the reaction mathematical model using
inline spectroscopic measurements. The reaction was con-
ducted in a microreactor system composed of coiled 1/16-in.
stainless steel tubes. The reactor setup allowed for adjustable
residence times between 0.5 and 8 min, ensuring near plug
flow behavior throughout the experiments. Starting materials
were delivered with high precision using an AZURA P 4.1s
compact pump (Knauer, Germany). A detailed diagram of the
setup is shown in Figure 2.
Real-time reaction monitoring was achieved using an inline

Raman spectrometer (Raman Rxn2 analyzer, Kaiser Optical
Systems, Inc.). Raman spectra were recorded in the 500−1900
cm−1 range with a spectral resolution of 4 cm−1. Spectra were
acquired at 30-s intervals, with each spectrum accumulated
over a 5-s duration. Key Raman peaks were identified at 1596
cm−1 (ring C�C stretching), 1639 cm−1 (C�N stretching),
and 1684 cm−1 (C�O stretching). The recorded spectra
revealed significant intensity changes during the reaction
course. The C�O stretching peak at 1684 cm−1 decreased
steadily and disappeared completely, indicating full conversion

Scheme 1. Imine Synthesisa

aBenzaldehyde 1, benzylamine·2, and N-benzylidenebenzylamine 3.

Table 1. Model Parameters, Physical Properties, and Initial
Conditions

variables (unit) values

length, L (m) 0.15
volume, V (m3) 1.32 × 10−6

UA (W/K) 100
ΔHreact (kJ/mol) 160
Cp,1 (J/mol·K) 172
Cp,2 (J/mol·K) 207.2
Cp,3 (J/mol·K) 165.7
Cp,solvent (J/mol·K) 81.2
ρ (kg/m3) 800
benzylamine stock concentration, Cs1 (mol L−1) 4
benzaldehyde stock concentration, Cs2 (mol L−1) 4
gas constant, R (J K−1 mol−1) 8.314
residence time bounds, Rest (min) [0.5, 8]
equivalent ratio bounds, ER1/2 [0.1, 2]
temperature bounds, T (K) [278, 330]
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of the starting material. In contrast, the C�N stretching peak
and the ring C�C stretching peak increased in intensity,
signifying the formation of the imine product and the
associated π-electron conjugation enhancement. These inline
measurements provide valuable time-resolved data to support
kinetic parameter estimation and validation the proposed
reaction model.
2.2. Reinforcement Learning Agent
Reinforcement learning (RL) agents are designed to interact
with their environment and autonomously choose the optimal
behavior. The agent’s selection of a set of specific actions (i.e.,
reaction conditions) to be implemented in the environment is
informed by the rewards received based on the previous
actions and current circumstances captured by the states of the
environment. Consequently, the agent receives a new reward
or penalty which after combination with the prior knowledge
informs the new sets of actions to be taken. Each sequential
step involves interactions between the agent and the
environment through state, action, and rewards (rt).

62

Subsequently, throughout a sequence of recurrent episodes,
the agent is instructed to maximize cumulative rewards (Gt)

=
=

G rt
t

t
t

0 (8)

where γ is the discount factor and signifies the importance of
the future reward.
The primary objective of an RL algorithm is to identify and

implement the best sequence of actions over an episode to
maximize the accumulated reward. Thus, agents attempt to
determine the optimal policy to maximize the expected return

given by a state-value function (V-function) or state-action pair
value function (Q-function).
Traditional methods for estimating value functions or

policies in reinforcement learning (RL) typically rely on
tabular approaches or linear function approximations. These
methods work well for simple environments with discrete and
small state-action spaces, as seen in techniques like Q-learning
or temporal difference (TD) learning.63 However, when faced
with complex or high-dimensional problems, such as those
encountered in chemical reactions, these traditional ap-
proaches become impractical. The challenge arises from the
difficulty of manual feature engineering, which involves
selecting and designing relevant features from raw data. This
process can be time-consuming, error-prone, and may lead to
instability or divergence in the learning process, further
complicating the model’s ability to generalize to new situations.
To address these limitations, deep learning methods were

integrated with RL, leveraging deep neural networks (DNNs)
to more effectively approximate value functions, policies, and
models within the RL framework. DRL offers several key
advantages over traditional RL.64,65 It excels in handling high-
dimensional state and action spaces, thanks to the capacity of
deep neural networks to represent intricate functions. DRL
also automates feature learning from raw data, reducing the
need for manual feature engineering and improving adapt-
ability to complex environments. This capability enhances
scalability and generalization, allowing DRL to perform well in
diverse and previously unseen scenarios. Furthermore, DRL
enables end-to-end learning, integrating perception and
decision-making into a unified process, which improves overall
performance and flexibility in tackling sophisticated prob-
lems.59

A deep deterministic policy gradient (DDPG), which is one
of the family of DRL algorithm, is proposed to address the
challenges associated with environments exhibiting continuous
action spaces and high-dimensional and complex actions and
achieve a nuanced exploration-exploitation trade-off.58 The
proposed DDPG integrates value-based techniques like Q-
learning with policy-based approaches such as policy gradient
methods to deliver a robust framework for concurrently
learning complicated behaviors. This integration allows DDPG
to leverage the stability and robustness of value-based methods
while benefiting from the flexibility and adaptability of policy-
based approaches, enhancing learning efficiency in complex
and continuous action environments.

Figure 2. Reaction experimental set up for the proposed imine
synthesis reaction in flow.

Figure 3. Deep neural network architectures of the proposed Actor (a) and Critic (b) models in the DDPG agent, each featuring two hidden layers
with 64 nodes.
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2.2.1. DDPG Framework and Network Design. The
DDPG algorithm employs a sophisticated framework consist-
ing of two key models: the actor and the critic. The proposed
actor network architecture consists of three tiers: an input layer
that receives the state as input, an output layer that generates
the action, and hidden layers, which are two layers with 64
nodes each that record intricate interactions within the input.
The critic network follows a similar structure but takes both
the state and the selected action as input. After the input layer
and several hidden layers, the concatenation layer and output
layer are utilized to produce a single Q-value. This actor-critic
network design offers a compromise between the RL agent’s
ability to capture complex policy behaviors and the necessity
for computational efficiency, thereby enabling stable training
and practical deployment in reaction optimization tasks.53,58

