
Fluorescence Lifetime Imaging of Alterations to Cellular
Metabolism by Domain 2 of the Hepatitis C Virus Core
Protein
Nirmal Mazumder1., Rodney K. Lyn2,3., Ragunath Singaravelu2,4, Andrew Ridsdale2, Douglas J. Moffatt2,

Chih-Wei Hu1, Han-Ruei Tsai1, John McLauchlan5, Albert Stolow2,6, Fu-Jen Kao1*, John Paul Pezacki2,3,4*

1 Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, 2National Research Council of Canada, Ottawa, Ontario, Canada, 3Department of Chemistry,

University of Ottawa, Ottawa, Ontario, Canada, 4Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada, 5Medical

Research Council - University of Glasgow Center for Virus Research, Glasgow, United Kingdom, 6Department of Physics, Queen’s University, Kingston, Ontario, Canada

Abstract

Hepatitis C virus (HCV) co-opts hepatic lipid pathways to facilitate its pathogenesis. The virus alters cellular lipid biosynthesis
and trafficking, and causes an accumulation of lipid droplets (LDs) that gives rise to hepatic steatosis. Little is known about
how these changes are controlled at the molecular level, and how they are related to the underlying metabolic states of the
infected cell. The HCV core protein has previously been shown to independently induce alterations in hepatic lipid
homeostasis. Herein, we demonstrate, using coherent anti-Stokes Raman scattering (CARS) microscopy, that expression of
domain 2 of the HCV core protein (D2) fused to GFP is sufficient to induce an accumulation of larger lipid droplets (LDs) in
the perinuclear region. Additionally, we performed fluorescence lifetime imaging of endogenous reduced nicotinamide
adenine dinucleotides [NAD(P)H], a key coenzyme in cellular metabolic processes, to monitor changes in the cofactor’s
abundance and conformational state in D2-GFP transfected cells. When expressed in Huh-7 human hepatoma cells, we
observed that the D2-GFP induced accumulation of LDs correlated with an increase in total NAD(P)H fluorescence and an
increase in the ratio of free to bound NAD(P)H. This is consistent with an approximate 10 fold increase in cellular NAD(P)H
levels. Furthermore, the lifetimes of bound and free NAD(P)H were both significantly reduced – indicating viral protein-
induced alterations in the cofactors’ binding and microenvironment. Interestingly, the D2-expressing cells showed a more
diffuse localization of NAD(P)H fluorescence signal, consistent with an accumulation of the co-factor outside the
mitochondria. These observations suggest that HCV causes a shift of metabolic control away from the use of the coenzyme
in mitochondrial electron transport and towards glycolysis, lipid biosynthesis, and building of new biomass. Overall, our
findings demonstrate that HCV induced alterations in hepatic metabolism is tightly linked to alterations in NAD(P)H
functional states.
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Introduction

Hepatitis C virus (HCV) infection is a global health concern and

a leading cause of hepatocellular carcinoma and liver transplan-

tation [1–3]. The HCV RNA genome is a ,9.6 kb RNA virus

that encodes for a ,3000 amino acid polyprotein that is cleaved

into three structural proteins (core, E1 and E2) as well as seven

nonstructural proteins (p7, NS2, NS3, NS4A/B, and NS5A/B)

each playing important roles in the HCV life cycle [4]. The virus is

highly heterogeneous, with genotypic variants of HCV differing in

their responses to clinical interventions [5]. Although effective

treatments are available against HCV, these treatments still exhibit

side effects and possess varying efficacy against some subpopula-

tions of patients [5], [6]. Given the relatively small size of its

genome, HCV relies on hijacking host factors and pathways to

facilitate its viral life cycle [7], [8].

Hepatic lipid metabolism represents one pathway that is

intimately linked to HCV pathogenesis [7], [9]. In fact, HCV

infection is associated with steatosis in over 40% of patients [10].

This hepatic lipid accumulation results from virus-induced

alterations in host lipid homeostasis [7], [9]. Specifically, the virus

promotes lipid synthesis and inhibits lipid secretion and catabolism

which lead to formation of lipid droplets (LDs) and lipid-rich

membranous webs. These intracellular structures are crucial for

replication and assembly of the virus [7], [9]. In addition to its

roles in viral capsid formation and packaging of viral RNA [11],

the HCV core protein is known to play a key role in virus induced

changes in host metabolic flux. The core protein strongly

associates with LDs and is progressively loaded onto LDs over
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time after HCV infection is established [12]. This association is

directly correlated with the ability of HCV to produce infectious

particles [12–15]. HCV core protein also controls the size,

subcellular localization, and movement of LDs on microtubules

[13], [16]. These core-induced changes to cytoplasmic LDs

represent a subset of the changes HCV core induces in host

metabolism to create an environment that is advantageous to the

virus.