While more complex network configurations could potentially
enhance performance, they would come with increased
computational costs, longer training times, and a higher risk
of overfitting, which may not justify the performance gains in
reaction optimization tasks where computational resources are
a key limitation.58 Then, nonlinearity is introduced to both
networks through nonlinear transformation or activation
functions such as logistic, SoftMax, tanh or rectified linear
unit (Relu). These functions allow neural networks to
represent complex relationships between inputs and outputs,
enabling them to approximate any continuous function and
make them more efficient than linear transformations.66 The
choice of ReLU activation function is primarily motivated by
its computational efficiency, gradient stability, and established
success in reinforcement learning tasks like DDPG.
After computations, error derivatives are computed back-

ward and gradients backpropagated toward the input layer,
allowing weights to be updated to optimize a loss function. A
generalized architecture of the actor and critic network for
DDPG agent is presented in Figure 3.
These actor and critic networks collectively guide the

behavior of the RL agent in continuous action spaces. The
actor is a policy network that receives the state as input and
produces a precise continuous action, rather than a probability
distribution of actions like DQN.64,65 Whereas the critic
network evaluates the quality of actions chosen by the actor by
estimating the state-action value function. Both networks have
target networks, which are time-delayed copies of the actor and
critic networks. They stabilize the learning process by acting as
targets during updates.63

The actor network μ(s | θμ) is responsible for defining the
current policy by deterministically mapping the current state of
the environment to a specific action (reaction conditions
variations). According to Lillicrap et al.,58 in off-policy
algorithms such as DDPG, the exploration process can be
treated separately from the learning process. Hence, the
exploration policy with the addition of noise sampled from a
noise process is given as follows:

= | +a s s( ) ( )t t t t (9)

Here, st and at denotes the reactions conditions and their
variations at time t, respectively. Noise ( ) is introduced to
the action to encourage exploration of the action space in the
early stages of training. This is essential for balancing the
exploration−exploitation trade-off, a fundamental aspect of RL.
Exploration refers to the process of trying new actions or
strategies to gather more information about the environment
or solution space, enabling the agent to discover potentially

better solutions that may not have been previously considered.
In contrast, exploitation involves leveraging known information
to make decisions that are expected to yield high rewards or
optimal outcomes based on prior experiences or learning.67

After every iteration of the agent interaction with the
environment, the network parameter (θ) is updated to
optimize the probability that “good” behaviors will be sampled
later. These transitions (st, at, Rt, st+1) are stored in the
experience replay buffer. A minibatch of transitions (N) is
sampled from the buffer for updating the actor and critic
network.
To maximize cumulative rewards, the DDPG algorithm uses

policy gradients to optimize policies by iteratively adjusting the
parameters (θμ). The gradient for the actor network is
computed using the deterministic policy gradient theorem,
which is given as

| | | |= =J
N

Q s a s1
( , ) ( )

i
a

Q
s s a s s, ( )i i i

(10)

In essence, the steps in eq 10 involve first computing the
gradient of the action with respect to the actor’s parameters
and then computing the gradient of the Q-value against the
action. This dual-gradient strategy allows the actor network to
be trained in a way that maximizes the expected Q-value, hence
refining the actions it selects to achieve improved performance
and enhancing the policy.58,68

The critic network Q(s, a | θQ) evaluates the quality of the
actions suggested by the Actor network and provides feedback
by estimating the values (Q-value or reward) of the actions
chosen by the actor.64,65 The evaluation of the Q-value is very
critical for evaluating and refining the policy. To demonstrate
the influence of various reaction conditions in this work, the Q-
value function (Qθ) is presented as follows:
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where Eθ denotes the expected value based on the policy, γ is
the discount factor, and r(st, at) is the instantaneous reward
associated with the actions at resulting in states st. This
formulation captures the long-term value of the state-action
pair under the policy parametrized by θ. To practically
compute and update these Q-values, the Bellman equation
used, which provides the recursive relationship for the Q-value:

= + +Q s a r s a Q s a( , ) ( , ) max ( , )t t t t t t1 (12)

The Bellman operator minimizes the TD error by reducing
the difference between the Q function’s value before and after
the update, estimating the expected value for the future state,
st+1. This error is usually calculated with the distinct target
policy (actor) and value (critic) networks, each with unique
parameters (θμ′, θQ′), to stabilize learning. Using the two-norm
of this error, the critic loss is expressed as

= |L Q
N

y Q s a( )
1

( ( , ))
i

i i i
Q 2

(13)

where yi represents the target Q-value for the next state,
computed using the target networks, which is defined as

= + | |+ +y r s a Q s s( , ) ( , ( ) )i i t t i i
Q

1 1 (14)

Minimizing the mean-squared loss between the target Q-
value and the main Q-value (Q(si, ai | θQ), as shown in eq 13,
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helps in optimizing the critic network approximation. This
process ensures that the critic network accurately evaluates the
quality of the actions, which, in turn, helps improve the actor
network’s policy updates.
The target network of actor μ′(s | θμ′) and critic Q′(s, a |

θQ′), are designed to gradually follow the learning of the main
networks. This gradual update significantly improves the
stability of the learning process by preventing large, abrupt
changes that could hinder it. The target network weights are
updated using “soft updates,” where a fraction of the main
network weights is incorporated with a smoothing factor
(τ)58,69:

+ (1 )Q Q Q (15)

+ (1 ) (16)

The policy gradient of the actor network depends only on a
proficient critic network. This suggests that any improvements
made to the critic network will result in an instantaneous
improvement in the quality of the actor network updates.
Finally, the deployment of the DDPG algorithm is completed
by training a policy network using a deterministic policy
gradient (eq 10) and a Q-learning network by minimizing the
error between the actor and target actor (eq 13). This
combination of deep learning and an off-policy actor-critic
network builds a powerful framework for effective training in
high-dimensional state and action spaces, as shown in Figure 4.
The agent can be conceptualized as an optimization

algorithm that aims to learn how to solve a set of objective
functions. The state of the agent includes the current
experimental conditions in the optimization process and any
relevant features like gradients, previous conditions, and
objective values. The action taken by the agent is the
adjustment made to the current reaction conditions during
the optimization process. The policy is the method used to
determine which action to take based on the current state and
the history of gradients, experimental conditions, and objective
values. Learning the policy is learning the best way to update
the experimental conditions. The RL algorithm ensures the
agent maintains flexibility in solving the objective function
without becoming overly specialized.