Additionally, HCV core protein expression independently

induces shifts in metabolic flux which have a net effect of

increasing cellular lipid content. This involves up-regulation of de

novo lipid synthesis, suppression of fatty-acid b-oxidation, and

impairment of lipoprotein-coupled lipid efflux [17]. HCV core

protein stimulates fatty acid synthesis [18], [19], induces LD

biogenesis [20], and decreases LD turnover [21]. The severity of

these effects varies by HCV genotype. Specifically, the HCV core

protein from genotype 3a has shown the most pronounced effects

that have been directly implicated with steatosis [22]. The mature

form of HCV core protein comprises of two domains. The second

domain (D2) contains two a-helices that are hydrophobic and

enable anchoring to the endoplasmic reticulum (ER) and a strong

association with cytoplasmic LDs [23]. D2 has been shown to

independently alter the composition of proteins bound to the LD

and changes LD localization and trafficking [24]. It remains

unclear whether D2 is similarly sufficient to induce the alterations

in metabolic flux observed during HCV core expression.

Two-photon fluorescence lifetime imaging microscopy (TP-

FLIM) represents a non-invasive imaging technique to visualize

alterations in metabolic state, by tracking intrinsic fluorophores

present in the cell, such as nicotinamide adenine dinucleotide

(NADH) and its phosphorylated form (NADPH). NAD(P)H is a

key coenzyme in glycolysis and oxidative energy metabolism that

acts as a principal electron carrier in energy transduction and

biosynthetic processes [25]. NADH plays a key role in catalyzing

catabolic reactions in the mitochondria and cytosol while NADPH

is a cofactor in anabolic reactions and plays a key role as a cellular

antioxidant [25]. An imbalance of these co-factors can provide

evidence for differential energy flow. Although, the coenzyme

exists in an oxidized [NAD(P)+] and a reduced [NAD(P)H] form,

only the reduced form is intrinsically fluorescent [26]. With two

photon excitation at 730–750 nm wavelengths, the cellular

intrinsic fluorescence is dominated by NAD(P)H species [27].

Careful selection of wavelengths for excitation and emission can

enable non-destructive detection with spatial and temporal

resolution [28].

The fluorescent lifetime represents the time a molecule spends

in its excited state before returning to its ground state.

Observations of the changes in NAD(P)H fluorescence lifetime

give additional insight into the cofactor’s microenvironment,

including its conformation, interactions with other molecules in

the system, and changes in pH [28], [29]. Subpopulations of

NAD(P)H exhibit distinct lifetimes corresponding to the free and

protein bound forms of NAD(P)H [28]. Assuming a model fitting

bi-exponential fluorescence decay enables monitoring of the ratio

of free to protein bound NAD(P)H. The relative quantities of the

free and bound forms of this coenzyme can give insight into the

metabolic state of the cell as the functional roles of the cofactors

are dependent on the proteins with which they interact. The mean

lifetime of protein bound NAD(P)H (t2) is ,2.3–3.0 ns, while the

free form has a short lifetime (t1) of ,0.3–0.4 ns [28].

Measurements of the fluorescence intensity and lifetime of

NAD(P)H provides a unique visualization of cellular metabolic

signatures.

FLIM imaging has been applied widely to the visualization of

changes in metabolism and energy consumption in mammalian

cells. Previous studies have utilized NAD(P)H FLIM to demon-

strate changes in metabolism in stem cells and cancer cells, both

in vitro [27], [30–32] and in vivo [33]. With regards to host-

pathogen interactions, autofluorescence lifetime analysis has been

utilized to uncover the alterations in metabolic flux induced by

bacterial infections [34], [35]. Previous work analyzing HeLa cell

metabolism in the presence of enterohemorrhagic Escherichia coli

revealed an increase in the relative concentration of free NADH,

which suggested a decrease in oxidative phosphorylation over the

course of infection [34]. Furthermore, FLIM imaging of NAD(P)H

has been used to study the metabolism of the bacterium Chlamydia

trachomatis and its interactions, effects, and crosstalk with its host

cell during infection [35]. Szaszak et al. analyzed host and

pathogen metabolic changes during intracellular C. trachomatis

infections and demonstrated a tight link between changes in host

cell metabolism and chlamydial development [35]. The authors

directly linked changes in chlamydial growth and progeny,

induced by glucose starvation and interferon treatment, with

significant changes of the NAD(P)H fluorescence lifetimes inside

bacterial inclusions. These studies suggested that FLIM imaging of

NAD(P)H during host-virus interactions could also potentially

shed light on changes to cellular metabolism induced by viral

proteins.

Herein, we use a multimodal imaging approach, employing

both coherent anti-Stokes Raman scattering (CARS) microscopy

and FLIM, to establish metabolic signatures for hepatoma cells in

the presence and absence of HCV core D2 expression. CARS

imaging revealed that D2 expression was sufficient to induce

hepatic lipid accumulation and an increase in LD size and

number. We also observed an increase in NAD(P)H autofluores-

cence, which correlates to an approximate 10 fold increase in

reduced NADH levels. TP-FLIM imaging revealed that HCV core

D2’s influence on energy flow is directly correlated with a decrease

in lifetimes of both free and bound NAD(P)H as well as an overall

increase in free NAD(P)H levels, which we partially attribute to

D2-induced disruption of mitochondrial electron transport. These

results demonstrate that FLIM is a powerful tool for probing host-

cell metabolic changes in the presence of HCV.