2.3. Reward Function

As discussed in the previous section, the rewards help the agent
refine its actions and policies to converge on an optimal policy
or solution. At every step of the episode, the agent receives a
reward (rt) which by accumulating over all steps within an
episode, helps to evaluate the total or cumulative reward that
needs to be maximized. Here, the objective is to maximize the
production of n-benzylidenebenzylamine, which is measured
by the normalized concentration of the product. To achieve
this, a hybrid reward function is proposed, as described in eq
17:
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Here, c3 is the concentration of the product at the outlet of the
reactor. Min (c3) and max (c3) are respectively minimum and
maximum product concentrations experienced during training.
Since the yield of c3 directly reflects the conversion rate with
100% selectivity (no side reactions or byproducts), the reward
calculation aligns with yield computation. This means the
reward function, based on the normalized concentration of c3,
directly measures performance, simplifying the reinforcement
learning process.
2.4. Hyperparameter Optimization

The training of RL agent involves both parameters and
hyperparameters. Parameters, such as weights and coefficients,
are internal values associated with DNN learned during
training. In contrast, hyperparameters are external config-
uration settings of an agent that must be defined beforehand.
Hyperparameter optimization is the process of systematically
finding the optimal values for these external settings to
maximize the performance. Hyperparameter settings play a
critical role in shaping how the agent learns and adapts during
training, influencing its performance and efficiency.59,70,71 In
DRL, careful optimization is essential for optimizing learning
speed, stability, and overall effectiveness. Techniques such as

Figure 4. Framework of the DDPG RL agent.
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fANOVA have revealed that, depending on the environment,
one or two hyperparameters may be significantly more critical
than others,72 highlighting the need for more systematic and
targeted optimization approaches. Traditional methods, such
as OVAT tuning or grid search, often prove inefficient and
costly, focusing solely on final hyperparameter settings without
fully quantifying their impact throughout the training process.
While OVAT methods are frequently used due to their
simplicity and ease of implementation, they often fail to
explore the hyperparameter space comprehensively and can be
resource intensive. The goal here is not just to find good
hyperparameter settings but also to quantify the effect of
hyperparameter tuning. To overcome these limitations,
Bayesian optimization has emerged as a sophisticated Hyper-
parameter Optimization (HPO) method. It models the
objective function probabilistically, enabling a more targeted
and efficient exploration of the hyperparameter space. Unlike
the OVAT approach, which evaluates hyperparameters
independently, Bayesian optimization considers the interac-
tions between multiple hyperparameters simultaneously,
leading to more informed and effective tuning.
One of the most widely used tools for using Bayesian

optimization is Optuna, an open source hyperparameter
optimization framework. Optuna leverages the Tree Parzen
estimator to manage tree-structured search spaces and
conditional parameters while utilizing kernel density function
estimators for efficient optimization.73 The tool provides
efficient search strategies, support for distributed computing,
and automatic algorithm selection, making it a powerful tool
for hyperparameter tuning. In this study, hyperparameters such
as learning rates for actor and critic networks, noise exploration
factors, discount factors, and smoothing factors were
optimized. Performance metrics, including average reward,
convergence time, and policy stability, were used to evaluate
the effectiveness of each method. This work compares the
performance of traditional OVAT tuning with Bayesian
optimization, implemented using the Optuna framework, to
identify which approach yields superior results in DRL tasks.
2.5. Training and Refinement

The training performance of any RL agent is strongly
dependent on the exploration and exploitation trade-off. A
RL agent is trained to find the optimal solution as fast as
possible to minimize the experimental cost. However, selecting
a solution too early without full exploration is not a good
approach as it may leads to either unsuccessful training or
suboptimal or local solutions. To achieve effective training, an
agent must explore thoroughly the operating/decision space to
identify optimal policies, in a cost-effective manner, and avoid
suboptimal solutions. Several algorithms can be used to
enhance exploration by adding randomness or noise to the
actions, states, or directly to the weights of the actor network.
When selecting actions, noisy policies add randomness directly
to the decision-making process while ε-greedy policies
probabilistically balance exploration for new actions and
exploitation of known ones.
Noise based exploration was suggested by Lillicrap in their

introductory paper for continuous action.58 As given in eq 9,
the noise ( ) can be tailored to suit the characteristics of the
environment by adjusting its variance, exploring different noise
distributions, and making it adaptive to the agent’s perform-
ance and environment conditions. The proposed method
employs the Ornstein−Uhlenbeck (OU) process, a stochastic

process introduced by Uhlenbeck and Ornstein74 and later
used by Lillicrap et al.58 to generate time-dependent
temporally correlated noise. OU noise is calculated independ-
ently for each action, as follows:

= + · + ·dt dt I( ) (0, )a a at t t1 1 (18)

Here, χadt
is the current value of the noise, θ suggests the rate at

which noise returns to the mean, μ represents the long-term
mean, and σ is the volatility of the noise. The mean serves as a
central tendency or baseline value for the noise over time

I(0, ) represents a random variable sampled from a standard
normal distribution The OU process introduces autocorrela-
tion in the noise, which helps the agent explore the action
space more effectively.
In ε-greedy, the exploration-exploitation trade-off is achieved

by randomly selecting actions at the beginning of the training
and more purposefully toward the end of training. The agent
computes epsilon (ε), as follows:

= +
e

(1 )
Nmin
min

t (19)

where εmin is the lowest probability of choosing a random
action at the end of the training. The parameter λ, which
governs the rate of exponential decay, gives the rate of
exploration decline over time. As the number of training
iterations (Nt) increase, the exponential decay of ε indicates a
decreasing likelihood of selecting random actions. This decay
mechanism ensures that the agent proceeds from exploratory
activity to the gradual exploitation of learned information,
hence improving its decision-making capabilities. By using
exponential decay to adjust ε intelligently, the agent begins
with high probability of exploring new actions with limited
knowledge and discover various possible strategies. As training
progresses, ε decreases, leading the agent to exploit best known
actions more frequently. This balance allows the agent to
collect comprehensive information and enhance decision-
making based on accumulated knowledge. Additionally, this
improves the agent’s learning trajectory, integrating new
information and prior learning for more informed decisions
in complex situations.

3. RESULTS AND DISCUSSION
In this section, the methodology and RL algorithms described
in the previous section are implemented. The simulations were
conducted in Python version 3.9. The mathematical model
described earlier (eqs 3−6), representing the imine synthesis in
flow, is used as the environment to train the proposed DRL
agents and validate and test the proposed architectures and
methods. The model is simulated using the initial conditions
and variable values outlined in Table 1. The method of lines is
employed to convert the partial differential equations into
ordinary differential equations (ODEs), which can be solved
numerically. In the current case, the resulting ODE system is
solved in Python using the ‘solve_ivp’ function, which
addresses initial value problems with stiffness. The solver
employs a backward differentiation formulas method, a robust
technique designed to efficiently solve stiff equations. The
agent interacts with the reactor model (environment)
continuously by changing the manipulated variables (actions)
and collecting the states to evaluate the rewards. A complete
list of Python packages used is provided in Section A of the
Supporting Information (SI).
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Prior to the self-optimization efforts, a parameter estimation
procedure was conducted based on collected experimental
data. This is followed by a comprehensive validation and
testing of the DDPG and reaction network setting. The impact
of hyperparameters on the training procedure and outcomes is
demonstrated through systematic parametric analysis. At the
end, the performance of the DRL approach is compared
against the state-of-the-art techniques such as SnobFit and
Nelder−Mead.
A DRL agent was designed based on the proposed actor and