Results

Expression of HCV core D2 is Sufficient to Cause an
Increase in Lipid Droplet Size and Number
Previous studies have clearly demonstrated that HCV core

expression independently induces alterations in hepatic metabolic

flux [10], [11], [13], [23]. As a strategy to investigate HCV core

dynamics within living hepatocytes, Shavinskaya et al. incorporat-

ed a fusion DNA plasmid that fuses D2 of core protein to a green

fluorescent protein (GFP) at its N-terminus [14]. The GFP-tagged

D2 of core is able to associate with the LD surface without GFP

hindering D2’s binding to the LD surface. We wished to apply this

construct to investigate whether D2 expression can independently

induce alterations in metabolic flux observed during HCV

infection [36,37,38].

CARS microscopy is a convenient live-cell imaging tool for

monitoring changes in LD localization, size, and abundance in

living cells [16], [39–44] and has previously been successfully

applied to the study of HCV host-virus interactions [16], [41],

[42], [44]. Here we used simultaneous two-photon fluorescence

(TPF) and CARS microscopy to track D2-GFP localization and

measure changes in the hepatic lipid content of Huh7 cells. The

cells were transfected with the vector expressing D2-GFP fusion
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protein, and fixed 24 hours post-transfection. Simultaneous CARS

and TPF revealed an increase in LD size and number in cells

transfected with the D2-GFP construct (Figure 1, Figure S1)

compared to adjacent non-transfected cells. As an additional

control, cells expressing GFP alone displayed no changes in LD

morphology (Figure S2). The changes to LD size occurred rapidly

and in conjunction with the appearance of the signal associated

with D2-GFP fusion protein - typically within 8 h of transfection of

the plasmid expressing the core protein. Similar to full-length core,

the core D2 fusion protein localized around LDs and induced

recruitment of LDs to the perinuclear region – consistent with

previous reports [14]. Previous studies have revealed that HCV

core down-regulates the expression of PPAR-a, a transcription

factor which activates the expression of genes associated with fatty

acid catabolism [45–48]. Quantitative RT-PCR analysis of D2-

GFP transfected Huh7 cells revealed a consistent 30% decrease in

PPAR-a gene expression relative to mock (Figure S3). These

results indicate that expression of domain 2 of the core protein is

sufficient to give rise to metabolic changes in the host cell.

D2-GFP Expression Alters NAD(P)H Abundance and
Localization
We sought to examine D2-GFP expression’s influence on

NAD(P)H levels and localization. Transfected cells were identified

by imaging with standard wide-field fluorescence. Fields with

fluorescent cells were identified using GFP optimized excitation

and emission wavelengths. TPF imaging, with excitation centered

at 740 nm and the emission filter centered around 450 nm,

enabled visualization of NAD(P)H autofluorescence while rejecting

GFP fluorescence. Huh7 cells transfected with D2-GFP possessed

an approximately 3 fold increase in cellular autofluorescence

compared to non-transfected cells in the same image field

(Figure 2; Figure S4). Importantly, cells transfected with GFP

alone showed no increase in NAD(P)H fluorescence (Figure 2).

Interestingly, in non-transfected Huh7 cells, the majority of

autofluorescence appeared to localize in distinct foci of the cell

(Figure S5). Previous work suggests these observed foci correspond

to mitochondria as the majority of NAD(P)H autofluorescence

originates from mitochondria [49], where the coenzyme plays a

critical role as an electron carrier for oxidative phosphorylation. In

D2-GFP transfected cells, autofluorescence signal appeared to be

more diffuse throughout the cell. This was further illustrated

through calculation of the coefficients of variances in autofluores-

cence profiles from D2-GFP and GFP transfected cells (Figure

S5C). We observed a decreased coefficient of variance for

autofluorescence derived from D2-GFP transfected cells, indicat-

ing there was a more homogeneous spread of signal in the

cytoplasm, as opposed to the distinct foci observed in the GFP

transfected cells. Collectively, this data demonstrates that D2-GFP

induces an increase in NAD(P)H levels, and alters the cellular

distribution of the coenzyme. These observations are consistent

with previous studies reporting an increase in NADH/NAD+
ratios in HCV infected cells [50], [51].

TP-FLIM of D2-GFP Expressing Cells Reveals Changes in
NAD(P)H Lifetime
We then examined the effects of D2 on the NAD(P)H lifetimes

to investigate D2’s effects on the coenzymes’ protein binding or

microenvironment. Our TP-FLIM setup (Figure S6) produced a

fluorescence lifetime decay curve, which was fitted with two

exponential components (Figure S7). A good fit is characterized by

a x2 close to 1 and residuals showing no noticeable systematic

variations. Both lifetimes (t1 and t2) and amplitudes (a1 and a2 -

population sizes of molecules with the different decay rate) were

obtained from fitting optimization software. The fits consistently

produced lifetime values in the ranges of 0.2–0.4 ns and 2.0–

3.0 ns for the free and bound forms of NAD(P)H, respectively.