critic network architecture as discussed in the previous section.
The DDPG agent was trained based on a maximum number of
episodes of 100, each episode consisting of 10 decision/action
steps. The replay buffer size is kept at 5000 to store training
experience, which allows the algorithms to learn from a more
diverse set of experiences.
3.1. Estimation of the Model Parameters
To build a reliable model able to capture or represent the RL
environment, several model parameters must be identified
based on a set of experimental data. Here the kinetic
parameters, namely the activation energy (Ea) and the rate
coefficient kref, which are critical to predict how the reaction
behaves under various conditions and consequently allowing
systematic optimization of the reaction process, are identified
from the experimental data. Accurate determination of these
parameters ensures that the mathematical model, used as a
training environment for the DRL agent, aligns closely with
real-world outcomes. The remaining model parameters (e.g.,
UA, ΔHreact) were fixed at nominal values obtained from the
literature (Table 1).
The results shown in Figure 5 represent the concentration

profiles over time obtained under four different temperatures

(288, 298, 313, and 318 K). The experimental data capturing
the concentration profiles of the reactant (benzaldehyde) and
product (imine) were used for the parameter estimation
procedure based on the minimization of the sum of the
squared errors. The optimal kinetic parameters are summarized
in Table 2. As shown in Figure 5, the model demonstrates
excellent prediction capabilities with respect to the four

different experiments. Additional details are provided in
Section B of the Supporting Information (SI).
3.2. Tuning of the DRL Hyperparameters
In DRL, the performance of an agent is strongly dependent on
the choice of the hyperparameters. In this section, we present
and compare the results associated with the hyperparameter
optimization using an advanced technique, namely Bayesian
optimization via Optuna, against a tuning strategy based on the
traditional trial-and-error methods. Both approaches were
evaluated under identical conditions, including the same
environments, network architectures, and performance metrics.
Here, the emphasis is on five key hyperparameters, namely the
learning rates for the actor and critic networks, discount factor,
target network update rate, and noise addition, which
significantly impact the agent’s decision-making, stability, and
gradient descent efficiency.
The learning rates of the actor and critic networks are

indeed critical hyperparameters in DRL algorithms. The
convergence performance of the proposed algorithms with
various learning rates is illustrated in Figure 6. The figure

clearly shows that both very low and very high learning rates
result in poor convergence. The learning rate determines the
magnitude of the parameter adjustments during training,
directly influencing how quickly or stably the model learns.
When the learning rate is too high, parameter adjustments
become overly large, often destabilizing the training process.
This can lead to oscillations or divergence by overshooting the
optimal solution, even when using adaptive optimizers like
Adam, which dynamically adjust step sizes based on gradient
information. High learning rates are particularly prone to
causing instabilities, as the excessively large parameter changes
hinder convergence. Conversely, very low learning rates result
in infinitesimal parameter changes, significantly increasing the
number of iterations or episodes required for training and
resulting in slower convergence. This slower progress can also
increase the likelihood of the model becoming trapped in

Figure 5. Model predictions vs experimental data (a) Concentrations
of the product and reactant (benzaldehyde) at the reactor outlet, at
different temperatures.

Table 2. Optimal Estimates of the Kinetic Parameters of the
Imine Synthesis

parameter optimal value

activation energy, Ea (kJ mol−1) 21.57
reaction rate coefficient kref (L mol−1 min−1) 0.413

Figure 6. Convergence of training noisy action policies at different
actor and critic learning rates.
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suboptimal solutions. Therefore, carefully selecting an
appropriate learning rate is crucial, as it governs the scale
and stability of parameter refinement throughout the training
process. Based on the observed performance, the optimal
learning rates for updating the actor and critic networks are
αactor = 0.001 and αcritic = 0.002, respectively. These values help
achieve a good trade-off between stability and convergence
speed.
The exploration noise parameter (σe), which introduce

randomness into the actions taken by the agent, are crucial for
effective exploration within the decision space. In this study,
the impact of the exploration noise parameter was evaluated
within the range of 0.0001 to 0.5. This range was chosen to be
very wide to cover a broad spectrum of exploration behaviors,
from minimal to extensive noise. The results of this
investigation are presented in Figure 7. When σe is set too

low (e.g., between 0.0001 and 0.005), the agent experiences
minimal randomness, leading to inadequate exploration,
premature convergence to suboptimal policies, and a tendency
to become trapped in local optima. Conversely, larger values of
σe result in more important noise distributions, encouraging
the agent to explore a broader range of actions. However, the
impact on performance varies depending on the specific value
of σe. For example, with a higher value like σe = 0.5, the
exploration noise is significant, leading to substantial random-
ness in the agent’s actions. This excessive exploration can cause
unstable performance, with cumulative rewards fluctuating
between 20 and 40, as the agent struggles to maintain a stable
policy due to the erratic behavior induced by the high noise
level. Therefore, as shown in Figure 7, the observed optimal
value of σe lies around 0.01, where exploration is sufficient to
discover a broad set of potential policies without disrupting the
stability and efficiency of the learning process.
The discount factor, denoted as γ, is a critical hyper-

parameter in the DDPG framework, as it determines the
weight given to future rewards relative to immediate rewards,
thereby influencing the balance between long-term and short-
term learning and decision-making. In our study, we examined
discount factors ranging from 0.001 to 0.999 to assess their
impact on the agent’s learning process and overall perform-
ance. When γ is less than 0.7, the agent tends to prioritize
short-term rewards, which can lead to more stable but
potentially suboptimal learning curves. This gratification of

immediate rewards impairs the agent’s ability to consider long-
term benefits, resulting in poor training responses and limited
overall performance, as illustrated in Figure 8. Conversely, a

high discount factor, here above 0.9, enhances the agent’s
resilience by mitigating its sensitivity to abrupt changes in the
environment. This leads to improved stability in learning and
better convergence, as the impact of noisy rewards is reduced.
These findings suggest that a discount factor (γ) within the
range of 0.9−0.999 provides a reasonable balance. By adopting
values within this range, it, further stabilizes the learning
process and places greater emphasis on long-term benefits,
thereby improving overall learning performance.
The smoothing factor (τ) is also a critical parameter that

controls the rate at which the parameters of the target network
are updated relative to those of the main (or online) network.
As discussed in Section 2.2.1, the main actor and critic
networks are updated directly during training, whereas the
target network undergoes a slower update using a soft update
rule. This gradual update helps stabilize the learning process by
preventing abrupt changes in the target values. As illustrated in
Figure 9, varying τ values from 0.0001 to 1 significantly
impacts the cumulative rewards achieved by the agent over the
specified episodes. Specifically, higher τ values, such as 1 and
0.1, cause the target network’s parameters to more closely track
those of the main network, resulting in faster updates.