These values are similar to what has been previously reported

[27]. Cells expressing D2 exhibited a significant decrease in

NAD(P)H average lifetime (tavg) from 2.360.3 ns to 1.560.3 ns

(Figure 3A, B; Figure S8) (p,0.01). This decrease was consistently

observed in comparison to either adjacent non-transfected cells or

cells transfected with a plasmid expressing GFP alone. This

suggested a specific alteration in NAD(P)H microenvironment in

the presence of D2 expression. This model was further supported

by the decrease in the fluorescence lifetimes of the free (t1) and
bound (t2) form in the presence of D2 expression in Huh7 cells

(Figure 3C, D). The lifetime of free NAD(P)H decreased from

0.4960.9 ns to 0.3160.3, while the lifetime of bound NAD(P)H

decreased from 3.060.3 ns to 2.460.2 ns. These decreases were

once again consistent in comparison to either non-transfected

adjacent cells or cells transfected with GFP alone. The results

indicate that D2 expression decreases NAD(P)H t1 and t2, which

Figure 1. Domain 2 of HCV core protein induces lipid
accumulation in Huh7 cells. Huh7 cells were fixed and imaged by
CARS and TPF microscopy 24 hours post-transfection with D2-GFP
fusion protein. (A) Diagram of the HCV D2-GFP fusion protein. (B)–(E)
Simultaneous CARS and two-photon fluorescence image of Huh7 cells
expressing D2-GFP. (B) Typical two-photon fluorescence image showing
localization of D2-GFP (green); (C) CARS image of lipid droplets (red) in
the same field of view; (D) Overlay of the CARS and two-photon
fluorescence images; (E) Magnified image from the inset of (D).
Representative images are shown of three biological replicates. Scale
bar = 10 mm.
doi:10.1371/journal.pone.0066738.g001
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correlates with D2 induced modulations in cellular lipid metab-

olism.

Increased Amount of Free NAD(P)H in Host Cells
Expressing D2
Analysis of the amplitudes derived from the bi-exponential

model (Figure 4) allows for the measurement of the ratio of free to

protein-bound NAD(P)H (a1/a2). This ratio was increased over 3

fold (Figure 4B). This indicates that there is a much higher

population of short lifetimes in transfected cells. Assuming that the

changes in lifetime are dominated by differences in non-radiative

processes, fluorescence lifetime is directly proportional to quantum

yield [52], [53]. We can then estimate the magnitude of the D2-

induced increase in NAD(P)H levels based on our empirically

derived lifetimes, amplitudes and differences in NAD(P)H

fluorescence intensity (refer to Text S1). Assuming negligible

differences in two photon excitation cross-sections and refractive

indices for the bound and unbound forms of NAD(P)H in D2

transfected and non-transfected samples, we estimate an approx-

imate 10-fold increase in NAD(P)H levels. Collectively, our data

demonstrates that D2 expression increases the abundance of

NAD(P)H, and this is mainly attributed to an increase in the free

NAD(P)H population.

Discussion

HCV’s modulation of host lipid metabolism has been well

documented [9], [54]. The virus hijacks hepatic lipid pathways to

facilitate virtually every step of its life cycle. These alterations in

host cellular lipid metabolism results in an increase in steady-state

pools of de novo synthesized fatty acids and neutral lipids [37].

These lipids are used to modify ER membranes [9] and LDs [55]

that are both utilized by HCV for replication, viral particle

assembly, and secretion. Our results herein provide evidence that

D2 of the HCV core protein can independently modulate hepatic

metabolic flux.

Previous studies have demonstrated that HCV infection is

accompanied by large shifts in metabolic fluxes [36–38], with over

10 fold increases in certain lipid metabolites [37]. This is consistent

with hepatic lipid accumulation observed by CARS microscopy in

the presence of HCV core D2-GFP expression (Figure 1). This

steatotic phenotype represents a significant diversion of carbon

sources into anabolic processes – similar to what is observed in

highly proliferative cells. A metabolic shift toward increased

biomass often correlates with an increase in NAD(P)H/NAD(P)+
ratio [56]. Consistent with this, previous reports correlate elevated

NADH/NAD+ ratios with increased HCV replication [50,51,57].

In fact, a recent study elucidated that HCV core expression alone

was sufficient to induce increased NADH/NAD+ [57]. These

studies probing NADH/NAD+ ratios involved biochemical assays,

which may inadvertently perturb the biological system. Imaging of

NAD(P)H autofluorescence circumvents the issues associated with

these traditional approaches, while allowing for visualization of the

coenzyme’s subcellular localization. Our results demonstrate that

expression of HCV core D2 upregulates NAD(P)H levels ,10 fold

– consistent with its ability to independently induce a steatotic

Figure 2. Domain 2 of HCV core protein increases NAD(P)H fluorescence. Huh7 cells were transfected with plasmids encoding D2-GFP or
GFP. The cells were fixed and imaged 24 hours post-transfection with TPF for NAD(P)H fluorescence, DIC, and CCD camera for GFP fluorescence. (A)
Left panels: Grayscale images of NAD(P)H fluorescence intensity signals. Right panels: Overlay of DIC images and GFP fluorescence (red).
Representative images are shown from two biological replicates. Scale bar = 10 mm. (B) Quantitative analysis of NAD(P)H fluorescence intensity in D2-
GFP transfected cells and neighbouring non-transfected cells. Error bars represent standard deviation (n$3; **p,0.01).
doi:10.1371/journal.pone.0066738.g002
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Figure 3. Domain 2 of HCV core induces alterations in NAD(P)H microenvironment. Huh7 cells were transfected with either D2-GFP or
GFP. The cells were imaged 24 hours post-transfection with FLIM for NAD(P)H lifetimes, DIC, and CCD camera for GFP fluorescence. (A) Left panels:
Pseudo-colored images of average NAD(P)H lifetimes. Right panels: Overlay of DIC images and GFP fluorescence (red). Representative images are
shown of two biological replicates. Scale bar = 10 mm. (B) Quantitative analysis of NAD(P)H mean lifetimes. (C)–(D) Quantitative analysis of average
lifetimes for (C) free and (D) bound NAD(P)H in GFP or D2-GFP expressing cells and non-transfected neighbouring cells. Error bars represent standard
deviation (n$12; ***p,0.001).
doi:10.1371/journal.pone.0066738.g003

Figure 4. D2 expression induces enrichment for short lifetime forms of NAD(P)H. Huh7 cells were transfected with either D2-GFP or GFP
alone. Cells were imaged 24 hours post-transfection with FLIM for NAD(P)H lifetimes, DIC, and CCD camera for GFP fluorescence. (A) Overlay of DIC
images and GFP fluorescence (red) are shown in right panels. Pseudo-colored images of the fraction of the fast decaying component (short lifetime)
are shown in the left panels. The fraction was calculated as described in Materials and Methods. The range goes from 0 to 0.85 in evenly spaced
increments on the colour scale. Pixels with less than 20 counts were set to 0. Scale bar = 10 mm. (B) Quantitative analysis of ratio of a1/a2 in Huh7 cells.
ROIs (n$12; ***p,0.001) were taken from two independent experiments. Error bars represent standard deviation.
doi:10.1371/journal.pone.0066738.g004
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phenotype. Yang et al. previously reported that an increase in

NAD(P)H autofluorescence change precedes induction of oxida-

tive stress in HepG2 cells treated with cadmium [58]. HCV core

protein has previously been shown to induce the formation of

reactive oxygen species (ROS) [59], a mechanism which has been

linked to HCV-induced hepatic steatosis [60]. A similar sequential

phenomena may result in D2’s induction of NAD(P)H accumu-

lation. Overall, expression of HCV core’s D2 is sufficient to

significantly modulate the hepatic lipid homeostasis and metab-

olism.

Our results reveal a more diffuse NAD(P)H autofluorescence

throughout the cytoplasm in HCV core D2-expressing cells

(Figure S5). This is further demonstrated by the decreased

variance for the autofluorescence signal observed in D2-GFP

expressing cells compared to GFP expressing cells. This is

consistent with observations in C. trachomatis infected cells, where

increased non-mitochondrial NAD(P)H fluorescence was observed

[35]. In our studies, the non-mitochondrial NAD(P)H fluorescence

likely arises from D2-mediated disruption of mitochondrial

bioenergetics, similar to what has previously been observed in

the presence of HCV core expression (Figure 5) [61].

The D2-induced increase in cellular autofluorescence from two-

photon excitation centered at 740 nm (Figure 2) originates from

the metabolic coenzymes NADH and NADPH. NADH is the

primary electron donor in oxidative phosphorylation and plays a

key role in aerobic respiration [25]. Increased levels of NADH in

the presence of HCV correlate with increased fatty acid synthesis

and reduced fatty acid oxidation [62]. Interestingly, a yeast two

hybrid screen by Tripathi et al. had elucidated a mitochondrial

protein NADH dehydrogenase [ubiquinone] iron-sulfur protein 2

(NDUFS2), a key protein in the mitochondrial respiratory chain,

as an HCV core interacting partner [63]. Korenaga et al. further

demonstrated that electron transfer to ubiquinone is halted at

complex I in oxidative phosphorylation, which prevents electron

transport to subsequent complexes II-V [64]. As a consequence,

NADH would be unable to transfer its electrons to complex I of

the electron transport chain. Hence, D2-mediated disruption of

the mitochondrial electron transport chain would similarly explain

an HCV induced build-up of NADH levels (Figure 5).

Major sources of the phosphorylated form of NADH, NADPH,

include the pentose phosphate pathway (PPP), malic enzyme,

aldehyde dehydrogenase, and NADP-linked isocitrate dehydroge-

nase (IDH) [25]. The observed increase in cellular autofluores-

cence may also be attributed to an HCV core D2-induced increase

in NADPH levels as this model would be consistent with

previously observed increases in PPP intermediates in HCV-

infected cells 24 hours post-HCV infection [38]. Diamond and co-

workers observed proteome changes in HCV-infected cells

consistent with a shift toward glycolysis, and the production of

glutamine and lactate rather than shuttling intermediates into

producing high amounts of energy in the form of ATP through

oxidative phosphorylation [36]. These protein expression changes

were highlighted by a marked increase in lactate dehydrogenase

and NADP-independent isocitrate dehydrogenase (IDH2), both

enzymes capable of regenerating NADPH levels. IDH2 also

redirects a-ketoglutarate to citrate, thereby reversing TCA flux,

and generating another source of acetyl-CoA for lipid synthesis –

consistent with HCV core’s established induction of neutral lipid

accumulation [16]. Overall, D2 induction of NAD(P)H levels

would be in line with an HCV-induced shift to anabolism as the

Figure 5. Proposed model of HCV core D2-induced alterations in metabolic homeostasis. The observed increase in NAD(P)H levels can be
attributed to several plausible mechanisms [61]. HCV core D2 association with the outer mitochondrial membrane (OMM) modulates calcium ion
(Ca2+) transporters’ activity. This interaction can elicit calcium ion influx into the mitochondrial matrix, which results in increased reactive oxygen
species (ROS). Subsequent accumulation of oxidized glutathione (GSSG) and its association with Complex I can lead to disruption of the electron
transport chain (ETC). D2 may also directly interaction with Complex I or NDUFS2 to inhibit Complex I activity, resulting in increased reduced NADH
[63]. The increased NAD(P)H may allow for increased lipid biosynthesis or a shift to glycolysis within infected cells. This alteration in the cofactor’s
protein binding and localization can account for changes in the NAD(P)H lifetimes observed.
doi:10.1371/journal.pone.0066738.g005
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cofactor is used for both fatty acid elongation and cholesterol