Figure 7. Training performance and convergence at different values of
the noise exploration parameter (σe).

Figure 8. Training convergence under different discount factors.

Figure 9. Smoothing factor (τ) influence on cumulative rewards
under noisy environments.
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Although this can accelerate the learning process, it may also
introduce instability if τ is set too large, as the target network
may react too quickly to changes in the main network.
Conversely, lower τ values, such as 0.001 and 0.0001, result in
slower updates to the target network’s parameters, enhancing
stability by reducing rapid fluctuations and oscillations.
However, this comes at the cost of slower adaptation to
changes in the main network, which could hinder learning. The
observed performance trends in the graph underscore the
importance of selecting an optimal smoothing factor that
balances responsiveness and stability. An updated range of
0.001 to 0.01 emerges as a promising trade-off, allowing the
agent to effectively adapt to changes in the environment while
ensuring robust performance. Notably, the τ value of 0.01
demonstrates a good compromise, yielding substantial
cumulative rewards while maintaining a stable learning
trajectory. The observed performance trends illustrated in
Figure 9 underscore the importance of selecting an optimal
smoothing factor that balances responsiveness and stability.
These findings highlight the critical role of the smoothing
factor in shaping the learning dynamics of RL agents,
emphasizing the need for careful hyperparameter tuning to
enhance overall performance.
All the optimized hyperparameters, including the discount

factor γ, the smoothing factor τ, the learning rates for the actor
and critic networks, and the exploration noise parameter σe, are
summarized in Table 3. The results reveal notable differences

between the two approaches, highlighting the impact of
systematic optimization on hyperparameter selection. A key
advantage of Bayesian optimization is its ability to tune several
or all hyperparameters simultaneously, whereas the trial-and-
error method typically adjusts one parameter at a time, making
it a more time-consuming and less efficient process. One
notable observation is the significantly lower critic learning rate
(αcritic) achieved through Bayesian optimization (0.00043)
compared to trial-and-error tuning (0.002). A lower learning
rate for the critic network often enhances stability in DRL by
preventing large updates that could destabilize training.
Similarly, the smoothing factor (τ) is optimized to a much
smaller value (0.0004) through Bayesian optimization, which
suggests a more conservative update strategy for target
networks, potentially leading to more stable learning. Another
important difference is seen in the exploration noise parameter
(σe). Bayesian optimization results in a significantly higher
value (0.1019 vs 0.01), indicating a preference for increased
exploration during training. This suggests that Bayesian
optimization identifies a balance between exploration and

exploitation that may not be as easily achieved through manual
tuning. The discount factor (γ) and actor learning rate (αactor)
show smaller differences, with Bayesian optimization yielding
slightly higher values (0.961 vs 0.95 for γ and 0.002 vs 0.001
for αactor). These adjustments may contribute to better long-
term reward optimization and more effective policy updates.
The computational cost of the different tuning strategies is

also key. As anticipated, the Bayesian optimization demon-
strates clear advantages over trial-and-error. As shown in Table
4, Bayesian optimization completed 100 trials across the

considered 5 hyperparameters in approximately 11.47 h. In
contrast, trial-and-error required 7 h to complete only 30 trials
to deliver suboptimal performance. Another way to establish a
reliable comparison between the Bayesian optimization and
trial-and-error consists of running the latter under similar
numbers of trials (i.e., 100 trials). As expected, the extended
trial-and-error approach comes with an even higher computa-
tional cost without guaranteeing optimal performance. It is
worth mentioning that the computational time does not
increase linearly with the increased number of trials in all cases
because changes in any given hyperparameter have a different
impact on the training features and performance and
consequently on the inherent computational cost. In essence,
the training performance and the computational cost have
different sensitivities to changes or increments in the
hyperparameter values.
Overall, the results demonstrate that Bayesian optimization

can explore a broader search space and fine-tune hyper-
parameters more effectively than the trial-and-error method.
These optimized values could potentially lead to improved
convergence speed, training stability, and final policy perform-
ance. Table 5 provides additional parameters relevant to the
overall design and training process of the DDPG algorithm.

3.3. Training Performance Using ε-Greedy and
Action-Noise Policy
In this part, we investigate the training performance and
inherent exploration strategy of the DDPG agent discussed in
section 2.5. The action-noise policy was evaluated using the set
of hyperparameters optimized using Bayesian optimization as
discussed in the previous section, with the training perform-

Table 3. Ranges of DDPG Agent Training Hyperparameters
and Their Optimal Values Obtained through Trial-and-
Error and Bayesian Optimization

optimal value

hyperparameter
hyperparameter
predefined range

trial-and-
error

Bayesian
optimization

critic learning rate
(αcritic)

0.0002−0.02 0.002 0.00043

actor learning rate
(αactor)

0.0001−0.01 0.001 0.002

discount factor (γ) 0.001−0.999 0.95 0.961
exploration noise
parameter (σe)

0.0001−0.5 0.01 0.1019

smoothing factor (τ) 0.0001−1.0 0.01 0.0004

Table 4. Computational Time Associated with the
Hyperparameter Tuning Based on Trial-and-Error vs
Bayesian Optimization

HPO method
No. of
trials

No. of
hyperparameter computational time

Bayesian optimization 100 5 ∼11.47 h (41,292
s).

trial-and-error 30 5 7 h (25,200 s).
trial-and-error
(extended)

100 5 ∼2 days (∼172,800
s)

Table 5. Additional Parameters and Settings of the DDPG
Agent

parameters values

episode 100
iterations per time step 10
optimizer exploration policy OU-noise
optimizer Adam
batch size 64
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ance illustrated in Figure 10. Figure 10a depicts the agent’s
exploration performance within the decision space, transition-
ing to exploitation as training episodes progress. The DDPG
agent’s training starts as shown by the purple dots, gradually
converging to the optimal reaction conditions (red dots).
Figure 10b illustrates the agent’s learning dynamics associated
with the optimization of product concentration. The consistent

initialization yet varied trajectories indicate the stochastic
nature and complexity of the optimization process. The color
gradient, representing product concentration, demonstrates the
agent’s adaptive decision-making as it refines its policy to
achieve optimal reaction conditions over successive training
episodes. Figure 10c demonstrates that the DDPG agent, based
on the hyperparameters optimized via Bayesian optimization,

Figure 10. Training performance of noisy action policy at optimized hyperparameter.