synthesis [25].

TP-FLIM allows for non-invasive determination of the

NAD(P)H binding state as well as provides information on the

cofactors’ microenvironment. Our results demonstrate a signifi-

cant alteration in NAD(P)H microenvironment in the presence of

D2 expression. Both the free and protein-bound lifetimes of

NAD(P)H are significantly decreased in cells transfected with D2-

GFP (Figure 3). This suggests an alteration in the microenviron-

ment occurred for both populations of NAD(P)H. Considering

that lipogenic enzymes are upregulated during HCV core

overexpression, a change in NAD(P)H lifetime could result from

the shuttling of NAD(P)H binding towards enzymes involved in

these pathways. For example, fatty acid synthase (FASN) utilizes

NADPH as a reducing equivalent for the reaction of acetyl-CoA

and malonyl-CoA to produce palmitate, a major constituent of

fatty acid biosynthesis [65]. HCV’s induction of FASN expression

has been well documented, and, in order to facilitate increased

lipogenesis, there would be a requirement for more cytosolic

NADPH [18,19]. Satisfying this viral requirement would account

for the observed increased cytosolic localization and altered

lifetimes of NAD(P)H in the presence of D2 expression.

Additionally, our results indicate a three-fold shift in NAD(P)H

from the bound to free form (Figure 4), similar to what was

observed in precancerous hamster cheek epithelial cells when

compared to normal epithelia [33]. Alternatively, the observed

shift to free NAD(P)H may potentially result from the previously

discussed core-induced disruption of mitochondrial electron

transport [64].

In conclusion, FLIM has allowed us to independently assess and

quantify NAD(P)H changes at the molecular level without

perturbing the sensitive environment of these oxidation and

reduction intermediates. We have shown that expression of HCV

core D2 is sufficient to increase levels of the free form of NAD(P)H

and alter the coenzyme’s microenvironment. These overall

changes of metabolic co-enzymes are consistent with core’s

proposed roles in up-regulating lipid biosynthesis and disruption

of the mitochondrial electron transport chain. Our results suggest

that D2 of the mature core protein independently induces changes

in metabolic flux, consistent with a primary role for D1 in HCV

RNA binding [66–68]. From our observations, D2 is sufficient to

cause large changes in metabolic flux in the host liver cell and is a

prime example of how a virus utilizes its genome efficiently to

induce pro-viral alterations in host pathways. This work repre-

sents, to the best of our knowledge, the first application of

fluorescence lifetime imaging towards understanding viral protein-

induced changes in host metabolic flux. Our work here illustrates

the power of employing CARS imaging and FLIM imaging of

NAD(P)H fluorescence as complementary approaches to interro-

gate changes in metabolism.

Materials and Methods

Tissue Culture and Reagents
Human hepatoma cells (Huh7) were grown in DMEM medium

supplemented with 100 nM nonessential amino acids, 50 U/mL

penicillin, 50 mg/mL streptomycin, and 10% FBS (CANSERA,

Rexdale, ON). The JFH-1 strain Core D2-GFP expression

plasmids were previously described [14]. The GFP expression

plasmid used in this study is the pIRES2-EGFP (Clontech,

Mountainview, CA).

Transfections
Huh7 cells were seeded at 1.06105 cells/well in borosilicate

Lab-Tek chambers (VWR, Mississauga, ON). After 24 h, cells at

60–70% confluency were transfected with GFP-D2 or GFP

expressing plasmid vector suspended in transfection media

including lipofectamine 2000 (Invitrogen Canada Inc., Burlington,

ON). After 4 h, DMEM with 20% FBS was added in equal

volume to the chambers. Imaging was conducted 20 h post-

transfection.

qRT-PCR
For PPAR-amRNA and 18S rRNA levels, 500 ng of total RNA

was used for cDNA synthesis using the Superscript II kit

(Invitrogen, Burlington, ON) according to the manufacturer’s

protocol. Quantitative PCR (qPCR) was subsequently performed

on an iCycler (Bio-Rad, Hercules, CA) using iQ SYBR Green

Supermix (Bio-Rad, Hercules, CA), as per manufacturer’s

protocol. Primer sequences are listed in Table S1. A 20 mL
reaction was assembled according to the manufacturer’s protocol.

For data analysis, the 22DDCt method was used [69] using 18S

rRNA levels as a reference gene. Mean fold changes in expression

are shown relative to mock transfected samples.

CARS and TPF Microscopies
The CARS microscopy procedure has been previously

described [70]. Briefly, the CARS microscopy system uses a single

femtosecond Ti:sapphire oscillator (Coherent Mira 900 modified

to operate at 80 MHz) as the excitation source. The frequency

difference between two input lasers, stokes and pump beam is

equal to that of the Raman resonance of interest. The second

longer wavelength (Stokes beam) is generated through use of a

photonic crystal fiber (PCF), which produces power in the

wavelength range of 1035 nm with negligible amplitude fluctua-

tions. When overlapped with the 800 nm (pump beam) from the

Ti:sapphire laser, this corresponds to the 2850 cm21 Raman

resonance of the C–H stretch. A modified Olympus Fluoview 300

laser scanning system and IX71 inverted microscope was used to

carry out all CARS and two-photon imaging. A 40X 1.15 NA

UAPO water immersion lens with a cover slip collection was used

as the objective and the 0.55 NA long working distance condenser

lens for collection in the forward direction. Light was directed to

photomultiplier tubes (PMT) with enhanced red sensitivity

(Hamamatsu R3896) and operated at a gain of about 530 V.

Imaging was completed when the combined average powers

reached approximately 120 mW for the pump and the Stokes

outside the scan box. Total power transfer to the sample is less

than 20%. Live cell samples were imaged in 4.2 cm2 Lab-Tek

Chambers Slide System (NUNC, Rochester, NY). Optical

sectioning of lipid droplets were imaged at 1 mm z-slices for a

total z-stack analysis ranging from 7–12 mm depending on

thickness of cell sample. Two photon fluorescence, obtained

simultaneously from the same pump pulse, was detected using a

separate detection channel using the Olympus Fluoview 300 laser

scanning system and IX71 inverted microscope.

TP-FLIM of NAD(P)H
For NADH FLIM, the center wavelength of the laser was tuned

to 740 nm and had a full width half maximum (FWHM) spectral

width of 15 nm which supports pulses of 100 fs. Cells were

maintained in an enclosed chamber at 37uC and 5% CO2. The

two-photon autofluorescence signal from NAD(P)H were collected

in the de-scanned mode of the microscope to the photon-counting

photomultiplier tube (PicoQuant GmbH, Berlin, Germany). The
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signals from PMT and reference photodiode were combined with

the time-correlated single-photon counting electronics board

(TCSPC, PicoHarp300, PicoQuant GmbH, Berlin, Germany).

Data collection and data analysis is done by a commercial software

package (SymPhoTime, PicoQuant GmbH, Berlin, Germany).

Photon arrival times are recorded by the electronics with respect to

the laser excitation pulse, and is done by acquiring data in reverse

START-STOP mode. The START pulse is generated by the

PMT while the STOP or SYNC pulse is provided directly from

the laser via an internal photodiode. The operation of the

PicoHarp 300 board in time-tagged time-resolved (TTTR) mode

allows for the full time-resolved analysis of collected autofluores-

cence signal. A 450 nm centered 40 nm full width band pass filter

(Chroma, Bellows Falls, Vermont ) was inserted in the fluorescence

emission path from NADH that is central peak at 450 nm. An

additional short-pass filter (Semrock 680 SP) was used to further

exclude the backscattered 740 nm excitation light. For cellular

imaging, the average power used at the focal plane of objective

lens was ,3 to 5 mW, which was lower than the laser power

causing two photon damage and optimal for the prevention of

photobleaching [71], [72]. Five separate images of grouped cells

were collected per dish, with minimum spacing between observed

groups. The total number of images acquired in the control and

D2 treatment experiments was the product of images per dishes

(n = 5) and number of imaging sessions [i.e. n = 40 (5x8)]. All the

images were taken at 2566256 pixels resolution with the

acquisition time in the range of 700–900 sec for accumulating

good enough photon count statistics at the given laser power for

further data analysis.

FLIM Data Analysis
Data was analyzed with the commercially available Sympho-

time software package (PicoQuant, Germany) via a mathematical

convolution of a model function with the instrument response

function (IRF) and fitting of the model function to the

experimental data as has been described previously. To calculate

the lifetime from the composite decays of NADH, we convolved

an IRF, Iinstr, with a double-exponential model function. The

measured full width at half maximum of the IRF was determined

to be 400 ps.

To illustrate the spatial distributions of the two forms of NADH,

we constructed an image from the ratio of the early arriving

photon counts to the total counts using ImageJ (NIH, US). We

chose the cut-off of the early counts to be twice the time constant

associated with the short decay (or 0.9 ns). In this way the intensity

has a contribution for 86% of the short decay time population and

29% or the 2.5 ns decay time population or about 4 fold enriched

for the short-decay-time species. Pixels with a total less than 20

counts were set to zero.

Wide-field Fluorescence and DIC Imaging
Standard wide-field imaging of fluorescence and differential

interference contrast (DIC) was done to identify transformed cells

on the background of non-transformed cells in the same fields.

Standard DIC prisms and polarizers for the Olympus IX71

microscope were temporarily inserted into the transmission path

and the optical path for imaging onto a monochrome camera

(Mightex CXE-B013-U). Illumination was achieved with a high

intensity LED centered around 490 nm with collimation lens using

485 bandpass filter for excitation and 535 nm 22 nm wide for

emission and a dichroic mirror reflecting below 500 nm. It is

important to note that we verified that, within fields of Huh7 cells

expressing GFP alone, the overall NAD(P)H fluorescence lifetime,

intensities, and spatial distribution are indistinguishable from non-

GFP expressing cells in the same image.