Figure 11. Evolution of the sequences of the decision variables (actions) implemented by the agent over the 1st, 40th, 63rd, and 100th training
episodes. (Red dots indicate the moment at which the agent takes actions.)
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exhibits the best training and convergence performance toward
the optimal operating conditions of the imine synthesis
reaction. Initially, the agent explores the decision space during
the first 40 training episodes, subsequently shifting to
exploitation guided by the best policy. Notably, the training
persists beyond the 50th episodes, as indicated by the cyan-
colored dots in Figure 10a, demonstrating the agent’s
continued learning and adaptation to optimize performance.
This extended training period allows the DDPG agent to
further refine its policy and gain deeper insights into the
system’s dynamic behavior based on finely tuned actions. The
training is ultimately achieved after reaching the maximum
number of episodes, marked by the red dots at the 100th
episode, or when the moving average of cumulative rewards
stabilizes, indicating convergence to the optimal solution. This
comprehensive analysis underscores the DDPG agent’s
capability to navigate the decision space effectively, balancing
exploration and exploitation to optimize performance of the
imine synthesis reaction.
Figure 11 shows the detailed training performance of the

DDPG agent over the iterative interactions with the environ-
ment. The agent’s learning process begins with the initial
actions selected randomly for each episode to explore the
decision space. These initial action values, such as residence
time, molar equivalent ratio, and reactor temperature, serve as
a baseline from which the agent iteratively adjusts its decisions

based on feedback (rewards) received from the environment.
During early training episodes, the agent’s actions received low
rewards, indicating the exploratory phase, which is critical for
the agent learning process. Over time, the agent progressively
converged toward higher cumulative rewards and associated
optimal conditions. By episode number 28, the agent began to
refine its actions, leading to increased cumulative rewards and
inherently higher product concentrations. This behavior also
captures a shift from exploration to exploitation of the learned
strategies. Specifically in episode 40, molar ratio and
temperature sequentially decreased from 1.7 to 1.4 and from
338 to 319 K, respectively, to increase the product
concentration. Additionally, the residence time approached
its optimal value during this phase, further contributing to the
agent’s improved performance. As the training progressed, the
agent continued exploring and gradually converged toward
optimal conditions, as evidenced by the stabilization of the
values of the decision variables in later episodes. For instance,
actions between episodes 63 and 100 are finely tuned to
continuously produce maximum productivity (more than 1.8
mol/lit), which suggests that during these first 63rd episode, the
agent was mainly performing exploitation to deliver global
optimal reaction conditions with the help of the additionally
collected knowledge from the environment (i.e., the imine
synthesis reactor).

Figure 12. Training performance of the DDPG agent based on the optimized hyperparameters for the ε-greedy policy with batch sizes of 64 and 10
steps (a−c), 64 and 40 steps (d−f), and 128 and 40 steps (g−i), respectively.
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The performance of the DDPG agent is evaluated under a
noisy action policy and compared with the ε-greedy policy to
gain insight into the agent’s resilience under various
conditions, as explained in detail in section 2.5. Additionally,
this allows a comprehensive assessment of the convergence
rates, effectiveness, and environmental adaptation, offering
insightful information about the fundamental processes and
guiding the best line of training action in complex systems. The
training performance of the ε-greedy policy is shown in Figure
12a,d,g, whereas Figure 12b,e,h depicts the corresponding
decision spaces that the agent explored, and Figure 12c,f,i
emphasizes the product concentration. Initially, as shown in
Figure 12a−c, the DDPG agent trained under the ε-greedy
policy with the same set of hyperparameters and setting
(Tables 3 and 5) required additional episodes and significant
simulation time to achieve convergence. From Figure 12a, it
can be observed that the agent engaged in exploration for the
first 60 episodes, as indicated by unstable and low episodic
rewards, reflecting its attempt to learn the environment’s
dynamics. However, as shown in Figure 12b,c, the agent
explored only a limited section of the decision space before
transitioning to the exploitation stage. This shallow explora-
tion, coupled with the absence of convergence to specific
optimal actions under the current conditions and settings,
suggests the need for further improvements. Addressing this
limitation may require additional data, either through
increasing the number of episodes or the number of actions/
steps per episode, to encourage deeper exploration of the
environment representing the imine synthesis reaction.
To mitigate the observed shallow exploration, the number of

steps per episode was increased from 10 to 40. This adjustment
enabled the agent to evaluate a greater number of actions per
episode, thereby generating more data points and enhancing its
exploration capability. As shown in Figure 12d−f, the increased
number of steps facilitated improved exploration, resulting in
smoother and more stable training performance with higher
cumulative rewards. Importantly, this approach reduced the
need for additional episodes, though it came at the cost of
increased computational demand. To further enhance training
stability, the batch size was increased from 64 to 128. This
modification allowed the agent to sample a larger number of
experiences from the replay buffer at each training iteration,
leading to more stable updates. As shown in Figure 12g−i, this
adjustment resulted in smoother training curves and a more
comprehensive exploration of the decision space. Ultimately,
these changes enabled the agent to achieve improved and
consistent performance, despite the trade-off of increased
computational costs. The smoother training and more

thorough exploration led to more effective exploitation of the
learned policies, ensuring the agent could more reliably reach
optimal conditions within the environment over time.
3.4. Adaptive Hyperparameters Tuning

The previous sections highlighted the performance of DDPG
agents based on different hyperparameter tuning/optimization
strategies. As clearly shown, the agent performance was
significantly enhanced using the Bayesian hyperparameter
optimization approach. However, fixing the hyperparameter
values for the entire training duration may impose limitations
due to the conflicting and competing nature of certain
parameters, which require inherent tuning compromises.
These trade-offs can affect the overall performance of the RL
agent, as many of the parameters will be given suboptimal
values, resulting in a poor training performance. To overcome
these limitations, an adaptive or dynamic hyperparameter
tuning will be investigated to deliver a more effective solution.
Adapting the parameter values during training may enable the
agent to maintain flexibility, fostering efficient exploration in
the early stages while gradually emphasizing exploitation as
learning progresses.
An effective adaptive tuning approach is employed to update

the hyperparameters during training as described in eq 20
below. The method allows the implementation of a
dynamically adjusted real hyperparameter value as opposed
to methods based on discrete values, enhancing the
adaptability of the proposed methodology.75

The hyperparameter values are dynamically adjusted over
the training stages based on the equation below.