Statistical Analysis
Student’s unpaired t-test was used to analyze the data, and P-

values less than 0.05 were deemed significant.

Supporting Information

Figure S1 Domain 2 of HCV core protein induces lipid

accumulation in Huh7 cells. Huh7 cells were fixed and imaged

by CARS and TPF microscopy 24 hours post-transfection with

D2-GFP fusion protein. (A)–(D) Simultaneous CARS and TPF

image of Huh7 cells expressing D2-GFP. A different field of view is

shown in addition to the one displayed in Figure 1. (A) Typical

TPF image showing localization of D2-GFP (green); (B) CARS

image of lipid droplets (red) in the same field of view; (C) Overlay

of the CARS and TPF images; (D) Magnified image from the inset

of (C). Representative images are shown of three biological

replicates. Scale bar = 10 mm.

(TIF)

Figure S2 GFP expression does not alter cytosolic lipid

morphology in Huh7 cells. Huh7 cells were fixed and imaged by

CARS and TPF microscopy 24 hours post-transfection with GFP

alone. (A)–(C) Simultaneous CARS and TPF image of Huh7 cells

expressing D2-GFP. A different field of view is shown in addition

to the one displayed in Figure 1. (A) Typical TPF image showing

localization of D2-GFP (green); (B) CARS image of lipid droplets

(red) in the same field of view; (C) Overlay of the CARS and TPF

images. Representative images are shown of three biological

replicates. Scale bar = 10 mm.

(TIF)

Figure S3 Domain 2 of HCV core protein downregulates

PPAR- a expression. Huh7 cells were transfected with D2-GFP.

24 hours post-transfection, total RNA was isolated and qRT-PCR

was performed to measure PPAR-a expression. Relative abun-

dances were normalized by 18S rRNA levels. Error bars represent

standard error of the mean (n= 3; *p,0.05).

(TIF)

Figure S4 Domain 2 of HCV core protein increases NAD(P)H

fluorescence. Additional field of view showing cells transfected

with D2-GFP. Cells were imaged 24 hours post-transfection with

TPF for NAD(P)H fluorescence, DIC, and CCD camera for GFP

fluorescence. Left panel: Grayscale images of NAD(P)H fluores-

cence intensity signals. Right panel: Overlay of DIC images and

GFP fluorescence (red). Representative images are shown of two

biological replicates. Scale bar = 10 mm.

(TIF)

Figure S5 Domain 2 of HCV core alters cellular distribution of

NAD(P)H fluorescence. Huh7 cells were transfected with either

GFP (A) or D2-GFP (B) and imaged 24 hours post-transfection.

NAD(P)H fluorescence intensity profiles are shown in the bottom

panel. (B). GFP-transfected and non-transfected cells exhibited

distinct foci as highlighted in the fluorescence intensity profile

(lower panel) of the orange line indicated in the NAD(P)H

fluorescence image (upper panel). In GFP transfected cells, the

fluorescence intensity profile demonstrate a decrease to near-

background levels of signal in the cytoplasm (highlighted by red

arrows) – suggestive of distinct foci of NAD(P)H. Conversely, in

D2-GFP transfected cells, less drastic fluctuations in fluorescence

signal were observed in the cytoplasm. Images are representative

of two independent experiments (ROIs $20). (C) Coefficients of
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variance were calculated for signal along NAD(P)H fluorescence

intensity profiles for GFP and D2-GFP transfected cells. Average

values are shown. Error bars represent the standard error of the

mean (n= 5; *p,0.05).

(TIF)

Figure S6 TP-FLIM setup. Schematic diagram of the time-

resolved fluorescence lifetime imaging (FLIM) using TCSPC

electronics. BS: Beam Splitter; P: Polarizer; l/2: Half wave-plate;

M: Mirror; DM: Dichroic Mirror; Obj.: Objective; S: Sample; F:

Filter; PMT: Photomultiplier tube; TCSPC: Time correlated

single photon counting. Specific details of the set-up are discussed

in the Materials and Methods.

(TIF)

Figure S7 Typical bi-exponential model fitting of NAD(P)H

fluorescence decay curve. (A) Standard fitted curve is shown with

x2 close to 1 and residuals showing no noticeable systematic

variations. (B) Representative color-coded image of NAD(P)H

lifetimes in Huh7 cells and (C) NAD(P)H fluorescence intensity.

Scale bar = 10 mm.

(TIF)

Figure S8 Domain 2 of HCV core induces alterations in

NAD(P)H microenvironment. Additional field of view showing

cells transfected with D2-GFP. Cells were imaged 24 hours post-

transfection with FLIM for NAD(P)H lifetimes, DIC, and CCD

camera for GFP fluorescence. Left panel: Color-coded images of

average NAD(P)H lifetimes. Right panel: Overlay of DIC images

and GFP fluorescence (red). Representative images are shown of

two biological replicates. Scale bar = 10 mm.

(TIF)

Table S1

(DOCX)

Text S1 Data Analysis.

(DOCX)
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