= × AHP max(HP , HP )t tmax min (20)

In the equation above, HPt represents the dynamically
adjusted hyperparameter at time t, bounded by HPmax and
HPmin. α is the decay rate which ensures a smooth transition
from higher to lower values as training progresses. At a progress
or adaptation metric (At) which depends on the total number
of steps per episode (Ntotal), the current episode (Ept) and the
current training step (Nt). At is defined as

= * +A N NEpt t ttotal (21)

During early training stages, higher hyperparameter values,
closer to the maximum allowed value (HPmax), are
implemented as the adjustment term relating to the number
of episodes and steps (At) (eq 21) is still very small. As a result,
the agent undergoes broader exploration. As the training
progresses, the term At (in eq 21) increases and consequently
the hyperparameter values gradually decrease and converge

Figure 13. Training performance of the DDPG agent at adaptive noise.
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toward their minimum values (HPmin). This gradual reduction
ensures a smooth transition from exploration to exploitation
and enhances convergence toward the global optimal solutions.
This dynamic framework allows the agent to adapt its

learning process, ensuring an optimal balance between
exploration and exploitation throughout training. To demon-
strate the capabilities of the adaptive hyperparameters tuning,
two critical parameters will be dynamically tuned, namely the
exploration noise and learning rates. The use of adaptive
exploration noise, as opposed to fixed noise, delivers improved
training performance, as shown in Figure 13a compared to
Figure 10a, evidencing enhanced exploration and the agent’s
capability to identify the global optimal conditions. At the
beginning of training, higher levels of noise introduce
substantial randomness, encouraging broad exploration of the
decision space. During this phase, the agent actively explores
the reaction decision space, taking sequential steps toward
identifying the optimal conditions, shown in Figure 13a,b. As
the agent becomes more confident in its learned policy, the
noise is systematically reduced, facilitating a smoother
transition from exploration to exploitation. This shift is
reflected in the cumulative rewards, which initially show
strong exploration up until approximately the 40th episode.
Following this, the agent begins to converge toward optimal
reaction conditions, as evidenced by the clustering of points in
the decision space toward the “End” point in Figure 13a,b, and,
ensuring maximum cumulative rewards as it focuses on
exploiting its learned strategy. Based on the convergence
observed in the decision space (Figure 13a,b) and the
stabilization of cumulative episodic reward (Figure 13c), the
agent demonstrates effective learning throughout the training
period. However, the distribution of data points within the

decision space suggests that the extent of exploration may be
insufficient to definitively conclude convergence toward a
global optimum. To encourage further exploration and
potentially identify superior reaction conditions, it is beneficial
to gradually lower the learning rate for both the actor and critic
networks.
In the case of learning rate adjustment, the dynamic

adjustment of the learning rate ensures optimal progression
throughout training. A higher effective learning rate at the start
accelerates policy updates, allowing the agent to explore a
broader range of state-action pairs and adapt to diverse
operating conditions. As training progresses, the gradual
reduction of the learning rate facilitates finer adjustments to
the policy, improving stability and convergence. When
combined with adaptive noise, this strategy improves perform-
ance by encouraging more efficient exploration and exploita-
tion during the training phase. The action taken in the decision
space and training performance are presented in Figure 14a, b,
and c respectively. As shown in Figure 14a,b, the agent
explores a broad range of conditions early in training, with data
points scattered across the decision space within the first 50
episodes, especially at the start of the training process. After 50
episodes, there is a clear convergence toward the optimal
conditions, represented by a cluster of data points toward the
“End” region of the plots, indicating a shift towards
exploitation. This transition aligns with the increasing
cumulative episodic reward observed in Figure 14c, where a
rapid increase occurs between episodes 20 and 50, followed by
stabilization, and then converging toward a maximum between
episodes 50 and 80. With the proposed dynamic hyper-
parameters tuning, the agent identifies the optimal residence
time (min), equivalent ratio and temperature (K) at 3.8 min,

Figure 14. Training performance of the DDPG agent at adaptive learning rate.

Figure 15. Performance of the DDPG agent vs Nelder−Mead and SnobFit.
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1.1 and 321 K, respectively. The adaptive hyperparameter
tuning delivers a more effective balance between exploration
and exploitation, resulting in best training performance and an
optimal solution to the flow chemistry self-optimization
problem. It becomes clear that the adaptive hyperparameter
tuning leads to smoother learning trajectories, faster
convergence, and overall performance improvements.
3.5. Comparison of the DRL Agent against Gradient-Free
Optimizers

The performance of the proposed RL strategy is compared
against two widely used gradient-free optimization strategies
(Nelder−Mead and SnobFit), for the self-optimization of the
chemical reactions in flow. The exploration performance
within decision space of these techniques is shown in Figure
15. The red stars in Figure 15a−c represent the optimal
reaction conditions achieved by each optimizer. The figures
show that each optimizer converges to optimal reaction
conditions that deliver maximum product concentration of
imine. It becomes clear that the proposed optimizer (RL based
DDPG) outperforms Nelder−Mead and SnobFit based on the
key performance indicators summarized in Table 6. This
superiority is attributed to the intrinsic ability of DRL
frameworks to manage the exploration-exploitation trade-off
via policy gradient updates and deterministic action selection, a
feature that gradient-free optimizers do not explicitly possess.
Nelder−Mead identifies local optima through Simplex based
refinement making it highly sensitive to initial guesses or
starting conditions and therefore limited in its ability to explore
the broader solution space. Conversely, SnobFit algorithms
employs branch-and-fit strategies to achieve global optimiza-
tion solution; however, this often comes at the cost of
requiring a greater number of experimental evaluations.
These results underscore the differences in efficiency,

sensitivity to initial conditions, and the number of experiments
required by each method to converge to optimal solutions. The
proposed RL based approach converges to an optimal solution
in a mere 60 experiments, a very small number when compared
to Nelder−Mead and SnobFit, which require 120 and 250
experiments, respectively. However, Nelder−Mead algorithms
identify optimal reaction conditions at the boundaries of
temperature and residence time (residence time = 8 min,
molar equivalent ratio = 1, and temperature = 330 K). When
the initial guesses are altered, a different local solution is
obtained (residence time = 7 min, molar equivalent ratio =

0.63, and temperature = 330 K). SnobFit, on the other hand,
requires a higher number of experiments/iterations to fully
explore the decision space and find the global solution as
shown in Figure 15c.
The optimal conditions identified by the DRL-based agents,

based on several hypermeter tuning methods, as well as
SnobFit, and Nelder−Mead algorithms were experimentally
implemented. The resulting experimental product concen-
trations are shown against predicted optimal values in Table 6.
Overall, the experimental results are consistent with the
optimal solutions identified by the model-based self-
optimization approaches. As evidenced by the experimental
results of the products concentrations, the DRL agents with
the proposed hypermeter tuning methods delivered enhanced
productivity compared to the standard methods. This
consolidates the idea that the DRL agents, with the proposed
tuning methods, not only reduce the required experiments but
most importantly tend to converge to the global optimal
solutions. Interestingly, the best self-optimization performance,
showing specifically reduced experimentation costs and
increased productivity, was obtained by the DRL agent
under the proposed adaptive hypermeter tuning of two
parameters, namely the noise and learning rate. These results
highlight the great benefits of the new adaptive hyperparameter
tuning in the general context of reinforcement learning and
more specifically in the self-optimization of flow chemistry
systems.
Regarding computation costs, the DRL methods with

adaptive noise and learning rate tuning were more computa-
tionally intensive compared to traditional optimization
methods like Nelder−Mead and SnobFit. Specifically, while
the Nelder−Mead method showed quick convergence with a
computation time of approximately 54−66 s (for 118−96
iterations), and SnobFit required around 132 s for 250
iterations, the DRL agents with adaptive tuning needed 250−
400 s to achieve optimal solutions. Despite the increased
computation cost, the DRL agents’ ability to dynamically
balance exploration and exploitation allow them to reliably
converge to global optima and significantly reduce the number
of required experiments makes them highly beneficial in
complex systems like flow chemistry. Therefore, while the
computational cost is higher, the benefits of reduced
experimentation, increased accuracy, and the ability to
optimize intricate systems far outweigh these costs, reinforcing
the value of DRL-based methods for self-optimization tasks.

Table 6. Comparison of the Key Performance Indicators of the Different Self-Optimization Methodsa

optimal solutions

method initial guess

number of
experiments/
iterations manipulated variables

c3
(M)

experimental
c3 (M)

computation cost (to achieve
optimal solution)

Nelder-Mead Case 1: ER1/2: 0.714, Rest:
0.66, T: 280.55

118 ER1/2: 1, Rest: 8, T:
330

1.81 1.79 ∼66 s

Case 2: ER1/2: 7.9, Rest:
1.48, T: 313.27

96 ER1/2: 0.63, Rest: 7,
T: 330

1.65 1.50 ∼54 s

SnobFit 250 ER1/2: 1, Rest: 6.8, T:
325

1.80 1.81 ∼132 s

DRL (Bayesian) 85 ER1/2: 1.12, Rest: 2.1,
T: 330.59

1.82 1.80 ∼400 s

DRL (adaptive noise) 75 ER1/2: 1.12, Rest: 3.8,
T: 320.59

1.83 1.81 ∼400 s

DRL (adaptive noise and
learning rate)

75 ER1/2: 1.1, Rest: 3.8,
T: 321.57

1.84 1.83 ∼400 s

aER1/2: equivalent ratio, Rest: residence time, T: temperature, and c3: product concentration.
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Details of this can be found in Section C of the Supporting
Information (SI).

4. CONCLUSIONS
This paper proposed a new self-optimization strategy of a key
flow chemistry process based on deep reinforcement learning.
While the approach contributes to the development of the next
generation plug-and-play technologies, it opens new oppor-
tunities for bias free and cost-effective process development
and optimization strategies.
A state-of-the-art deep deterministic policy gradient

(DDPG) agent was designed and trained to identify the
optimal operating conditions that maximize the product
concentration of the imine synthesis. The Bayesian optimiza-
tion-based hyperparameter tuning demonstrated enhanced
training performance compared to the traditional trial-and-
error, which was evaluated based on the speed of convergence
and training smoothness. These training key features were
further enhanced using the proposed new adaptive dynamic
hyperparameter tuning. To evaluate the effectiveness of
different action policies, the DDPG agent was tested using
two approaches: the noisy action policy and the ε-greedy
action policy. Both policies demonstrated excellent perform-
ance in terms of computational speed and efficiency. However,
the noisy action policy outperformed the ε-greedy approach by
achieving a better balance between exploration and exploita-
tion, as well as faster convergence to optimal solutions. This
suggests that the DDPG agent equipped with the noisy action
policy is more effective for this reaction optimization task.
Finally, the performance of the different DDPG agents,

obtained based on the proposed architecture and hyper-
parameter tuning strategies, was validated and compared
against state-of-the-art self-optimization methods, namely
Nelder−Mead and SnobFit. Clearly, the DDPG agents
demonstrated superior capabilities and exhibited enhanced
tracking of the global optimal solution. The best performance
was shown by the agent based the adaptive hyperparameter
tuning which converged to the optimal solution in 60
experiments compared to 250 and up to 118 experiments in
the case of SnobFit and Neder-Mead, respectively. Addition-
ally, the experimental validations of the optimal profiles were
conclusive and proved consistent with predicted model-based
approaches. These key performance indicators underscore the
capabilities of the proposed new DRL self-optimization
strategies in the minimization of the experimental costs and
associated environmental burdens.
The mathematical model identified based on the new

experimental data was used as a training environmental to
further reduce the experimentation costs. However, the
approach can be fully implemented in real time, based solely
on the experimentation or on a hybrid approach, which may be
demonstrated in a future work. Moreover, the DRL can also be
adapted to the multiobjective self-optimization case to help
identify the set of the best compromises between different
competing criteria.
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Cp average specific heat capacity
Cp,i specific heat capacity of ith species
c3 Product concentration
dt time difference for noise
Ea activation energy
Ep current episode
ER1/2 equivalent ratio
Eθ expected value based on the policy
Gt cumulative rewards
HP hyperparameter
HPmin hyperparameter minimum value
HPmax hyperparameter maximum value
ΔHreact reaction enthalpy
j reactant species
k reaction rate constant
kref reference reaction rate coefficient
L(Qθ) loss function critic network
Ntotal total number of steps
Nt training iteration
Q total flow rate
Qj individual reactant flow rate, j
R universal gas constant
Rest residence time
r reaction rate
rt instantaneous reward at the step, t
st state of the step, t
T temperature inside tubular reactor
Tc coolant temperature
Tf feeding temperature
T0 initial reactor temperature
Tref reference temperature
t total reaction time
UA overall heat transfer coefficient
V volume of reactor
vz total velocity of reactant flow in z-direction
xi mole fraction of ith species
z flow reaction
Greek Letter

α decay rate
αactor actor learning rate
αcritic critic learning rate
χat current value of noise
ε greedy action
εmin lowest probability of choosing a random action
γ future reward discount factor
λ exponential decay rate
μ long-term mean

exploration noise
∇θμ actor network gradient
ρ reaction mixture density
σ volatility of noise/exploration noise parameter
τ smoothing factor
θ noise return rate
θμ actor network parameters
θQ critic network parameters
θμ’ target actor network parameters
θQ’ target critic network parameters
Glossary

DDPG deep deterministic policy gradient
DNNs deep neutral networks
DRL deep reinforcement learning
HP hyperparameter

HPO hyperparameter optimization
LSTM long−short-term memory
MINLP mixed integer nonlinear programming
ML machine learning
ODEs ordinary differential equations
OVAT one variable at a time
OU Ornstein−Uhlenbeck
RL reinforcement learning
SNOBFIT stable noisy optimization by branch and fit
TD temporal difference
TS-EMO Thomson sampling efficient multi-objective
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